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Abstract
A bootstrap method for point-based detection of candidate biomarker peaks has been developed from
pattern classifiers. Point-based detection methods are advantageous in comparison to peak-based
methods. Peak determination and selection is problematic when spectral peaks are not baseline
resolved or on a varying baseline. The benefit of point-based detection is that peaks can be globally
determined from the characteristic features of the entire data set (i.e., subsets of candidate points) as
opposed to the traditional method of selecting peaks from individual spectra and then combining the
peak list into a data set. The point-based method is demonstrated to be more effective and efficient
using a synthetic data set when compared to using Mahalanobis distance for feature selection. In
addition, probabilities that characterize the uniqueness of the peaks are determined.

This method was applied for detecting peaks that characterize age-specific patterns of protein
expression of developing and adult mouse cerebella from matrix assisted laser desorption/ionization
(MALDI) mass spectrometry (MS) data. The mice comprised three age groups; 42 adults, 19 14-day
old pups, and 16 7-day old pups. Three sequential spectra were obtained from each tissue section to
yield 126, 57 and 48 spectra for adult, 14-day old pup, and 7-day old pup spectra, respectively. Each
spectrum comprised 71,879 mass measurements in a range of 3.5-50 kDa. A previous study revealed
that 846 unique peaks were detected that were consistent for 50% of the mice in each age group1.

A fuzzy rule-building expert system (FuRES) was applied to investigate the correlation of age with
features in the MS data. FuRES detected two outlier pup-14 spectra. Prediction was evaluated using
100 bootstrap samples of 2 Latin-partitions (i.e., 50:50 split between training and prediction set) of
the mice. The spectra without the outliers yielded classification rates of 99.1±0.1%, 90.1±0.8%, and
97.0±0.6% for adults, 14-day old pups, and 7-day old pups, respectively. At a 95% level of
significance, 100 bootstrap samples disclosed 35 adult and 21 pup distinguishing peaks for separating
adults from pups; and 8 14-day old and 15 7-day old predictive peaks for separating 14-day old pup

*Corresponding author peter.harrington@ohio.edu
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Anal Chim Acta. Author manuscript; available in PMC 2007 November 27.

Published in final edited form as:
Anal Chim Acta. 2007 September 19; 599(2): 219–231.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from 7-day old pup spectra. A compressed matrix comprising 40,393 points that were outside the
95% confidence intervals of one of the two FuRES discriminants was evaluated and the classification
improved significantly for all classes. When peaks that satisfied a quality criterion were integrated,
the 55 integrated peak areas furnished significantly improved classification for all classes: the
selected peak areas furnished classification rates of 100%, 97.3±0.6%, and 97.4±0.3% for adult, 14-
day old pups, and 7-day old pups using 100 bootstrap Latin partitions evaluations with the predictions
averaged. When the bootstrap size was increased to 1000 samples, the results were not significantly
affected. The FuRES predictions were consistent with those obtained by discriminant partial least
squares (DPLS) classifications.

Keywords
Fuzzy Rule-building Expert System (FuRES); Matrix Assisted Laser Desorption/Ionization
(MALDI); Mass Spectrometry (MS); Latin-partitions; Mouse (Mus musculus domesticus);
Cerebellum Tissue, Biomarker

Introduction
The detection of significant features in complex sets of data is an important problem. The most
popular methods use feature selection to collect a peak list from each mass spectrum. These
peak lists are merged into a common data set. The problem with feature selection applied to
each single spectrum is that no use of mutual information among the spectra is exploited for
peak integration, detection, and resolution. These three steps can be difficult when spectra
contain noise, peaks are not baseline resolved, and baselines vary. The removal of noise is
difficult because the MALDI peak shapes and widths vary throughout the spectrum and noise
is not uniformly distributed with respect to intensity and frequency. Overlapping, split, or
shoulder peaks create problems because the peak position or area may not be precisely defined.
Baseline correction methods are problematic when broad peaks or peak clusters are
encountered. After a peak list is obtained, the peak binning process is subject to statistical errors
with respect to the decision that two peaks in two spectra belong to the same bin or different
bins. The quality of any further processing of feature-selected peaks is constrained by the ability
to accurately extract the peaks from sets of spectra. Peaks that correlate with some property
and furnish predictive models are then reported, and in the case of biomedical investigations,
may be identified as biomarker candidates.

