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Abstract
The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves
somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in one
dimension is described and applied to characterize the behavior of reconstituted collagen. This
approach is based on a new principle for including nonlinearity and requires considerably less
computation than other comparable models for both model calibration and response prediction,
especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with
the strain history.

The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of
“ramp-and-hold” stretching tests were applied to rectangular collagen specimens. The relaxation
force data from the “hold” was used to calibrate a new “adaptive QLV model” and several models
from literature, and the force data from the “ramp” was used to check the accuracy of model
predictions. Additionally, the ability of the models to predict the force response on a reloading of the
specimen was assessed.

The “adaptive QLV model” based on this new approach predicts collagen behavior comparably to
or better than existing models, with much less computation.
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1. Introduction
Nonlinear viscoelastic behavior can be modeled within a very general framework (Coleman
and Noll, 1961). Calibrating a general framework to specific materials can be challenging,
especially for highly variable biological tissues. For these materials, Fung’s quasi-linear
viscoelastic (QLV) model (Fung, 1993) is attractive: it identifies a class of quasi-linearity that
is appropriate for many tissues, thereby simplifying model calibration.

Fung’s QLV model has two limitations. First, it cannot always achieve the desired accuracy,
due to its limitation that the stress response resulting from any level of instantaneous straining
must be proportional to a single “reduced” relaxation function. For example, Provenzano et al.
(2001) observed that stress relaxation curves are not proportional to a single reduced relaxation
function in rat medial collateral ligaments, and we observed this in our previous work in pure,
reconstituted collagen (Pryse et al., 2003). This limitation can be overcome by increasing the
number of degrees of freedom, as in the “generalized Fung model” we proposed (Pryse et al.
2003).
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However, increasing the number of degrees of freedom compounds the second limitation of
Fung’s QLV model, which is the need for complicated numerical procedures for calibration.
The model parameters to be calibrated in the Fung QLV model and our generalization are
convolved functions, except when data is available for stresses resulting from a perfect
instantaneous step stretch. We have found that this limits not only the ease of calibration, but
also model accuracy in some cases, motivating us to look for an accurate and easier to calibrate
alternative.

We present an alternative approach for including nonlinearity in linear viscoelastic equations,
in which the nonlinearity is partitioned so as to simplify model calibration, and we show the
ability of the resulting “adaptive QLV model” to predict the nonlinear viscoelastic behavior of
reconstituted collagen gels. The nonlinear “mechanical elements” of the adaptive QLV model
differ from those of the Fung QLV model, but the adaptive approach retains the Fung QLV
model’s flexibility. Like Fung’s QLV model, ours is phenomenological: when calibrated to
the results of a few tests, it predicts subsequent viscoelastic behavior (Hsu et al., 1994; Johnson
et al., 1996; Ozerdem and Tozeren, 1995; Pioletti et al., 1998; Provenzano et al., 2002; Pryse
et al., 2003). This contrasts with models using the structure of collagen (Alberts et al., 1994)
to predict behavior from properties of individual collagen molecules (Misof et al., 1997; Parry,
1988) or fibers (Christiansen et al., 2000; Decraemer et al., 1980; Lanir, 1983; Pins et al.,
1997; Sacks, 2003; Silver et al., 2000; Thomopoulos et al., 2006; Thornton et al., 2001;
Wagenseil et al., 2003).

After reviewing Fung’s QLV model and providing a generalized definition of quasi-linearity,
we present the adaptive model and compare its predictive ability to that of other models. Testing
involves calibration of models using “hold” data from “ramp-and-hold” tests, then prediction
of both the “ramp” portion of these same tests and of the mechanical response in a subsequent
reloading of the same specimens. The adaptive QLV model has advantages in ease of
calibration, and is comparable to or better than an existing generalization of Fung’s QLV model
in its predictive capability.

2. Background
We review for comparison Fung’s QLV model and define quasi-linearity. The “generalized
Fung model” we also consider is described elsewhere (Pryse et al., 2003).

2.1 Fung’s QLV Model
In Fung’s QLV model, stress is calculated through a linear convolution integral:

σ(t) = ∫
−∞

t
g(t − ξ) dσ (e)(ε(ξ))

dξ dξ

= ∫
−∞

t
g(t − ξ) dσ (e)(ε)

dε
dε(ξ)
dε dξ,

(1)

where σ is uniaxial stress, ε is the corresponding strain, g(t) is the “reduced” relaxation function,
normalized by its initial value (g(0)=1), and σ(e)(ε) is a function of strain called the “elastic
stress.” Nonlinearity is included within the elastic tangent stiffness term, dσ(e)(ε)/dε, and g(t)
may be chosen to model different materials (Abramowitch and Woo, 2003). A common choice

of g(t) is g(t) = ao + Σ
i
aie

−t/τi, where each time constant is associated with a series combination
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of spring and dashpot with normalized spring constant ai, and ao is associated with a spring.
Fung (1993) proposed a continuous spectrum of time constants S(τ):

g(t) =
1 + ∫0∞S(ξ)e−t/ξdξ

1 + ∫0∞S(ξ)dξ
.

