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Fractal geometry has made important contributions to understanding the growth of inorganic systems in
such processes as zggregation, cluster formation, and dendritic growth. In biology, fractal geometry was
previously applied to describe, for instance, the branching system in the lung airways and the backbone
structure of proteins as well as their surface irregularity. This investigation applies the fractal concept to the
growth patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first example showing
fractal aggregates in biological systems, with a cell as the smallest aggrepting unit and the colony as an
aggregate. We find that the global structure of sufficiently branched mycelia can be described by a fractal
dimension, D, which increases during growth up to 1.5. D is therefore a new growth parameter. Two different
box-counting methods (one applied to the whole mass of the mycelium and the other applied to the surface of
the system) enable us to evaluate fractal dimensions for the aggregates in this analysis in the region ofD = 1.3
to 2. Comparison of both box-counting methods shows that the mycelial structure changes during growth from
a mass fractal to a surface fractal.

Fractal analysis (8, 13, 15) introduced to microbiology to
describe growth patterns is of fundamental importance:
morphological differences of mycelial structures correlate
with pathogenicity (7) as well as with growth, metabolic
activity, enzyme production (6), and pigmentation (11). At
present, mycelia are described as diffuse, compact, smooth,
rough, etc. (1, 4, 9-11, 17, 18). Because of the complex
structure of mycelia, a geometric, pattern-oriented descrip-
tion, which leads to a measure of irregularity, was impossi-
ble without the development of fractal geometry. Other
applications of fractal geometry to biological systems are
described elsewhere (2, 3, 5, 12, 14, 16).

MATERIALS AND METHODS

Strains, materials, and methods. Method 1. Streptomyces
griseus (DSM 40693) was grown under the following condi-
tions. A cover slip was deposited on a filter paper in a petri
dish. After dry sterilization, the filter paper was wetted with
2 ml of sterile water. Next, the cover slip was coated under
sterile conditions with 20 ,ul of a 3-day-old spore suspension
containing 2.5% standard nutrient solution (Merck 7882,
diagnostic). Incubation temperature was 28°C.
Method 2. Ashbya gossypii (ATCC 10895) was grown as

follows. A cover slip was coated with a layer of agar (Merck
no. 1615, DAB 6), 0.5 mm thickness, containing 2.5%
standard nutrient solution (Merck no. 7882, diagnostic). The
cover slip was then deposited on a glass slide on a wet filter
paper in a petri dish. After wet sterilization, the petri dish
was cooled in a perfectly horizontal position (monitored by a
bubble level). The cover slip was then inoculated with 20 ,ul
of spore suspension under sterile conditions so as not to
damage the agar layer. Incubation temperature at 28°C.

Light microscopy and image processing. All methods have
to ensure that the mycelial structure is not damaged by any
applied technique. Therefore, no cover slip is used to cover
a mycelium for microscopy. In method 1, a photograph of
the mycelium of S. griseus is taken with a phase-contrast
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microscope (Leitz Diavert) and a camera. The hard copy of
the photograph is digitized by a high-resolution camera
(Aqua-tv) connected to a personal computer (Sperry-AT)
with 512 x 512 pixel resolution, PIP-512/1024 graphic card
(Matrox Electronic Systems), and a standard image analysis
system (Soft-Imaging System, Munster, Federal Republic
of Germany).
Method 2 is applied to young mycelia of A. gossypii in

which the whole mycelium can be magnified by the micro-
scope in one image. Photographs of the mycelia are taken by
a dark-field microscope (Leitz Laborlux) connected to a
high-resolution camera and a video recorder. The same
equipment is used as in method 1, even if such is not
specifically mentioned. The data of the images are trans-
ferred from the video recorder to the computer by the image
analysis system.
Method 3 is applied in those cases where only a part of the

mycelium can be magnified by the microscope in one image.
The data of the images of all parts of a mycelium are stored
on a videotape (dark-field microscopy; high-resolution cam-
era connected to a video recorder). The video recorder is
then connected to a television, and photographs are taken
from the screen. After that, the structure of the mycelium is
reconstructed by a puzzle technique from the individual
photographs. To enhance contrast, the background of the
hyphal structure is drawn in black. The resulting image,
which shows the whole mycelium, is digitized as described
in method 1.