Point-based methods process all the points and save the difficult feature selection step to the
end of the analysis. The data points will be transformed into subsets of statistically significant
points that correlate with decisions made during the classification process. These characteristic
subsets of points are obtained from all the spectra in the training set, therefore the influences
of noise and uninformative peaks are removed. In addition, points that correspond to
overlapping peaks may be split among different decisions or classification rules thereby
overcoming limited resolution. Because entire sets of spectra contribute to the feature
transformation using bootstrap approaches statistical significance can be measured.

Matrix assisted laser desorption/ionization (MALDI)2 mass spectrometry (MS) is an important
high-throughput tool for the profiling of protein and peptide distributions3. The detection of
proteins directly in tissue extends the MALDI-MS experiment even further and this method is
useful for imaging4-8. The profiling of the brain proteome could be relevant to studies of the
etiology and treatment of diverse disorders9, 10. In this study, age related proteins are profiled
by applying a fuzzy rule-building expert system11 (FuRES) to MALDI-MS spectra acquired
directly from tissue sections obtained from mouse cerebella.
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Fuzzy rule-building expert systems provide several benefits that make them ideally suited to
proteomic analyses12. Unlike neural networks and other distributed machine learning
algorithms, FuRES models are lucid in that they disclose the mechanism of inference. Because
the classification model is fuzzy and soft, overlapping data can be accommodated without
driving the classifier into ill-conditioned models that overfit the data. The classification tree is
based on entropy minimization, so the structure of the tree reveals the inductive logic of the
classifier. General rules are found at the root of the tree and precise rules are found at the leaves.

The detection of biomarkers is a difficult problem when one considers that they are confounded
with biological and experimental variations. The Latin-partition method is a systematic
bootstrap design to evaluate the predictability of classifiers13. Latin-partitions coupled with
FuRES have been shown to disclose consistent peaks in MALDI-MS data that would be good
candidates for trait classification12. Having a systematic design for the bootstrapping analysis
is important, because this process is used to generate the statistical measures for selecting the
characteristic subsets of points from the data.

The MALDI profile tissue data were analyzed previously using traditional non-parametric
univariate statistics1. The data were grouped by age and the peak ranks based on the height of
individual peaks detected from the spectra for each mouse were assigned to bins defined by
peaks detected from the averaged mass spectrum1. This method and other feature-based
approaches require multiple steps such as accurate peak detection, peak integration, peak
binning, and bin alignment, often with considerable manual effort on the part of the
investigator.

This paper reports a facile multivariate method from which significant peaks are identified.
Immediate benefits are the detection of significant shoulders and smaller peaks that would be
discarded by intensity thresholds in peak detection algorithms. Another benefit is that
prediction and feature detection are accomplished with one simple algorithm. These benefits
are demonstrated with real and synthetic data. The synthetic data set also was evaluated using
a comprehensive (i.e., all possible combinations) feature selection algorithm based on
maximizing the Mahalanobis distances14, 15 of subsets from 1 to 6 peaks.

Theory
A reproducible ion signal (e.g., a peak) in a mass spectrum that can be used to predict some
state of a biological system (e.g., a disease) is a characterizing feature. Classification methods
are useful in that they construct predictive models from features in the spectra. The other key
attribute of the classification model is that it is amenable to interpretation. For these cases,
features in the spectra that are indicative of the biological state may be ascertained.

