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Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is estimated to affect 1/600–1/1000
individuals worldwide. The disease is characterized by age dependent renal cyst formation that results
in kidney failure during adulthood. Although ultrasound imaging may be an adequate diagnostic tool
in at risk individuals older than 30, this modality may not be sufficiently sensitive in younger
individuals or for those from PKD2 families who have milder disease. DNA based assays may be
indicated in certain clinical situations where imaging cannot provide a definitive clinical diagnosis.
The goal of this study was to evaluate the utility of direct DNA analysis in a test sample of 82
individuals who were judged to have polycystic kidney disease by standard clinical criteria. The
samples were analyzed using a commercially available assay that employs sequencing of both genes
responsible for the disorder. Definite disease causing mutations were identified in 34 (~42%) study
participants. An additional 30 (~37%) subjects had either in frame insertions/deletions, non-canonical
splice site alterations or a combination of missense changes that were also judged likely to be
pathogenic. We noted striking sequence variability in the PKD1 gene, with a mean of 13.1 variants
per participant (range 0–60). Our results and analysis highlight the complexity of assessing the
pathogenicity of missense variants particularly when individuals have multiple amino acid
substitutions. We conclude that a significant fraction of ADPKD mutations are caused by amino acid
substitutions that need to be interpreted carefully when utilized in clinical decision-making.
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Introduction
Autosomal dominant polycystic kidney disease (ADPKD [MIM 173900]) is one of the most
common inherited disorders in humans, affecting ~1/600–1/1000 individuals [1]. The disease
is characterized by age dependent growth of renal cysts such that end stage renal disease
(ESRD) typically ensues during mid adulthood. Approximately 85% of ADPKD cases are
caused by mutations in the PKD1 gene [MIM 601313], which is located on chromosome 16,
while the remaining cases are due to mutations in PKD2 [MIM 173910] located on
chromosome 4 [2–7].

Renal ultrasound is a sensitive method of diagnosing ADPKD in those individuals older than
30 years of age who are at risk for inheriting PKD1 mutations. Since cyst formation is an age
dependent process, the false negative rate of ultrasound is higher in younger individuals or in
those with PKD2 mutations, which are associated with later onset disease [8,9]. There are a
number of clinical scenarios in which DNA based testing for ADPKD might be indicated.
Ultrasound imaging might not provide a sufficiently certain diagnosis in at risk individuals
younger than 30 years of age who wish to donate a kidney to a relative with renal failure. In
addition, clinicians may encounter patients with atypical cystic disease in whom the diagnosis
may not be obvious. Finally, new therapies for ADPKD are on the horizon and there is evidence
to suggest that these may be most effective if initiated early in the disease course, perhaps even
before cystic disease is apparent [10–12].

Linkage analysis for ADPKD has been commercially available for some time, but requires the
participation of at least two and preferably more affected family members. In cases where
family members are not available, direct DNA analysis offers the possibility of establishing a
molecular diagnosis. Direct DNA testing for ADPKD has posed a unique set of challenges.
PKD1 analysis in particular has been complicated because the 5′ portion of the gene (exons 1–
34) is replicated in at least 5 highly homologous copies (<2% divergence) elsewhere on
chromosome 16 [6]. Several groups have now been able to analyze the bona fide PKD1
sequence by using gene-specific primers to amplify large products that can then be screened
via nested PCR using direct sequencing [13–24] or other techniques such as denaturing high-
performance liquid chromatography (DHPLC) [25–28].

In the current study, we report an analysis of direct sequencing results for both PKD1 and
PKD2 in a cohort of 82 individuals with the clinical features of polycystic renal disease
(PKDx®, Athena Diagnostics, Inc). Since a major indication for direct DNA testing is the
absence of family members for linkage analysis, we chose to study one individual from each
family. We identified truncating mutations in ~42% (N=34) of the participants. An additional
30 (~37%) study subjects had either in frame insertions/deletions, non canonical splice site
alterations or a combination of missense changes that were judged likely to be pathogenic.
Direct sequencing is a sensitive method of detecting DNA variability in PKD1 and PKD2, but
given the significant proportion of non-truncating mutations, the need for strict interpretation
is essential if the results are to be used in clinical decision-making. To our knowledge, this is
the first report of direct sequencing of the entire coding regions of both PKD1 and PKD2.
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Materials and Methods
Patient Recruitment and Clinical Evaluation