Box-counting methods and fractal terminology. Methods
and terminology have been described previously (15). Eval-
uation of the fractal dimension D in terms of the box-
counting method can be carried out as follows. Cover the
mycelium with a grid of cells (boxes) of side length e and
count how many boxes, NbOX(e). are intersected by the
mycelium. The number of boxes NbOX(e) grows as E-D.
Thus, if a mycelium has a well-defined fractal dimension D,
we should find that

Nb0X(E ) = Cr D (1)
C is a proportionality constant. Power law 1 can be fulfilled
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FIG. 1. (A) Mycelium of S. griseuis 16 h after inocu-
lation. (B) Digitized mycelium of A. gossy.pii 60 h after
inoculation.

10000

only within the following E range: the diameter of a hypha do
sets a natural lower limit (inner cutoff, Cmin), and the
diameter L of the aggregate sets an upper limit (outer cutoff,
Emax).

Mycelial structures can be mass fractals (the whole mass
of the organism is fractal) or surface fractals (only the
surface [border] is fractal) (15). To distinguish between these
two kinds of fractals, we apply two different box-counting
methods. The box mass (BM) method is applied to the whole
mass of the mycelium, which leads to the box mass dimen-
sion, DBM. In the box surface (BS) method, only those boxes
that cover the surface (border) of the mycelium have to be
counted. The BS method leads to the box surface dimension,
DBS. These box-counting evaluations of the digitized myce-
lial structures are performed by computer.

In the case of a mass fractal, the two methods give the
same values of DBM and DBS. Here the fractal dimension D
is equal to DBM, which is equal to DBS. For a surface fractal,
we can no longer describe the object by one single dimension
D. The DBS value describes the surface irregularities and is
equal to the fractal dimension D. The DBM value describes
the dimension of the embedding space d. In this analysis, the
d value is equal to 2, based on the analysis of photographs,
which are planar projections of objects that grow in d = 2
or 3.
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FIG. 2. Evaluation of the mycelia shown in Fig. 1. Experimental
values of number of boxes Nb0x(F) versus box length e(mm),
determined by the BS (+) and BM (O) methods. Scaling behavior
was well over 1 decade, as indicated by the regression lines.
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TABLE 1. Analysis of fractal curves

Analyzed Time after Mean ± SDb
object or inoculation La
aggregate (h.min) DBS DBM

Object
Line 512 1.004 ± 0.019 1.004 ± 0.019
Square 424 1.002 ± 0.009 1.993 ± 0.027
Circle 349 1.000 ± 0.019 1.999 ± 0.011
Fig. 3 512 1.428 ± 0.012 1.428 ± 0.012

Aggregate in
given figure

IA 16.00 0.038 1.47 ± 0.01 1.49 ± 0.01
4A 17.45 0.10
4B 21.50 0.25 1.34 ± 0.01 1.36 ± 0.02
4C 25.00 0.33 1.42 ± 0.01 1.44 ± 0.01

27.10 0.39 1.40 ± 0.01 1.44 ± 0.01
4D 30.50 0.50 1.44 ± 0.01 1.50 ± 0.01

34.10 0.51 1.44 ± 0.01 1.52 ± 0.01
4E 36.50 0.51 1.47 ± 0.01

40.40 0.52 1.46 ± 0.01
44.55 0.53 1.49 ± 0.01

4F 50.30 0.53 1.52 ± 0.01
1B 60.00 0.37 1.45 ± 0.01 1.94 ± 0.01
a Expressed as pixels for objects and millimeters for aggregates in figures.
b Standard deviations were obtained by regression analysis.

