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Abstract
Protein acetylation is an important and reversible post-translational modification (PTM), and it
governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites
is labor-intensive and often limited by the availability reagents such as acetyl-specific antibodies and
optimization of enzymatic reactions. Computational analyses may facilitate the identification of
potential acetylation sites and provide insights into further experimentation. In this manuscript, we
present a novel protein acetylation prediction program named PAIL, prediction of acetylation on
internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies
of PAIL are 85.13%, 87.97% and 89.21% at low, medium and high thresholds, respectively. Both
Jack-Knife validation and n-fold cross validation have been performed to show that PAIL is accurate
and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein
acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL
has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-
ustc.org/pail.
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Introduction
Protein acetylation is a widespread covalent modification in eukaryotes, transferring acetyl
groups from acetyl coenzyme A (acetyl CoA) to either the α -amino (Nα ) group of amino-
terminal residues or to the ε-amino group (Nε) of internal lysines at specific sites [1–5]. As one
of the most ubiquitous protein modifications, approximately 85% of eukaryotic proteins are
Nα -terminally acetylated in a co-translational manner on several types of residues such as
serine, alainine, and so on [3,4]. Although Nε-lysine acetylation is less common, its role is
probably more important [1,2,4–12]. Nε-acetylation of proteins in internal lysine residues is
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an essential and highly reversible type of post-translational modification (PTM), and the Nε-
acetylation orchestrates a variety of cellular processes, including transcription regulation [7,
9], DNA repair [10], apoptosis [8,11], cytokine signaling [12], and nuclear import [6]. As a
‘loss-of-function’ mechanism proposed, Nε-acetylation greatly alters the electrostatic
properties of a protein by neutralizing the positive charge of the lysine residues. The formation
of hydrogen bonds on lysine side-chains are also disrupted [5,13]. In addition, lysine acetylation
also creates a new interface for protein binding, as a ‘gain-of-function’ mechanism [5,13].
Thus, Nε-acetylation may modulate the protein function, such as of protein-protein interaction,
DNA binding, enzymatic activity, stability and subcellular localization [1,4–7,9,12,13].

Early studies of histone acetylation have proposed that the modification regulates the gene
expression and stabilizes the chromatin structure. In the past decades, numerous non-histone
acetylated proteins have been identified to play diversified regulatory roles among eukaryotic
[1,2,5], archaeal [14], bacterial [15] and viral [16] proteins. As a highly reversible reaction, the
level of lysine acetylation in vivo is controlled by the antagonism of HATs (histone
acetyltransferases) and HDACs (histone deacetylases). About 30 HATs have been discovered
and divided into three classes such as Gcn5/PCAF, p300/CBP and MYST proteins [5]. In
human, there are 18 distinct HDACs grouped into three groups including Class I, IIa/IIb and
III [17]. Aberrant lysine acetylation has been implicated in the development of cancer and other
diseases, such as prostate cancer [18], myeloid leukemia [5,19], and inflammatory lung
diseases [20]. Thus, both HATs and HDACs are potential molecular targets for biochemical
therapy. Indeed, numerous HDAC inhibitors have been developed successfully as anticancer
drugs, selectively inducing the tumor cells into apoptosis [21–23].

Although intensive research has been performed, the study of Nε-acetylation is still in its
infancy. The full content of regulatory functions of lysine acetylation remains to be elucidated.
Both HATs and HDACs have their substrate specificities, for example, peptide motif GKXXP
as a potential recognition signal of GCN5 in yeast [2,4,13]. However, the general consensus
sequences/motifs/profiles of substrates for HATs and HDACs targeting are still unclear. In this
regard, dissection of acetylation and deacetylation on specific lysines of acetylated proteins
will be a foundation of understanding the molecular mechanism and dynamics of Nε-
acetylation. Besides the conventional experimental methods, such as mutagenesis of potential
acetylation sites [12], acetylation-specific antibodies [6,7] and mass-spectrometry [8,14,24]
have also been employed. However, these experimental approaches are laborious and
expensive. Therefore, the prediction of acetylation sites in silico is desirable. Previous
computational studies only have focused on Nα -terminal acetylation [25,26].