Eighty-two unrelated ADPKD patients were recruited from outpatient nephrology clinics at
the Johns Hopkins Hospital and the University of Toronto. Patients were seen at various stages
of the disease process. Institutional review boards at the Johns Hopkins School of Medicine
and the University of Toronto approved the study. Informed consent was obtained from each
participant. We based the diagnosis of ADPKD on the Ravine ultrasound criteria [8]. A detailed
medical history and a coded blood sample were obtained at the time of entry into the study.
Blood samples were sent to Athena Diagnostics, Inc. for mutation analysis using the same
methodology as for commercially obtained samples (http://www.athenadiagnostics.com/
content/test-catalog/find-test/service-detail/q/id/249). In most cases, routine laboratory data
was obtained as part of the standard medical evaluation.

Mutation Analysis
Sequence analysis was performed using previously described methods optimized at Athena
[13–15,19,21,29,30]. Briefly, genomic DNA was derived from whole blood using
Puregene® DNA extraction kit (Gentra Systems, Inc.) and used as template for specific long-
range PCR amplification of 8 segments encompassing the entire PKD1 duplicated region. The
long-range PCR products served as template for 43 nested PCR reactions while the unique
region of the PKD1 gene and the entire PKD2 gene were amplified from genomic DNA in 28
additional gene segments. All 71 PCR products were bi-directionally sequenced including the
coding regions and exon-intron splice junctions of both PKD1 and PKD2.

Analysis of Normal Samples
The normal population was selected from anonymized samples, older than 65, submitted to
Athena for ataxia testing. PCR products from a minimum of 171 individuals were sequenced
to determine the frequency of certain common variants in either PKD1 or PKD2. Complete
DNA analysis was not performed for these samples.

Cleavage Assay
Missense variants were generated using the QuickChange Site–Directed Mutagenesis Kit
(Stratagene). The full-length, wild type PKD1 cDNA, four additional constructs (Q3016R,
F3064L, F2853S, E2771K) and transfection methods have been previously described [31,
32]. After transfection, the cells were lysed and lysates were immunoprecipitated using ANTI-
FLAG® M2 beads (SIGMA) and resolved on NuPAGE® 3–8% Tris-Acetate Gels (Invitrogen).
The products were electro-blotted onto an Immobilon™ transfer membrane (MILLIPORE)
and probed with α-Leucine-rich-repeat (LRR) and α-C-terminus (CT) antibodies for
polycystin-1 (PC1) [32,33].

Web Resources
The following GenBank sequences (http://www.ncbi.nlm.nih.gov/Web/Genbank/) served as
reference files: L39891 for PKD1 genomic nucleotide position, L33233 for PKD1 cDNA
position, AAC37576 for PKD1 amino acid position, V50928 for PKD2 genomic nucleotide
position, NM000297 for PKD2 cDNA position and NP00288 for PKD2 amino acid position.
Other Web Resources: Online Mendelian Inheritance in Man (OMIM), http://
www.ncbi.nlm.nih.gov/Omim/; Splice Site Prediction by Neural Network (SSPNN; http://
fruitfly.org/seqtools/splice.html [34]; Automated Splice Site Analyses (ASSA), https://
splice.cmh.edu/[35,36]; Simple Modular Architecture research tool (SMART), http://
smart.embl.de/; Pfam, http://www.sanger.ac.uk/Software/Pfam/. MDRD equation: http://
nephron.com/cgi-bin/MDRDSI.cgi.
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Results
Patient Characteristics

We selected an outpatient cohort that was judged to have polycystic kidney disease based on
standard ultrasound criteria (Table 1) [8].