Fung applied S(τ) = c/τ, as done independently by Neubert (1963) to describe rubber
viscoelasticity.

2.2 Quasi-Linearity
Fung’s QLV model is quasi-linear in the sense that the dependence of response on loading
history can be obtained from a linear convolution integral, which preserves the benefits of
linearity for calibrating the model, simplifies model predictions, and permits meaningful
analysis in Fourier and Laplace space. Nonlinearity enters the linear viscoelastic constitutive
law by replacing strain with a nonlinear function of strain, and the resultant model is linear
with respect to a pure function of strain instead of strain itself.

We expand the term quasi-linear viscoelastic to encompass nonlinear viscoelastic constitutive
laws in which loading history dependence can be modeled by a linear convolution integral or
a summation of linear convolution integrals. A feature of such QLV models is that the stress
and strain (force and displacement) are related by an intermediate variable that separates the
nonlinearity from the viscoelasticity. In Fung’s QLV model, the “elastic stress” is the
intermediate variable that allows use of a linear convolution integral to derive stress.

3. Adaptive QLV Model
3.1 Mathematical Framework

We related stress and strain through an intermediate variable, a “viscoelastic strain,” V(ε)(t), in
a linear convolution integral:

σ(t) = k(ε(t))V (ε)(t)

V (ε)(t) = ∫
−∞

t
g(t − ξ) dε(ξ)

dξ dξ,
(2)

where k(ε) is a pure nonlinear function of strain, and, following Fung, g(t) is a “reduced”
relaxation function that can be expressed as a summation of exponentials with different time
constants. V(ε)(t) represents the dependence of the model on loading history. The nonlinearity
of the model lies in k(ε), which converts the viscoelastic strain to stress by a simple
multiplication. Similar to the Fung QLV model, Equation (2) generates proportional stress
relaxations for different amplitudes of instantaneous strain. To overcome this proportionality
restriction we added degrees of freedom to the model by allowing different nonlinear behavior
for different time constants:

σ(t) = σo(ε(t)) + Σ
i

ki(ε(t))Vi
(ε)(t)

Vi
(ε)(t) = ∫

−∞

t
gi(t − ξ) dε(ξ)

dξ dξ
i = 1, 2, … (3)
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where σ0(ε) is a pure function of strain representing the fully relaxed elastic response. Each
(t) could be any relaxation function such that g(0)=1 and g(∞)=0. We chose gi(t) = e−t/τi to
represent the model in terms of parallel Maxwell elements (Figure 1), although such elements
need not exist physically.

For each hypothetical Maxwell element,

{V̇ i +
Vi

τi(ε)
= ε̇

σi = ki(ε(t))Vi(t)
, i = 1, 2, … (4)

where:

τi(ε) =
bi(ε)

ki(ε)
,

and for the spring representing the fully relaxed elastic response:

σo = σo(ε).

This nonlinear viscoelastic model becomes quasi-linear by assigning each pair of spring
stiffness and dashpot coefficients to be proportional to the same nonlinear function of strain:

{ki(ε) = ηiψi(ε)

bi(ε) = βiψi(ε)
,

where ψi(ε) are arbitrary nonzero functions, making each time constant τi independent of strain:

τi(ε) =
bi(ε)

ki(ε)
=

βi
ηi

= τi.

In this case, the first order differential equation in (4) becomes linear and its solution can be
calculated from a linear convolution integral:

V̇ i +
Vi
τi

= ε̇ ⇒ Vi(t) = ∫
−∞

t
e
−(t−ξ)/τi dε(ξ)

dξ dξ i = 1, 2, …

This convolution integral is the integral that appears in Equation (3) when gi(t) = e−t/τi and thus
highlights the physical meaning of Vi

(ε)(t) as a viscoelastic strain. A solution to this equation
exists in closed form for many stretching functions, including a stretch at a constant rate,ε:

V̇ i +
Vi
τi

= ε̇ ⇒ Vi(t) = ε̇τi(1 − e
−t/τi) i = 1, 2, …

Total stress then takes the form of Equation (3):

σ = σo(ε(t)) + Σ
i

ki(ε(t))Vi(t) i = 1, 2, …

Imagining Maxwell elements helps with physical interpretation of the model. Different
Maxwell elements represent different relaxation time scales, each perhaps from a different
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physical source and with a different nonlinear response. Each element models a tissue-level
strain-dependent relaxation mechanism and therefore the model parameters (spring constant
and dashpot coefficients) arise as functions of overall tissue strain.

