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ABSTRACT In contrast to conventional expectations
based on the stability of steady shear flows, elementary
time-periodic stratified flows that are unstable at arbitrarily
large Richardson numbers are presented here. The funda-
mental instability is a parametric one with twice the period of
the basic state. This instability spontaneously generates local
shears on buoyancy time scales near a specific angle of incli-
nation that saturates into a localized regime of strong mixing
with density overturning. We speculate that such instabilities
may contribute significantly to the step-like microstructure
often observed in buoyancy measurements in the ocean.

One of the basic analytical results for stably stratified fluid
flows is the celebrated Miles–Howard theorem (1, 2). This the-
orem states that steady shear flows V = �v�z�; 0; 0� in an invis-
cid stably stratified fluid are linearly stable for all Richardson
numbers, 2i, satisfying

2i ,
1
4
; 2i = N2(

∂v

∂z

)2 [1]

with N2 = −g ∂ρ
∂z
/ρb, the square of the buoyancy or Brunt–

Vaisala frequency. This criterion for stability is often inter-
preted and applied literally for time-dependent flow fields in
both theoretical and numerical modeling for the atmosphere
or ocean. For example, a popular turbulent eddy diffusivity
used in numerical simulations in the atmosphere/ocean com-
munity is the Lilly–Smagorinsky eddy diffusivity (3, 4), where
the turbulent eddy diffusivity is completely switched off and
set to zero for 2i > 2i > 1

4 with 2i of order unity. Here,
we present elementary examples, with firm mathematical un-
derpinnings, which demonstrate that such reasoning can be
violated in dramatic fashion for time-dependent strongly strat-
ified flows. With appropriate nondimensional units explained
below, we consider solutions of the inviscid two-dimensional
Boussinessq equations in vorticity-stream form,

�t +∇⊥ψ · ∇� = ρ̃x
ρ̃t +∇⊥ψ · ∇ρ̃ = 0

1ψ = �;
[2]

where ρ̃ is fluid density, ��x; z; t� = ∂u
∂z
− ∂w

∂x
is the vorticity,

ψ is the stream function, and the field velocity v is given by

v = ∇⊥ψ =
(
∂zψ

−∂xψ
)
: [3]

Next, we build elementary time-periodic mean states for the
equations in 2, and then we demonstrate their linearized and
nonlinear instability for large Richardson numbers.

Time-Periodic Mean States and the Nonlinear Pendulum

We construct elementary time-periodic exact solutions of the
Boussinessq equations with constant spatial gradients with
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the form

ρ̃ = ρb + sin θ�t�x− cos θ�t�z
� = ω�t�

V =
(
ω�t�

2
z;−ω�t�

2
x

)
:

[4]

Direct calculation yields the fact that special solutions of 2
have the structure in 4 provided that the phase function, θ�t�,
satisfies the nonlinear pendulum equation

2
d2θ

dt2
= − sin θ�t�; ω�t� = −2

dθ

dt
[5]

with the initial data

θ�t�∣∣
t=0 = 0; ω�t�∣∣

t=0 = �2i�−1/2: [6]

Implicit in both 2 and 6 is a nondimensionalization where we
use the ambient density, ρb, the stably stratified initial verti-
cal density gradient, and gravity, g, to set the relevant scales.
Thus, the unit of time in 2 is determined by the constant buoy-
ancy frequency, N , with the unit of space set by the density
gradient. The natural Richardson number from 1 for these
mean flows is given by the square of the ratio of the eddy
turnover time to the buoyancy time and this results in the
nondimensional factor, �2i�−1/2, appearing in the initial data
in 6. We remark that with this definition of the Richardson
number, the Froude number, & r, and the Richardson num-
ber are related by & r = �2i�−1/2; this expresses the fact that
for 2i � 1, the stratification is much stronger than the fluid
motion and emphasizes the point that the buoyancy time scale,
the unit of time use here, is much shorter than the mean eddy
turnover time in these elementary flows with strong stratifica-
tion for 2i� 1.

The pendulum equation in 5 has the conserved energy, ( =
θ̇2 − cos θ, and from 4, overturning of density occurs provided
cos θ�t� + 0. With this information, it is a simple exercise to
check that no overturning occurs in these mean flows precisely
for 2i , 1

4 , in rough correspondence with the Miles–Howard
theorem; furthermore, the minimum time-dependent Richard-
son number in these time-periodic flows occurs at the initial
time, t = 0. These elementary flows admit the following phys-
ical interpretation: the initial vortex deflects the initially hor-
izontal isopycnal surfaces to a maximum angle and converts
all of its kinetic energy into potential energy in the process;
baroclinic vorticity production then converts this potential en-
ergy back into kinetic energy and restarts the next phase of
the oscillation cycle. For increasing Richardson numbers, the
initial vortex is increasingly weak and the deflection angle for
the isopycnal surfaces is increasingly small.