Classification of Sequence Alterations
DNA sequencing results fell into three classes (Table 2). Class I tests were defined as those
that had definitive pathogenic sequence variants, such as stop codons, frameshifts or canonical
splice site alterations. Class II tests consisted of those demonstrating in frame deletion/
insertions, non-canonical splice site mutations, or amino acid substitutions that were judged
likely to be pathogenic based on the application of various algorithms. Class III tests included
those where no pathogenic changes could be confirmed. The location of Class I and Class II
variants are summarized in Figure 1.

Class I Tests
Thirty-four study participants (~42%) were found to have Class I variants (Table 2 and Supp
Table 1 and 2). Twenty-four mutations occurred in PKD1 (~29% of total sample) and ten in
PKD2 (~12% of total sample).

Class II Tests
Thirty study participants had Class II variants (Table 2 and Supp Tables 2–4). Participants with
class II tests had a positive family history in 77% of cases, similar to 79% for Class I.

We detected a total of 7 unique in-frame deletions (6 PKD1 and 1 PKD2) and 1 unique in-
frame insertion (PKD2) in the study population (Supp Table 3). In each instance the in-frame
change affected one or more residues that were fully or highly conserved between the Fugu
rubripes and Mus musculus polycystin proteins. It seems likely that most if not all of these
changes are pathogenic but we cannot exclude the possibility that a functional protein might
be synthesized from these alleles.

There were 10 individuals with no other truncating PKD mutations who had unique intronic
variants. Two of these sequence alterations (PKD1: IVS24+5 G>C in JHU573 and JHU595;
PKD2: IVS8+5 G>A in JHU105) occurred at the 5th base pair from a splice-donor site, which
is highly conserved as a guanine in 84% of cases [37]. These variants as well as two others
were predicted to result in improper splicing by both the ASSA and SSPNN programs (Supp
Table 2). In addition, IVS37-10C>A (JHU 604), was previously reported to segregate with
ADPKD in a European family [38]. Although these intronic variants are likely to represent
splicing mutations, aberrant splicing could not be confirmed at the RNA level using this DNA
based assay.

Most of the remaining participants (N=29) had a combination of amino acid substitutions,
primarily in PKD1 (Supp Table 4). We used three major criteria to judge the pathogenicity of
each missense variant. We examined the conservation of the altered residue between human
polycystin-1 and both the Fugu and mouse proteins. In addition, we assigned a pathogenicity
score for each missense variant using the matrix of Miller and Kumar [39], which defines the
relative likelihood that a missense change represents a pathogenic alteration versus a
polymorphism. This algorithm was developed by using interspecies sequence comparisons
coupled with Grantham’s chemical difference matrix to determine the common attributes of
amino acid replacement mutations across 7 other disease genes. Other investigators have also
used this strategy to assist in characterizing amino acid substitutions [40]. Finally, we reviewed
the literature to determine whether any of the variants had been reported by others to occur in
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normals. Our analysis of individual amino acid substitutions is summarized in Supp Table 4.
We found that 17 participants had at least one variant that was likely to be pathogenic.

Several missense changes were predicted to disrupt key structural determinants of PKD1
(Figures 1 and 2). Three participants had variants that had been previously shown to disrupt
polycystin-1 cleavage, a property that is critical for the protein’s function [32]. We suspected
that other amino acid substitutions near the polycystin-1 GPS site might also disrupt cleavage.
In order to test this, we generated full-length mutant constructs and expressed them in HEK293
cells. We confirmed that E2771K, Q3016R and F2853S disrupt cleavage, as do three of these
additional missense changes, R2643C, R2767C and L2619P (Figure 3).

There were several recurrent PKD1 variants (R2200C, Q739R, G2814R, Q2182R) that had a
higher pathogenic potential by the Miller/Kumar matrix [39] but which were also present in
individuals with chain terminating mutations (Supp Tables 4 and 5). For example, R2200C
was present in four participants and one (JHU111) also had a PKD1 frame shift. This
association suggested that R2200C might represent a polymorphism. We sequenced 342
normal chromosomes to examine a subset of these missense changes and identified R2200C
in a small (1.4%) fraction but greater than the polymorphism threshold of 1%. Likewise Q739R
(this study, 6.4%) and G2814R (Rossetti, et al ~0.9%) have also been reported in a small
percentage of the unaffected population and are or may be polymorphisms, respectively [16,
26].