3.2 Physical Interpretation of the Adaptive QLV Model
The physical interpretation of nonlinear viscoelasticity in the adaptive QLV model differs from
that in the Fung QLV model. To clarify this difference, we begin by representing the strain
history as a summation of incremental unit step strains:

ε(t) = Σ
n

enu(t − nΔ),

where u(t) is a unit step function and ▵ a time step. For linear viscoelastic materials, stress can
be written as the summation of incremental relaxations corresponding to incremental strains:

σ(t) = Σ
n

eny(t − nΔ),

where y(t) is the relaxation function in response to a unit step strain. To include nonlinearity,
Fung assumed that incremental relaxations are functions of initial strain at each strain increment
and suggested:

σ(t) = Σ
n

en f 1(ε(nΔ))y(t − nΔ),

where f1(ε) is a fitted function characterizing material nonlinearity. This view assumes that
material behavior depends on the strain history, but that incremental relaxations remain
unaffected by subsequent changes in strain levels.

In the adaptive QLV model, we assume:

σ(t) = Σ
n

en f 2(ε(t))y(t − nΔ).

The model thus adapts relaxation from previous strain increments according to the current,
strain-dependent material behavior by incorporating nonlinearity through f2(ε), which is a
function of the current strain level.

4. Methods
4.1 Specimens, Testing Apparatus and Test Protocol

The testing apparatus (Figure 2) consisted of two horizontal bars, one fixed and the other
movable (Pryse et al., 2003). During experiments, specimens were kept in HEPES-buffered
DMEM (pH 7.4) at 37°C. Specimens (Figure 3) were synthesized from 4 mg/ml rat-tail type
I collagen with pH brought to 7.4. Collagen solution was poured into a rectangular mold, where
it attached to fabric loading fixtures as it became a gel through crosslinking of collagen
molecules over 15 hours at 37°C.

Four specimens were tested in a sequence of “ramp-and-hold” stretches. After adjusting the
loading bars until each specimen was at zero stress, specimens were stretched at a prescribed
rate over TR seconds then held for TH seconds while force was recorded at 10 Hz.

To characterize the strain-dependence of nonlinearity, four consecutive ramp-and-hold tests
were performed on each specimen, each involving a stretch of 2.0 mm (stretch λ=1.067) over
TR=20 seconds, and a hold of TH=2000 seconds, sufficient for specimens to relax to a nearly
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constant level of force. This loading rate was chosen to ensure that inertial effects could be
neglected (Nekouzadeh, et al., 2005).

This protocol was applied three more times until the specimens were stretched 8.0 mm
(λ=1.267). After the final ramp-and-hold increment, the loading bars were returned to their
pre-test separation, and the specimens were allowed to relax for 2000 seconds (an interval
sufficient to remove all slack from the specimens). Thereafter, specimens were stretched 8.0
mm at constant rate over TR=10 seconds to compare the predictive ability of the adaptive and
Fung approach for including nonlinearity.

4.2 Calibration of QLV Models
The adaptive QLV model, Fung’s QLV model, and the “generalized Fung” models were
calibrated for each specimen from the force relaxation data in each “hold” of the incremental
ramp-and-hold tests; force data in the “ramps” were used to evaluate the models’ predictive
ability. Details of the calibration procedures are provided in the supplementary online
document.

Briefly, in all cases g(t) was assigned an exponential form with time constants τi. Therefore,
isometric (“hold”) force relaxation data h(t) could be written as a linear combination of the
exponential terms comprising g(t):

h (t) = co + Σ
i

cie
−t/τi.

An interesting advantage of expressing g(t) with exponential terms is that this enables us to
find the time constants directly from the hold data. For each dataset, fitting h(t) required a four-
term exponential summation (including one infinite time constant).

4.3 Reloading
To study re-stretched specimens, inelastic deformation had to be considered. The inelastic
behavior of collagen is not a focus of this paper, and the following scheme was employed only
because it was simple and plausible. Strain in Equations (1) and (3) was replaced on reloading
with εi

p(t):

εi
p(t) = { 0 if ε < εi

∗

ε(t) − εi
∗ if ε > εi

∗
i = 0, 1, 2, ....,

where εi
p could be different for different relaxation modes, and εi

∗ were constants fit from the

hold data of the large strain test. Choosing independent εi
∗ was based upon the experimental

observation that different nonlinear behavior was exhibited at each time scale.