In this work, we present a novel online computational program for protein acetylation site
prediction named PAIL, Prediction of Acetylation on Internal Lysines. We manually mined
scientific literature to collect 249 experimentally verified acetylation sites of 92 distinct
proteins. After redundant-clearing, there are 246 sites from 89 substrates reserved. Then the
BDM (Bayesian Discriminant Method) algorithm [27] was employed. The window length of
a potential acetylated peptide has been optimized as 13. The accuracy of PAIL is highly
encouraging with, 85.13%, 87.97%, and 89.21% at low, medium and high thresholds,
respectively. Both Jack-knife validation and n-fold (6-, 8-, and 10-fold) cross-validation have
been employed. The accuracies of two validations fluctuate from 82.17% to 86.11%, and these
results confirm that the PAIL is accurate and robust. In this regard, we propose that PAIL might
be a useful in silico tool for further experimental consideration.
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Materials & Methods
Data Preparation

Here we define the lysine (K) residues that undergo acetylated modification as positive data
(+), while those non-acetylated lysine residues are regarded as negative data (−). Furthermore,
we define a potential acetylated peptide (PAP) (denoted by x⃗ = (p1p2…pmKp1…pn)′, pi
represents a residue, m ≥ 1, n ≥ 1) as a local peptide flanking a lysine residue. Then the window
length of a PAP is m+n+1. In this work, m is equal to n and the windows with length of 9, 11
and 13 have been examined.

First, we searched PubMed with the key word “acetylation lysine”, and collected 249
unambiguously experimental verified acetylation sites of 92 distinct proteins from >1000
scientific articles. Although the acetylation-related literature is increasing rapidly, we only
adopted the acetylation sites published online before Dec. 10th, 2005. Then we retrieved the
primary sequences of these proteins from Swiss-Prot/TrEMBL database (http://cn.expasy.org).
And the acetylated peptides with length of 9, 11 and 13 were parsed as positive (+) data,
separately.

The positive data (+) set for training might contain several homologous sites from homologous
proteins. If the training data are highly redundant with too many homologous sites, the
prediction accuracy will be overestimated. To avoid the overestimation, we clustered the
protein sequences from positive(+) data set with a threshold of 30% identity by
BLASTCLUST, one program in the BLAST package [28]. If two proteins were similar with
≥30% identity, we re-aligned the proteins with BL2SEQ, another program in the BLAST
package [28], and checked the results manually. If two acetylation sites from two homologous
proteins were at the same position after sequence alignment, only one item was reserved while
the other was discarded. Thus, we obtained non-redundant positive data (+) of high quality
with 246 acetylation sites from 89 proteins. Only three acetylation sites from three proteins
were truly redundant sites to be removed. As previously described [29,30], the negative (−)
sites were taken from non-annotated lysine sites in the same proteins from which (+) sites were
chosen. The homology reducing process was also carried out on (−) data. If the identity between
a PAP of (−) data and an acetylated peptide of (+) data was not less than 30%, the PAP of (−)
data was removed as a redundant site. The final curated data set is available upon request.

Algorithm Design
The standard Bayesian Discriminant Method (BDM) has been employed in PAIL. By this
means, acetylated peptides from (+) data and PAPs from (−) data have been extracted from
protein sequences. Thus, the assignment rule of candidate acetylation local peptides given by
BDM can be described as:

predict x→ ∈ {( + ), if P( + ∣ x→) − R( − ∣ x→) > b
( − ), otherwise

(1)

Here P((+) ∣ x⃗) and P((−) ∣ x⃗) are the posterior probabilities of x⃗ for both (+) and (−) site,
respectively. The b is the cut-off value to obtain the prediction performance. At the same time,
by the Bayesian Role, the posterior probability for (+) sites can further be expressed as:

P( + ∣ x→) = P(x→ ∣ + )P( + )
P(x→) (2)

Here P(+) is the prior probability that is assumed to be a constant. And in this work, although
there are more (−) sites than (+) sites in the data set, we regard the prior probabilities for both
kinds of sites as equal, i.e., no prior information for prediction, which can avoid bias prediction
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results. At the same time, there are many ways to estimate the probability P(x ⃗ ∣ +) and one
simple way is to assume that all flanking residues are mutually independent. Thus, given the
local peptides of PAPs with length m, it can be formulated as:

P(x→ ∣ + ) = ∏
i=1

m
P(pi ∣ + ) (3)

Here P(pi|+),i = 1,...,m are calculated by the occurrence of each residue in training data. So
equation (2) can be further described as:

P( + ∣ x→) =
∏
i=1

m
P(pi ∣ + )P( + )

P(x→) (4)

In the same way, we can describe the posterior probability for (−) sites as:

P( − ∣ x→) =
∏
i=1

m
P(pi ∣ − )P( − )

P(x→) (5)

Thus, the final discriminant function can be stated as:

predict x→ ∈ {( + ), if ∏
i=1

m
P(pi ∣ + ) − ∏

i=1

m
P(pi ∣ − ) > B

( − ), otherwise

(6)

And B = b P(x→)
P( + )  is the final threshold for prediction.

Construction of the PAIL Web Server
We have implemented our PAIL as an easy-to-use web server, which can be accessed from
http://bioinformatics.lcd-ustc.org/pail. The prediction page of PAIL is shown in Figure 1. Users
can paste the protein sequence either in raw sequence or FASTA format (one or more
sequences) into the text form and obtain the prediction result by clicking on the “Submit”
button. In addition, the prediction result is downloadable in a tab-deliminated plain text by
clicking on the word here in the sentence of “Download the TAB-deliminated data file from
here”.

Results
Functional analysis of Acetylated Proteins

To determine which types of proteins are acetylated, we have downloaded the GO annotation
files for Uniprot from EBI-GOA (http://www.ebi.ac.uk/GOA/) for analyzing. In our non-
redundant data set with 89 acetylated proteins, we observe 329 distinct GO categories. The
Table 1 shows the top five Gene Ontology (GO) entries of biological processes, molecular
functions and cellular components of acetylated proteins.

The most frequent GO item of biological process in which acetylated proteins are involved in
is “regulation of transcription, DNA-dependent” (56 proteins). The other four significantly
biological processes are “transcription” (53 proteins), “regulation of transcription” (16
proteins), “regulation of transcription from RNA polymerase II promoter” (10 proteins) and
“signal transduction” (10 proteins). The most enriched GO group of molecular function is
“DNA binding” (59 proteins), while the other four highly-abundant molecular functions are
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“protein binding” (43 proteins), “transcription factor activity” (31 proteins), “zinc ion
binding” (19 proteins) and “metal ion binding” (19 proteins). Again, the most abudant GO
entry of cellular component is “nucleus” (66 proteins), and the other four highly-frequent
cellular components are “cytoplasm” (11 proteins), “mitochondrion” (9 proteins),
“membrane” (7 proteins) and “chromatin” (6 proteins).

Taken together, the analyses propose that protein acetylation plays important roles in
transcription regulation and signal transduction. Also, the functions of acetylated proteins are
quite diverse. Thus, the data set is suitable for our prediction work as training data.

Performance evaluation
We have adopted four frequently considered measurements: accuracy (Ac), sensitivity (Sn),
specificity (Sp) and Mathew correlation coefficient (MCC). Accuracy (Ac) illustrates the
correct ratio between both positive (+) and negative (−) data sets, while sensitivity (Sn) and
specificity (Sp) represent the correct prediction ratios of positive (+) and negative data (−) sets
respectively. But when the number of positive data and negative data differ too much from
each other, the Mathew correlation coefficient (MCC) should be included to evaluate the
prediction performance. The value of MCC ranges from -1 to 1, and a larger MCC value stands
for better prediction performance.

Among the data with positive hits by PAIL, the real positives are defined as true positives
(TP), while the others are defined as false positives (FP). Among the data with negative
predictions by PAIL, the real positives are defined as false negatives (FN), while the others
are defined as true negatives (TN).

The performance measurements of sensitivity (Sn), specificity (Sp), accuracy (Ac), and
Mathew correlation coefficient (CC) are all defined as below:

Sn = TP
TP + FN , Sp = TN

TN + FP ,

Ac = TP + TN
TP + FP + TN + FN ,

and MCC = (TP × TN ) − (FN × FP)
(TP + FN ) × (TN + FP) × (TP + FP) × (TN + FN )

.