Five participants, JHU602 (N=2), JHU100 (N=3), JHU588 (N=2), JHU411 (N=2) and JHU114
(N=2), had more than one PKD1 amino acid variant that met the criteria for pathogenicity
(Supp Table 4). These observations raise the possibility that a combination of missense changes
in cis might cooperatively result in a diminished level of functional protein [41].

In contrast with PKD1, there were only two PKD2 amino acid substitutions and both were
predicted to be polymorphisms (Supp Table 4). M800L (JHU559) did not segregate with
disease in a PKD2 family [42]. A second PKD2 substitution, A190T, was identified in 3.2%
of normal chromosomes.

Class III Tests
After conducting the analysis described above, there remained 18 subjects who lacked a
definitive pathogenic sequence alteration (Individuals without shaded variants not underlined
in Supp Table 4). Of these, 9 had a clear family history of ADPKD. All of the remainder (N=9)
had enlarged cystic kidneys.

There are several reasons why we might have failed to identify a pathogenic change in this
subset of individuals. Mutational events in individuals with class III tests could involve introns
or other regulatory regions that were not assayed by the methodology that was used. Direct
sequencing might also miss deletions or duplications, which would appear as an area of
homozygous normal sequence. Alternatively, our stringent criteria may have identified some
missense changes as benign when they may in fact be pathogenic. For example JHU617, with
an extensive family history of ADPKD, was found to have a unique leucine to valine change
in PKD repeat 4 that was judged more likely to be a polymorphism by the matrix of Miller/
Kumar [39]. Nevertheless, this change does disrupt the structure of PKD repeat 4 and could
be pathogenic (Figure 2). In addition, as reported by Reynolds, missense variants may
unexpectedly activate cryptic splice sites, thereby reducing the level of normal transcript
[43].
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Polymorphisms, Private Normal Variants And Variability In PKD Genes
There was an impressive degree of sequence variability, particularly in the PKD1 gene. In
addition to the sequence alterations described in Supp Tables 1–5, we detected a large number
of polymorphisms and private, non-pathogenic variants (see Supp Table 6). The density of
variants was noted to be dramatically higher in PKD1 as compared with PKD2. On average,
the 82 study participants had 13.1 PKD1 sequence variants per patient (range 0 to 60, Supp
Tables 3–5). In contrast, there was an average of only 1.1 PKD2 variants per patient (range of
0–3).

Discussion
We anticipate that there will continue to be a need for molecular diagnosis among individuals
from ADPKD families. DNA testing may be relevant in a variety of clinical circumstances
including the evaluation of living donors from ADPKD families, early detection for treatment
with new therapeutic agents and in individuals with atypical clinical presentations where a
diagnosis of ADPKD is in question. In situations where ultrasound is not sufficiently sensitive
and where family members are unavailable for linkage studies, direct DNA testing has the
potential to provide genetic information to an isolated proband. Direct sequencing of PKD1
and PKD2 forms of the basis for the analysis in this study. We have evaluated the utility of
this test in 82 individuals with a clinical diagnosis of ADPKD.

We found that 42% of the study participants (N=34) had a definitive pathogenic mutation
predicted to result in premature truncation of either PKD protein (Class I). The remaining study
subjects had in frame deletions/insertions, amino acid substitutions or intronic changes
requiring further analysis to assess pathogenicity (Class II). We chose not to study the
segregation of these variants since the lack of available family members is an important
indication for the use of direct sequencing. Instead we utilized several in silico approaches to
determine which variants were more likely to be disease-related. This extended analysis
allowed us to conclude that 30 individuals with Class II test results had at least one variant that
was deemed likely to be pathogenic. Further evidence of disease relatedness for a subset of
variants was provided by in vitro functional studies demonstrating that six of the missense
amino acid substitutions resulted in loss of polycystin-1 cleavage [32]. If one combines Class
I and Class II tests, mutations were detected in approximately 78% (N=64) of the study
population.