RESULTS AND DISCUSSION
The mycelium of S. griseus (Fig. 1A) gives DBM = 1.49 +

0.01 and DBS = 1.47 + 0.01 over 1 decade of length scales
(roughly 0.5 to 6 ,um inner/outer cutoff), as indicated by the
regression lines in Fig. 2. This result implies that the
aggregate is a self-similar mass fractal over this range of e
values. We now argue that this range is optimal in the sense
that it would be unreasonable to expect a larger range for the
mycelium in Fig. 1A. Since the branches are smooth at
length scales smaller than the branch diameter do, this
diameter of approximately 0.3 lum characterizes emin, The
diameter L of the mycelium is approximately 38 ,im. The
analysis of deterministic fractal curves by the BM and BS
methods shows that smax is found in the range L/3.5 to L/4.5
(2). Thus, the inner and outer cutoffs found from Fig. 2 are
indeed optimal.
The quality of the standard deviations of the DBM and DBS

values from the regression analysis should not be overesti-
mated if the box-counting methods are performed with a 512
x 512 pixel resolution image analysis system. To detect the

FIG. 3. Algorithmically constructed self-similar curve. Self-sim-
ilarity means that the system can be decomposed into parts geomet-
rically similar to the whole object. See reference 15 for a detailed
description of how to generate such fractal curves. Here the fractal
dimension can be calculated analytically: D = log 5/log 3 1.4649.

The experimental analyses by the BM and BS methods yield a value
of 1.428 for DBM and DBS, with a standard deviation of 0.012.
However, the difference ofD-DBM or D-DBs equals 0.037 for this
mass fractal.

range of real error, we analyze deterministically constructed
fractal curves (Fig. 3), for which it is possible to calculate D
analytically as well as experimentally by the BM or BS
method. With such fractal curves (Fig. 3 and Table 1) as test
objects for the BM and BS methods, we find deviations in
the following range: -0.01 < D-DBM < 0.04 and 0 <
D-DBS < 0.04. This range is valid only if the standard
deviation of DBM or DBS obtained by regression analysis is
less than or close to 0.02. This is in agreement with results
found by Farin et al. (2).
The mycelium shown in Fig. 1A grows in d = 2, whereas

the mycelium of A. gossypii in Fig. 1B grows embedded in
the three-dimensional space. The evaluation of this aggre-
gate gives DBS = 1.45 ± 0.01 and DBM = 1.94 ± 0.01. This
DBM value is close to the value of 2 that we would expect for
a planar photographic projection for such a surface fractal.
In this aggregate, hyphae grow above each other and fill the
area completely in the center. Hyphae also grow into the
agar layer as well as into the air. Information about a pore

TABLE 2. Values of various cutoffs and expected cutoffs to show the major domain affected by the filled center part
on the double logarithmic plota

Value (mm)
Determination for

given figure Log F,,n Lo e Log (d'/4) Log emax Log Log L Log Fmin Log (do'14)
expected g mi g o expected log (dQ'14) 109 Emax

Cutoff and expected
cutoff

4E -2.43 -2.38 -1.94 -0.86 -0.89 -0.29
4F -2.43 -2.36 -1.57 -0.97 -0.89 -0.29
1B -2.43 -2.43 -1.30 -1.09 -1.03 -0.43

Range of scaling
behavior

4E -0.44 -1.08
4F -0.79 -0.60
1B -1.13 -0.21
a The larger the region of scaling behavior log 5mi,, - log (do'/4), the larger the influence of the filled center part. The differences between 8min and mnin expected(which is do) as well as between Emax and Fmax expected (which is L14) are small in all cases.
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FIG. 4. Development of a mycelial structure of A. gossypii after consecutive time steps. Bars = 0.1 mm.

structure is lost in the projection. Clearly, other methods are
required to study such out-of-plane growth.
A spore of A. gossypii grows into a straight or a zigzag

hypha which, under fractal analysis, should yield a D value
close to 1. Later branching occurs as shown in Fig. 4A. For
this mycelium, we do not find a well-defined power law in
Fig. 5, and we cannot draw a regression line in this case.
This is reasonable because the fractal behavior here is
naturally associated with the branching of hyphae. In such a
young mycelium, we do not find a sufficient number of
branches to allow for a power law of type given in equation
1. Consecutive photographs show vegetative mycelia with
DBM = DBS (mass fractal) in the region from 1.35 to 1.45.
Here the hyphae grow on the agar layer embedded in d = 2
(we disregard the few hyphae that grow into the agar layer).