In addition to assess whether PAIL is unbiased and robust for prediction, we adopt the standard
evaluations of Jack-Knife validation and n-fold (6-, 8- and 10-fold in this work) cross-
validation. For Jack-Knife validation, one sample is removed from the training data set at a
time and the Ac, Sn, Sp and MCC are re-calculated, respectively. The final results are the
average of the all Ac, Sn, Sp and MCC of the Jack-Knife validation. As previously proposed
[27], we have also taken an additional test with n-fold (6-, 8- and 10-fold in this work) cross-
validation. The tests are repeated 20 times and the Ac, Sn, Sp and MCC are re-computed each
time. The average Ac, Sn, Sp and MCC are adopted as the final value.

Prediction performance of PAIL
In this work, the PAPs with window length of 9, 11 and 13 were examined. Also, three cut-
offs of high, medium and low thresholds were adopted in each condition. A specificity of ~95%
was adopted for high stringency, while the medium and low stringencies denote the specificities
of ~90% and ~85%, respectively. Then the prediction performances of self-consistency, Jack-
Knife validation and n-fold (6-, 8- and 10-fold in this work) cross-validation have been
calculated and shown in Table 2, 3 & 4, respectively.
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With window length of 9, the accuracies of three thresholds are 86.37%, 85.75% and 82.65%,
respectively (see in table 2). The sensitivity (Sn), specificity (Sp) and MCC are 49.19%
~69.92%, 96.72%~86.19%, and 0.5584~0.5277. Also, the results of Jack-Knife validation and
n-fold (6-, 8-, 10-fold) cross-validation proposes our prediction is robust. In table 3, the
accuracy fluctuates from 88.14% to 84.60%, with the window length of 11. When the PAPs
are chosen with length of 13, the accuracy is 89.21%~85.13% (see in Table 4). And MCC
fluctuates from 0.6608 to 0.6111. Again, the validation results suggest that the prediction is
accurate and robust. In this condition, the sensitivity (Sn) and specificity (Sp) are 61.38%
~79.68% and 96.95%~86.65%, respectively.

Furthermore, to compare the prediction performance of PAPs with different window lengths,
we also diagram their ROC (Receiver Operating Characteristic) curves (sensitivity vs. 1-
specificity) shown in Figure 2. Three curves are quite similar. However, when the specificity
is greater than 80% (that is to see, the value of 1-speficity is <0.2), the performance of PAPs
with window length of 13 is better than others. In this regard, the PAPs with window length
of 13 have been employed in current PAIL system.

Discussion
PAIL is a novel in silico acetylation site prediction system with high-performance and may
provide valuable insight into further experimentation. The study of protein acetylation is still
in its infancy, and many problems remain to be resolved. For example, the prediction
performance of PAIL is limited by the lack of a large amount of data sets as the known protein
acetylation sites are still far fewer than those of phosphorylation [29,30]. As large-scale
screening strategies have been applied to identify the protein acetylation sites systematically
[8,14,24], more and more bona fide data can be generated and integrated into the PAIL system
to optimize its computing power. In addition, there have been ~30 HATs (histone
acetyltransferases) and >18 HDACs (histone deacetylases) discovered [5,17]. Thus, a more
rigorous predictor in a HAT-specific mode is also desirable. However, due to the limit amount
of data, such a computational tool currently is not available. In addition, some other
computational approaches could be applied, i.e., Group-based Prediction and Scoring
algorithm (GPS) [29,30] and Support Vector Machines (SVMs) [31] These methods could be
employed separately or combined together to obtain potentially better performance.
Nevertheless, with high-accuracy PAIL provides the first computational tool for identifying
protein acetylation sites in silico.
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Figure 1.
The prediction page of PAIL.
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Figure 2.
The Receiver Operating Characteristic (ROC) curve to diagram the prediction performances
of PAIL with window length of 9, 11 and 13.
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Table 1
The top five GO categories of biological process, molecular function and cellular component of acetylated
proteins.