5. Results
The adaptive QLV model is sufficiently general to fit the calibration data itself, but Fung’s
QLV model could do so only to within ~10% due to the model’s limitation that amplitudes of
relaxation modes retain the same relative proportions for all strain (right column of Figure 4:
Figures 4(b), 4(d) and 4(f)). The fit of the Fung QLV model was forced to capture the initial
stress of hold data (stress at the end of the ramp) to provide the best possible prediction of the
ramp data; this came at the expense of its predictions at longer timescales. Predictions of the
generalized Fung model for the hold data were indistinguishable from those of the adaptive
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QLV model (Figure 5) and its predictions of the ramp data were very close to those of Fung’s
QLV model.

Predictions of the ramp data serve to evaluate the calibrated models. Ramp loading stress-strain
data were concave up (representative incremental stretch data in the left column of Figure 4:
4(a), 4(c), 4(e)), meaning that, for the reconstituted collagen, the effect of nonlinearity is
important during a 6.7% strain increment, and the response cannot be approximated with linear
viscoelasticity (which predicts a concave down response). Both models predict appropriate
concave up behavior (Figure 4) with acceptable accuracy when fit to the hold stress relaxation
data. Again, we biased Fung’s QLV model to fit to the ramp at the expense of fitting longer
timescale calibration data.

For the adaptive QLV model, the three gi(t) = e−t/τi were exponentials with time constants of
τ1=5.5 sec, τ2=65.5 sec, and τ3=700 sec. The corresponding elastic stiffnesses k1(ε), k2(ε) and
k3(ε) were clearly not proportional to each other (Figure 6). The curvature of the k(ε) functions
(representing the degree of nonlinearity) was lower for the larger time constants. The fit for
Fung’s QLV model yielded similar time constants: τ1=5.9 sec, τ2=67.5 sec, and τ3=734 sec.
The assumption of piecewise linearity for the elastic stress function was accurate within 10%
(Figure 7).

The adaptive QLV model fit the large strain ramp-and-hold test very well (Figure 8). The
recorded stress started to increase visibly after 3 seconds (Figure 8(a)). The generalized Fung
model captured only the first 6 seconds of the response. By altering εi

∗, the generalized Fung
model could instead be forced to capture the peak stress at the end of loading at the expense
of losing the fit to the initial stress rise.

6. Discussion
The adaptive QLV model presented in this paper adapts all stress relaxation from the strain
history to the material conditions at the current strain level. The model possesses extra degrees
of freedom compared to Fung’s QLV model, enabling it to capture non-proportionality in the
relaxation curves at different strains.

To separate the merits of the two approaches for incorporating quasi-linearity from those of
allowing extra degrees of freedom, we compared predictions of the adaptive QLV and
generalized Fung models. The distinction between the two approaches is negligible when
stretching is small, as both models can be approximated with piecewise linear viscoelasticity
for small stretching.

However, the difference was magnified in a test involving a large stretch. The protocol was to
calibrate both models at multiple strain levels over a prescribed range, and then, using a model
for inelastic deformation, compare predictions of the calibrated models to data from a
subsequent stretch over this entire strain range. Although both calibrated models provided
similar, accurate predictions during incremental steps (Figure 5), the adaptive QLV model
captured the significantly larger curvature over the ramp portion of the test, but the generalized
Fung model could not (Figure 8). As the strain increased during the ramp, the adaptive QLV
model adapted the relaxation functions from the strain history to current strain levels, providing
appropriate magnification of the nonlinearity and leading to a more accurate prediction of the
increased curvature. Models based upon the approach of the Fung QLV model cannot capture
this.

From a modeling perspective, the adaptive QLV model is easier to calibrate and use than the
Fung QLV model or its generalized version, especially when the input stretch for calibration
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is not a step function. Calibration involves finding the strain dependent amplitudes (ki(ε),
Ai(ε) and σ(e)(ε)) and is simple because the unknown nonlinear function of strain lies outside
the convolution integral. This is far less involved than fitting a function inside a convolution
integral, as is required for Fung’s QLV model.