In later stages of colony growth (here approximately from
Fig. 4D), the diameter of the mycelium increases very slowly
(Fig. 4 and Table 1). Instead, we find more and more
space-filling growth. At this stage of growth, we find a
transition from a mass fractal to a surface fractal. DBs
converges to a value of approximately 1.5 (Fig. 6).
We now want to know how to explain the DBM value if the

filled center part of an object is not sufficiently large in
surface fractals. The analysis of the surface fractals in Fig. 4
by the BM method shows a slow increase of "DBM,"
although a value of 2 might be expected. To explain this
behavior, we correlate the diameter of the largest circle that
covers the two-dimensional filled center of the mycelium,
do', and the mycelium diameter L. We find the following. In
Fig. 4B and C, DBS = DBM and do'/L < 0.05, which is
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FIG. 5. Experimental values of the mycelium shown in Fig. 4: number of boxes NbOX(F) versus box length e(mm) versus time. The exact

times of the consecutive photographs are shown at the top of the left margin. A well-defined power law behavior (equation 1) is indicated by
a drawn regression line. Scaling behavior is in the range of 1.0 to 1.4 decades. (A) Data analyzed by the BS method. (B) Data analyzed by
the BM method.
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FIG. 6. Function of the fractal dimension DBS (+) and DBM (I)
versus time of the mycelial development of A. gossypii from Fig. 4.
*, Values of "DBM" for which the BM method does not lead to a
well-defined power law behavior (equation 1) because of the do'
problem. These "DBM" values may not be interpreted as a fractal
dimension. 0, DBS value of the mycelium shown in Fig. 1B. The
DBM value of this aggregate (0) is close to d = 2. The standard
deviations from the regression analysis of DBS or DBM are below
0.02. All correlation coefficients are better than -0.998.

negligible for the do' problem. In the range of 0.05 < do'/L <
0.1 (Fig. 4D), DBM is close to DBS. For Fig. 4E and F, we
find that dotIL > 0.1. Here there is a significant divergence
between DBS and "DBM-"

In the consecutive time steps of the mycelial development,
the quotient do'IL increases slowly. Therefore, it is reason-
able to expect a slightly increasing divergence of the DBM
and DBS values in the function DBM(time)-DBs(time) rather
than a strong transition.

Furthermore, we now ask where the major influence of the
filled center part in the double-logarithmic plot can be found.
We have shown that the scaling behavior ends with a box
size E of approximately L14. We therefore argue that it
should be possible to find the influence of the filled center
part on the double-logarithmic plot at a box size £ of roughly
do'14. For Fig. 4E, we find that do'14 is too close to the inner
cutoff to allow for a strong divergence between DBS and
DBM. The detailed values are shown in Table 2. In case of
Fig. 4F, do'14 lies between the inner cutoff and outer cutoff.
Here we cannot find a well-defined DBM value in the
expected range do to L14. Instead, we find a value of 1.70 ±

0.01 in the range L14 to do'14 and a second value of 1.83 ±

0.02 in the range of do014 to do. In the case of Fig. 1B, we find
that do'14 is sufficiently close to L14 to allow for an approx-
imation of the embedding dimension d = 2 by the DBM value
of 1.94 ± 0.01 in the range of dot14 L/4 to do.
We have shown that fractal geometry is suitable to de-

scribe biological growth patterns for two particular strains (a
bacterium and a fungus) and different sets of growth condi-
tions (with and without agar). We have shown that the fractal
dimension increases during growth. Therefore, it seems
likely that for a wide variety of microorganisms and under a
wide variety of growth conditions, the fractal dimension as
explored here may serve as an important morphological
characteristic of mycelial growth. We have shown that
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sufficiently branched mycelia are self-similar. This property
implies that the global structure of an object may be com-
plex, although the fundamental growth concept-the way to
generate the complex system-may be very simple (13).
An important task will thus be to study the dependence of

D on different strains in the presence of chemical compounds
affecting growth. This could mean a new microbiological
test. Another practical application might be to correlate D
with antibiotic concentrations in order to optimize fermen-
tation processes; the shape of an organism may have a
significant effect in a fermentation process. On the other
hand, one may wish to develop theoretical models to explain
the observed fractal behavior. These models would have to
ensure that D increases during growth and that the aggregate
performs the transition from a mass to a surface fractal.
Clearly, such models will have to be very different from the
aggregation models studied extensively for the formation of
inorganic fractal clusters (8).
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