A classification tree is useful for complex models, because a divide and conquer approach is
used to build a tree of linear classifiers. The classification process begins at the root of the tree
and at each branch a decision is made regarding the inferential path until a leaf is reached which
indicates the class. The path through the tree discloses the mechanism of classification. In
addition, at each branch the variable loadings of the linear classifier may be studied to find
characterizing variables. The inductive dichotomizer 3 (ID3) algorithm minimizes the entropy
of classification to construct classification trees for which each branch is a univariate rule.16
This algorithm was extended to construct classification trees of multivariate rules for the
classification of polymers by their laser desorption mass spectra.17

A fuzzy rule-building expert system (FuRES) uses fuzzy entropy of classification to build a
multivariate classification tree11. The incorporation of fuzzy logic helps prevent overfitting
the data with the linear discriminant and accommodates overlapping and outlier data points.
The fuzzy rules form more reproducible and general models than their crisp (i.e., not fuzzy)

Harrington et al. Page 3

Anal Chim Acta. Author manuscript; available in PMC 2007 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



counterparts. The fuzzy trees do not partition the objects but instead all the objects and their
fuzzy membership values are propagated through the tree. The minimum fuzzy membership
value is obtained between a current rule at a branch in the tree and the propagating value from
the root of the tree. For the temperature parameter to control the fuzziness of the logistic
function the weight vectors must be normalized.

Discriminant partial least squares (DPLS) was used as a reference method. FURES has not
been used extensively for this application and, we compare the results to those from DPLS for
quality control. PLS is a well known method that can be used for calibration and
classification18. PLS can be adapted to classification by replacing the dependent variable block
(i.e., the matrix of Y values) with a binary encoded class matrix and is hence referred to as
DPLS19. The DPLS models were converted to a set of linear regression coefficients using the
equation below.

B = W(PTW)−1QT (1)

for which B is the n×g matrix of regression coefficients. The number of classes is g and the
number of points in the MALDI spectra is n. The matrices W, P, and Q are the PLS components
all stored as columns with the number of columns corresponding to the number of latent
variables. W and P have n rows and Q has g rows. In this variant of PLS, P is not normalized
so there is no b term.

PLS is problematic in that the performance depends on judicious selection of the number of
latent variables (i.e., components) in the model. Two criteria are used for selecting the number
of latent variables so DPLS could be used as a quality control metric. The first criterion is to
generate the best possible model by selecting the number of latent variables that yields the
lowest root mean squared prediction error (RMSEP). Of course, this yields an optimistically
biased measure of the best achievable result (i.e., lower bound on prediction error) via linear
classification.

The second metric was chosen to yield the most parsimonious model from the training or
calibration data set20, 21. The lowest number of latent variables was selected that yielded
perfect classification of the training set. The class assignment throughout this paper is made
by assigning the class to the largest class estimate (i.e., output) per object. The model that was
selected as the most parsimonious for perfect classification of the training estimate yielded an
unbiased measure of the prediction error.

Systematic evaluation of classification performance is important to eliminate bias or
coincidental results22. Typically evaluation of classifiers will use a fraction of the data as a
prediction set and the remainder for the training set to eliminate bias23. This split design
approach can provide unbiased estimates of the prediction, however it is a weaker approach
because different prediction results are obtained from different splits of the data into training
and prediction sets.

The Latin-partition method is a bootstrapping method24 that provides a systematic approach
to classifier evaluation and measures of precision. It was first applied for the evaluation of a
temperature constrained neural network’s ability to accurately classify mass spectra of
carbamate pesticides.13 The method randomly partitions a set of data into training and
prediction sets with several constraints. First, the data are divided by sample so that replicates
from the same sample will not be contained in the prediction and training sets at the same time.
Second, the proportions of the number of samples for each class are maintained between the
prediction set and training set. Lastly, several training-prediction set pairs are given so that
each sample is used once and only once for prediction. Because every object is used for
prediction, the method makes efficient use of the data, eliminates the bias of using only a subset
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of well behaved prediction objects, and the results can be averaged across the bootstraps. For
example, if 20% of the data were used for prediction, then 5 training-prediction sets would be
generated.

Because the training-prediction sets are constructed randomly, then the method can be
bootstrapped to yield precision bounds. The precision bounds characterize two sources of
variation. The first is the repeatability of the training for the classifier. This source of variation
is important for any classifier obtained by optimization because the model may be obtained
from a local minimum or an ill-defined global optimum. The second source of variation
measures the consistency between training and prediction sets of data. The dependency of the
classification results with respect to the constitution of the training and prediction sets can be
measured.