Only one other group has published a study similar to ours. Rossetti et al used DHPLC to screen
PKD1 and PKD2 in 45 genetically uncharacterized individuals with clinical ADPKD [26]. In
their research cohort, 34 (76%) subjects had class I or class II tests. This is not statistically
different from our results (78%, p≤1.0, Chi-square test). The differences in the incidence of
truncating mutations between our cohort and Rossetti’s may be related to characteristics of the
study population. Our cohort was not identified on the basis of ESRD so we may have selected
for a group with a milder phenotype and hence a lower prevalence of truncating mutations.

There are several reports that have employed a combination of screening methods including
protein truncation, DHPLC and selective sequencing to identify mutations in portions of
PKD1 or PKD2 [13–19,21–27,29]. We note that several of the missense and splicing variants
classified as pathogenic in those studies were found in association with chain terminating
changes in our cohort (for example, R2200C and IVS39-25del72bp in JHU111, N116fsX and
JHU104, 3792fsX, respectively) [22,27,44]. R2200C was subsequently found in a small
fraction of normal chromosomes and observed in homozygosity (personal communication,
JGJ), suggesting that it can occur on a normal haplotype. These reports demonstrate the
importance of complete sequencing of both genes in order to identify the bona fide gene
mutation.
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The DNA sequence analysis reported here reveals a remarkable degree of sequence variability
particularly in PKD1 and suggests that a substantial fraction of PKD mutations will be amino
acid substitutions. These results also highlight the complexity of assessing the pathogenicity
of missense variants particularly in individuals who may harbor multiple such amino acid
substitutions. In order to develop the most robust algorithm for classifying missense
substitutions, complete sequence data from a reference population of unaffected, ethnically
diverse individuals would be invaluable in assessing the pathogenicity of missense changes.
These data also would provide an estimate of the frequency of missense changes in normal
controls and expand the spectrum of known, non-pathogenic sequence variants. This
information would be particularly helpful in analyzing cases where the a priori probability of
having ADPKD is less than 50%.

In summary, we estimate that in individuals from ADPKD families, approximately 40–60%
of DNA tests will yield definitive results. The major limitation of DNA testing in ADPKD is
the large number of missense changes that may be challenging to interpret even with the best
in silico approaches. Since clinical decision-making demands an added level of certainty
beyond that required in research situations, Class II results may often be non-diagnostic.
Therefore, in some situations, such as the evaluation of prospective renal donors from small
ADPKD families, we recommend initial testing of the affected recipient to identify the disease-
causing mutation. If a diagnostic mutation is identified, we then proceed with directed testing
of the prospective donor. In other situations the possibility of an indeterminate result versus
the impact of a positive diagnosis on clinical management must be factored into the decision
to pursue DNA testing.

Despite the high frequency of missense mutations, direct DNA testing for ADPKD can provide
valuable information in certain clinical circumstances. In the future, sequence analyses of
PKD1 and PKD2 in normal populations coupled with data from functional research studies
should assist in the interpretation of missense variants, thereby expanding the diagnostic utility
of molecular genetic testing for ADPKD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic Representation of Polycysin-1 and 2 (PC-1 and PC-2)
The location of Class I and Class II mutations are indicated in Panels A and B, respectively.
Class I tests contain variants predicted to result in premature truncation of either protein. Class
II tests consist of either in-frame deletion/insertions, unique intronic variants predicted to
disrupt splicing or at least one amino acid substitution deemed likely to be pathogenic. See text
for details.
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Figure 2. Missense Changes Affecting PKD Repeats and C-Lectin Domain
A) Alignment of the consensus sequences for the PKD repeats and C-Lectin domain. The
location of missense changes that disrupt the consensus sequence are shown in red, and those
that do not are in yellow. Consensus sequence code: l (Aliphatic), a (aromatic), c (Charged),
s (small residue), p (polar residue), b (big residue), h (hydrophobic) and capital letter
(corresponding amino acid code). B) Ribbon diagrams of PKD repeat and C-Lectin domain.
Potentially pathogenic missense changes are demonstrated in red. Helix (blue)-Sheet (yellow)-
Loop (green). The secondary structure was determined by PyMol, DeLano Scientific LLC.
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Figure 3. Missense Substitutions Affect PKD1 Cleavage
Top Panel shows a schematic of PKD1 mutant polypeptides with the location of each amino
acid substitution indicated by M (missense) or P (polymorphism). HEK cells were transfected
with Flag-tagged, full length PKD1 constructs for each mutant protein. Western blots were
prepared and loaded in the corresponding lanes below each schematic (middle and bottom
Panels). In the middle panel, cell lysates were immunoprecipitated with M2 beads and Western
blots were probed with an antibody to the LRR (leucine rich repeat). In the bottom panel,
Western blots were probed with an antibody to the C-terminus of PKD1. Absence of the NTF
fragment is indicative of aberrant cleavage. Six of the missense changes (E2771K, Q3016R,
F2853S, R2643C, R2767C, L2619P) disrupt cleavage. In contrast a PC-1 construct with a
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previously described polymorphism (F3064L) cleaved with the wild type pattern. FL: Full-
Length, PKD1 NTF: (N-terminal cleavage fragment). Wt: Wild-type PC-1.
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Table 1
Study Cohort Characteristics.