As an example, consider a single large strain ramp-and-hold test to be modeled with a QLV
model, and assume that proportionality at different strains is not an issue so that we may obtain
an accurate representation of material response with either the Fung model or the single term
adaptive QLV model. Time constants can be found from the exponential fit to the hold data.
In the adaptive approach the amplitudes of the reduced relaxation function are known scales
of the amplitudes of the exponential fit to the hold data (Equation (S2) in the supplementary
online document, with only one k(ε)). V(ε)(t) is calculated from the reduced relaxation function,
and k(ε(t)) is determined by simply dividing σ(t) by V(ε)(t) during the ramp. In the Fung
approach, determining the amplitudes of the reduced relaxation function from amplitudes of
the exponential fit to the hold data requires prior knowledge of σ(e)(ε). Also, determining
σ(e)(ε) from stress during the ramp requires prior knowledge of the amplitudes of the reduced
relaxation function. Therefore the model parameters must be found from iterative solution of
coupled nonlinear equations, an optimization problem for finding one function and a few
scalars. Additionally, for each choice of the amplitudes of the reduced relaxation function,
σ(e)(ε) must be found from a numerical deconvolution. Further details of the calibration
procedures and the simplicity of the adaptive QLV approach for multiple tests at different strain
levels are described in the supplementary online document.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
1-D “spring and dashpot” representation of the adaptive QLV model, a parallel combination
of nonlinear springs and dashpots where the spring stiffnesses and dashpot coefficients are
functions of overall strain and not their individual strain. So is the initial cross section of
specimen, lo is the initial length of specimen, loVi is the displacement of the hypothetical spring
and ε and σ are uniaxial, linearized strain and stress, respectively.
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Figure 2.
The experimental test apparatus included a temperature-controlled organ bath (Harvard
Apparatus, South Natick, MA) and a pair of loading bars controlled by a stepper motor. The
fixed bar was suspended from a force transducer (model 52-5945, Harvard Apparatus, South
Natick, MA). The lower, movable bar was attached to a sliding element controlled by a stepper
motor (P/N 1-19-3400, 24V DC, 1.8° step size, Howard Industry, St. Louis, MO) through a
micrometer. The micro-stepping driver (IM483, Intelligent Motion Systems, Inc.,
Marlborough, CT) was controlled using the “experix” software system developed by William
B. McConnaughey (sourceforge.net).
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Figure 3.
Flat collagen gel specimens were mounted to the testing apparatus via relatively rigid polymer
attachments. Specimens were synthesized from 4 mg/ml rat-tail type I collagen stock solution
(Upstate Biotechnologies) in 0.02M acetic acid, with pH brought to 7.4 using sodium
hydroxide. The solution was poured into rectangular molds and kept in 37°C for 15 hours. The
molds contained fabric attachments that were folded and stitched over a plastic tube to facilitate
attachment to testing bars. The specimens were approximately 30mm long, 10mm wide, and
3mm thick.
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Figure 4.
Predictions of the Fung QLV model (dashed lines) compared to those of the adaptive QLV
model (solid lines) for incremental ramp and hold data (gray dots) for the second, third and
fourth ramp- and-hold tests. The three rows correspond to ramp-and-hold tests from strains of
4.3% to 11% ((a) and (b)), 11% to 17.7% ((c) and (d)) and 17.7% to 24.3% ((e) and (f)). Stress
is calculated by dividing the recorded force by 30 mm2, the nominal cross-sectional area of
the specimens.
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Figure 5.
Predictions of the generalized Fung model (dashed lines) compared to those of the adaptive
QLV model (solid lines) for incremental ramp and hold data (gray dots) for the second, third
and fourth ramp- and-hold tests. As in Figure 4, the three rows correspond to ramp-and-hold
tests from strains of 4.3% to 11% ((a) and (b)), 11% to 17.7% ((c) and (d)) and 17.7% to 24.3%
((e) and (f)). Stress is calculated by dividing the recorded force by 30 mm2, the nominal cross-
sectional area of the specimens.
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Figure 6.
The elastic stress (a) and the elastic stiffnesses of the viscoelastic components of the adaptive
QLV model (b, c, and d), as fit to the collagen specimens in 1-D. The gray dots are the calibrated
values for ki (ε) and σo (ε), and solid lines represent interpolations for the intermediate strains.
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Figure 7.
The elastic stress function for Fung’s QLV model, as fit to experimental data. The gray dots
are calibrated values, and the solid lines are interpolations (validated with a second iteration
of calibration procedure, as described in the supplemental online document).
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Figure 8.
Predictions of the adaptive QLV model (solid lines) and generalized Fung model (dotted lines)
of large strain ramp-and-hold test (data: gray dots). The time axis for the ramp (a) can be
converted to strain using the stretch rate of 0.8 mm/s and the reference length of 30 mm. The
optimum values of εi

∗ used in both models were ε0
∗ = 4.5 % , ε1

∗ = 8.3 % , ε2
∗ = 12.8 %  and

ε3
∗ = 11.7 %
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