If ξ = �ξ1; ξ3� marks the initial location, these Lagrangian
marker particles evolve by the velocity to new locations 8 =(
X�ξ; t�; Z�ξ; t�). For the mean flows satisfying 4, 5, and 6,

these particle trajectories are given explicitly by

8 = U�t�ξ =
(

cos θ�t� − sin θ�t�
sin θ�t� cos θ�t�

)
ξ: [7]
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To study the stability of these basic time-periodic mean flows,
we consider perturbed initial data for the Boussinessq equa-
tions in 2 with the form

�
∣∣
t=0 = �2i�−1/2 +ω′0�x; z�; ρ̃

∣∣
t=0 = −z + ρ′0�x; z�

ω′0 = �2i�−1/2ω0; ρ′0 = �2i�−1/2ρ0:
[8]

From 2, the equations of motion for the evolving perturbations
ω′�x; z; t�; ρ′�x; z; t� are given by

ω′t + V · ∇ω′ + ∇⊥ψ′ · ∇ω′ = ρ′x
ρ′t + V · ∇ρ′ + ∇⊥ψ′ · ∇ρ′ + ∇⊥ψ′ · ∇ρ̃ = 0

1ψ′ = ω′:
[9]

In 9, ρ̃ arises from the mean flow in 4. Next, we write the
equations in 9 in mean Lagrangian coordinates with 7 to fa-
cilitate the stability analysis.

Mean Lagrangian Coordinates

With the explicit transformation in 7, the equations for the
perturbations ρ′;ω′, in mean Lagrangian coordinates, ξ =
�ξ1; ξ3�, assume the elegant form (dropping the primes)

ωt +
(∇⊥ξ ψ · ∇ξω) = (cos θ�t�∂ξ1

− sin θ�t�∂ξ3

)
ρ

ρt +
(∇⊥ξ ψ · ∇ξρ)+ ∂ψ

∂ξ1
= 0

1ξψ = ω:

[10]

Linear Instability and Hill’s Equation

We build elementary exact plane wave solutions for the trans-
formed Boussinessq equations in 10 with the form

ω�ξ; t� = ω̂k�t� sin�k · ξ�;
ρ�ξ; t� = ρ̂k�t� cos�k · ξ�:

[11]

With the ansatz in 11, the nonlinear terms ∇⊥ξ ψ · ∇ξω and
∇⊥ξ ψ · ∇ξρ both vanish, and the equations in 10 reduce to
the ordinary differential equations for the amplitudes, ω̂k; ρ̂k,
given by

dω̂k
dt
= −[cos θ�t�k1 − sin θ�t�k3

]
ρ̂k

dρ̂k
dt
= k1

�k�2 ω̂k;
[12]

where θ�t� solves the pendulum equation in 5 and 6. We note
that the equations in 12 are equivalent to the classic Hill’s
equation (5),

d2

dt2
ρ̂k = −P�t�ρ̂k�t�;

P�t� = k1

�k�2
[
k1 cos θ�t� − k3 sin θ�t�]: [13]

To investigate whether perturbations grow in time and have
instability, we use elementary Floquet theory for the time-
periodic equations in 13; this theory yields the criterion that
for instability, we need to check only that the trace of the
Floquet matrix exceeds 2 in magnitude (6). Clearly, the peri-
odic function P�t� in 13 depends on the direction of k but
not on the magnitude of k. Thus, we set k = �k1; k3� =
�sin θ0;− cos θ0��k�, where the angle θ0 parameterizes this
variation in 13. In Fig. 1, we give an explicit demonstra-
tion of instability at arbitrarily large Richardson numbers. In

Fig. 1. Maximum trace of Floquet matrix at large values of
Richardson number (A) and the trace of Floquet matrix for different
inclination angles for fixed Richardson number, 2i = 5 (B).