GO Symbol Name of Gene Ontology No. of Proteins

Top five biological process
GO:0006355 regulation of transcription, DNA-dependent 56
GO:0006350 transcription 53
GO:0045449 regulation of transcription

regulation of transcription from RNA polymerase II
16

GO:0006357 promoter 10
GO:0007165 signal transduction 10
Top five molecular function
GO:0003677 DNA binding 59
GO:0005515 protein binding 43
GO:0003700 transcription factor activity 31
GO:0008270 zinc ion binding 19
GO:0046872 metal ion binding 19
Top five cellular component
GO:0005634 nucleus 66
GO:0005737 cytoplasm 11
GO:0005739 mitochondrion 9
GO:0016020 membrane 7
GO:0000785 chromatin 6
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Table 2
The prediction performance of self-consistency, Jack-knife validation and n-fold validation of PAIL with window
length of 9.

Window length (9) Threshold Accuracy Sensitivity Specificity MCC

Self-Consistency High 86.37% 49.19% 96.72% 0.5584
Medium 85.75% 64.63% 91.63% 0.5739

Low 82.65% 69.92% 86.19% 0.5277
Jack-Knife validation High 84.25% 42.28% 95.93% 0.4785

Medium 81.42% 53.25% 89.25% 0.4385
Low 78.76% 60.16% 83.94% 0.4167

6-fold cross-validation High 83.27% 40.63% 95.13% 0.4439
Medium 80.92% 51.38% 89.15% 0.4207

Low 79.71% 55.33% 86.50% 0.4126
8-fold cross-validation High 83.49% 41.06% 95.29% 0.4518

Medium 81.39% 52.22% 89.51% 0.4341
Low 78.26% 59.33% 83.52% 0.4042

10-fold cross-validation High 83.74% 41.40% 95.53% 0.4606
Medium 81.34% 51.99% 89.51% 0.4320

Low 78.52% 60.00% 83.68% 0.4118
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Table 3
The prediction performance of self-consistency, Jack-knife validation and n-fold validation of PAIL with window
length of 11.

Window length (11) Threshold Accuracy Sensitivity Specificity MCC

Self-Consistency High 88.14% 56.50% 96.95% 0.6232
Medium 87.08% 72.36% 91.18% 0.6264

Low 84.60% 78.46% 86.31% 0.5967
Jack-Knife validation High 84.96% 43.90% 96.38% 0.5046

Medium 83.19% 53.66% 91.40% 0.4799
Low 80.00% 60.98% 85.29% 0.4423

6-fold cross-validation High 84.23% 43.66% 95.52% 0.4805
Medium 82.50% 52.93% 90.73% 0.4614

Low 80.12% 59.78% 85.78% 0.4393
8-fold cross-validation High 84.54% 44.13% 95.79% 0.4915

Medium 82.59% 53.13% 90.79% 0.4641
Low 80.27% 59.80% 85.97% 0.4422

10-fold cross-validation High 84.65% 44.27% 95.88% 0.4950
Medium 82.72% 53.21% 90.93% 0.4674

Low 80.34% 60.14% 85.97% 0.4451
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Table 4
The prediction performance of self-consistency, Jack-knife validation and n-fold validation of PAIL with window
length of 13.

Window length (13) Threshold Accuracy Sensitivity Specificity MCC

Self-Consistency High 89.21% 61.38% 96.95% 0.6608
Medium 87.97% 73.58% 91.97% 0.6499

Low 85.13% 79.68% 86.65% 0.6111
Jack-Knife validation High 86.11% 52.85% 95.36% 0.5551

Medium 84.42% 61.79% 90.72% 0.5348
Low 82.92% 63.82% 88.24% 0.5097

6-fold cross-validation High 85.42% 48.31% 95.75% 0.5266
Medium 83.58% 59.76% 90.20% 0.5091

Low 82.17% 62.20% 87.73% 0.4886
8-fold cross-validation High 85.53% 51.40% 95.02% 0.5353

Medium 83.81% 60.26% 90.36% 0.5160
Low 82.34% 62.52% 87.85% 0.4931

10-fold cross-validation High 85.66% 51.59% 95.14% 0.5396
Medium 83.69% 60.29% 90.21% 0.5136

Low 82.17% 62.72% 87.58% 0.4905
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