% Femalea 50%
Average Age at time of Testa 46.5 (range 1–73y)
% ESRDa,b 20.7%
Average GFR (ml/min)c 68.7 (range 14–126)
% Liver cystsa 74.3%
% Vascular complicationsa 9.8%
% Unknown or no Family Historya 28%

a
Data available for N=82 subjects.

b
ESRD defined as transplant, dialysis or MDRD (Modification of Diet in Renal Disease) GFR <10.

c
Data available for 80 patients.

Mol Genet Metab. Author manuscript; available in PMC 2007 November 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garcia-Gonzalez et al. Page 16
Ta

bl
e 

2
D

is
tri

bu
tio

n 
O

f C
la

ss
 I 

an
d 

C
la

ss
 II

 T
es

ts

C
la

ss
 I

C
la

ss
 II

T
ot

al
 (%

)
St

op
 c

od
on

Fr
am

es
hi

ft
Sp

lic
e

In
 fr

am
e

Sp
lic

e
M

is
se

ns
e

PK
D

1
8 

(9
.8

5%
)

14
 (1

7.
1%

)
2 

(2
.4

%
)

6 
(7

.3
%

)
4 

(4
.9

%
)

17
 (2

0.
7%

)
51

 (6
2.

2%
)

PK
D

2
6 

(7
.3

%
)

3 
(3

.6
5%

)
1 

(1
.2

%
)

2 
2.

4%
)

1 
(1

.2
%

)
0 

(0
%

)
13

 (1
5.

8%
)

To
ta

l (
%

)
34

 (4
1.

5%
)

30
 (3

6.
6%

)
64

 (7
8%

)

C
la

ss
 I 

te
st

s a
re

 th
os

e 
w

ith
 a

 d
ef

in
iti

ve
 p

at
ho

ge
ni

c 
m

ut
at

io
n 

pr
ed

ic
te

d 
to

 re
su

lt 
in

 p
re

m
at

ur
e 

tru
nc

at
io

n,
 in

cl
ud

in
g 

st
op

 c
od

on
s, 

fr
am

es
hi

fts
 o

r c
an

on
ic

al
 sp

lic
e 

si
te

 a
lte

ra
tio

ns
. C

la
ss

 II
 te

st
s c

on
ta

in
ed

ei
th

er
 in

-f
ra

m
e 

de
le

tio
n/

in
se

rti
on

s, 
un

iq
ue

 in
tro

ni
c 

va
ria

nt
s p

re
di

ct
ed

 to
 d

is
ru

pt
 sp

lic
in

g 
or

 a
t l

ea
st

 o
ne

 a
m

in
o 

ac
id

 su
bs

tit
ut

io
n 

de
em

ed
 li

ke
ly

 to
 b

e 
pa

th
og

en
ic

. S
ee

 te
xt

 fo
r d

et
ai

ls
.

Mol Genet Metab. Author manuscript; available in PMC 2007 November 21.