Fig. 1A, through numerical evaluation, we graph the value of
the Floquet trace, maximized over all angles, θ0, for Richard-
son numbers, 1 < 2i < 106. Even though the growth rates
become extremely small at these large Richardson numbers,
nevertheless, there is unambiguous evidence for instability.
In Fig. 1B, we plot the Floquet trace as a function of the
angle θ0 for the representative moderately large Richardson
number 2i = 5. Although we do not display this here, the
angles θ∗0 with the two peaks in the growth rate correspond
to a parametric instability where the instability grows with
twice the period of the underlying fluid flow. The qualitative
features displayed here for 2i = 5 in Fig. 1B in fact persist
for all Richardson numbers investigated for 2i , 1

4 . Thus,
linear instability theory predicts the spontaneous formation
of density stratified shears aligned in preferred directions of
variation near the direction θ∗0. How do these instabilities al-
ter the nonlinear dynamics in the stably stratified flow? We
address this issue next.

Nonlinear Instability and Density Overturning

To understand the nature of the nonlinear instability, we in-
tegrated the mean Lagrangian equations in 10 numerically
with a standard pseudo-spectral method (7) on a rectangu-
lar 2π−periodic box for 2i = 5 with a resolution of �64�2
Fourier modes. We chose random large-scale initial data by
assigning equal amplitude and random phases confined to all
wave numbers with �ki� < 10; we set this amplitude so that the
total mean square normalized density and vorticity perturba-
tions, �ω0; ρ0� from 8 correspond to fluctuations of 10%. At
2i = 5, the basic mean flow from 4–6 has a period equal to 9
buoyancy times.

The evolution of representative density contours is depicted
at times given by 1, 7, 8, and 9 periods, respectively, in Fig. 2.
The slight density fluctuations in Fig. 2A have grown to sub-
stantial amplitude within the seven periods of motion depicted
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Fig. 2. Density contours at t = 1; 7; 8; 9 periods of mean flow,
from top to bottom.

in Fig. 2B; no density overturning occurs during this early
stage. However, density overturning occurs between periods
7 and 8 of the mean motion with even more violent over-
turning evident by period 9 as depicted in Fig. 2C and D.
To understand the nature of this overturning instability in a
more quantitative fashion, we display the region of overturn-
ing at the period times, 8, 9, 11, and 13 in Fig. 3A, B, C,
and D, respectively. The regions in black depict the locations

Fig. 3. Regions of overturning at t = 8; 9; 11; 13 periods of mean
flow, from top to bottom.

with dρ̃
dz
, 0, and there is local overturning. As is evident from

Fig. 3A and B, the regions of overturning with this random
initial data organize first into strips with a preferred angle of
orientation and with strengthening velocity shear along these
strips. The angle of orientation that emerges in Fig. 3A and B
corresponds with high accuracy to the angle θ∗0 with strongest
linearized instability depicted in Fig. 1B for 2i = 5. These re-
gions of strong shear in a stratified flow are subject to Kelvin–
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Fig. 4. Velocity field at t = 8; 9; 11; 13 periods of mean flow, from
top to bottom.

Helmholtz instability (8) and this is exactly what can be in-
ferred from Fig. 3C and D at the period times 11 and 13;
this is especially evident for the center region of overturning
in Fig. 3D. Plots of the velocity field, depicted in Fig. 4A, B,
C, and D at the period times 8, 9, 11, and 13, show the for-
mation of coherent like signed vortices consistent with such
Kelvin–Helmholtz billows in these regions.

Discussion

In contrast to conventional expectations, we have devel-
oped a class of elementary time-periodic stratified flows and
demonstrated their linearized instability at arbitrarily large
Richardson numbers through unambiguous mathematical
analysis. We have also presented numerical solutions for the
nonlinear development of these instabilities with random ini-
tial data that confirm the predictions of linear theory and,
significantly, indicate that their nonlinear instability leads to
substantial density overturning and mixing. From the evidence
presented here, we conjecture that such instabilities in these
and related flow fields at large Richardson numbers may
contribute significantly to the step-like microstructures often
observed in buoyancy measurements in the ocean (9, 10).
Furthermore, these mechanisms with spontaneous generation
of instability are fundamentally different from the traditional
ones involving larger amplitude gravity wave breaking (11).

To understand the robustness of the phenomena presented
here and its potential physical significance, it is important to
understand three-dimensional effects, the role of viscosity and
heat conduction, and the occurrence of similar instabilities in
a wider class of elementary stratified flow fields. A more com-
plicated direct Eulerian linearized stability analysis that ad-
dresses all of these issues has been developed elsewhere by
the authors (12). Clearly, more numerical simulations in both
two and three space dimensions are needed to address the
nonlinear effect of the instabilities developed here on both
density overturning and mixing.
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