All evaluations were conducted in parallel, so that the compositions of the training and
prediction sets were identical for different model building methods. This procedure allowed
the variations among the mice and spectra to be separated. Statistically powerful tests such as
the matched sample t-test and analysis of variance (ANOVA) could be used for comparing
differences between and among different modes of FuRES model building and prediction.
Matched sample t-tests were conducted between the squared prediction errors between pairs
of treatments. ANOVA was also used and gave similar results that are not reported.

Bootstrapping Latin-partition evaluation with robust and stable classifiers such as FuRES11
can be exploited to disclose points that are significantly correlated with properties or classes.
The linear discriminant at each rule can be stored for every model that is built during the
bootstrapping procedure. The average and standard deviation discriminants are obtained.
Features of the discriminant that are not reproducible across partitions will be characterized as
having large relative standard deviations. Using the t-statistic, the probability of significance
can be obtained for every point in the discriminant. The t-statistic does not depend on the square
root of the number of bootstrap samples.

The 95% confidence interval was used so that all points outside the threshold are deemed
significant. These points were then separated into positive and negative loadings. The next step
requires finding peaks in the set of significant discriminant loadings. Otherwise, some of the
points may correspond to valleys between peaks or shoulders that would be difficult to identify.
A simple derivative calculation is used to find peaks that have a minimum peak width. The
peaks must appear in the average of the class spectra and the discriminant loadings to be
selected. This step removes significant variable loadings that are not resolved from neighboring
mass spectral peaks in the average spectrum because these peaks would be difficult to identify.
The m/z, the maximum peak intensity of the average, the maximum peak discriminant loading,
and the significance of the maximum point are stored as features.

The Mahalanobis distance25, 26 is a unit-less metric that measures the distance between two
objects corrected for the pooled covariance. The set of peaks that generates the largest distance
between classes are considered most significant. The Mahalanobis distance d between classes
A and B is defined as

d = (X‒ A − X
‒
B)S−1(X‒ A − X

‒
B)T (2)

for which d is the distance, the class means X
‒
A and X

‒
B are row vectors that comprise subsets

of peak areas or heights. The inverse of the pooled covariance matrix S-1 is obtained as the
within-group distributions of peak areas or heights about their corresponding class means.
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All possible combinations of peaks can be evaluated using the Mahalanobis distance
metric15. However, when the pool of peaks is large and the number of peaks to be selected is
large the evaluation of all combinations of peaks becomes computationally intractable.

Experimental Section
The method was rigorously tested with synthetic data constructed in MATLAB 7.2 using data
simulated with randomly distributed peaks and noise. The most rigorous and exemplary test
will be presented here. This test contained 4 synthesized biomarker Gaussian peaks and 80
confounding Gaussian peaks with identical shapes (i.e., amplitude of 1 and width of a 50 point
standard deviation). The locations of the 4 biomarkers peaks were at 2,000; 4,000; 6,000; and
8,000 points. The locations of the 80 confounding peaks were assigned using uniform random
deviates. The identically shaped peaks present a much more difficult challenge to the biomarker
detection algorithm because peaks could not be distinguished by shape or size, but only by
position. Each confounding peak was randomly assigned to one-half of the synthetic spectra.
The biomarker peaks were assigned to one-half of the synthetic spectra that constituted one of
the two classes.

The data comprised 200 simulated spectra with 10,000 points and 84 peaks in class A and 80
peaks in class B. Four biomarkers peaks were unique to the 100 class A objects. Normal
standard deviates were generated with means of 0 and standard deviations of 0.1 and added to
every point in the data set, thus defining a signal-to-noise ratio of 10 (i.e., with respect to the
Gaussian peak amplitudes of 1). Eighty confounding Gaussian peaks were generated using
uniform random deviates to define their positions (i.e., average) and with the same peak widths
of 50 points for the standard deviation and amplitudes of 1. Each peak was assigned randomly
to one half of the synthetic spectra, so each confounding peak would be contained in a different
subset of spectra.

The pure Gaussian peaks were stored to define peak integration windows, so that the peaks in
the noisy spectra could be optimally integrated. However, this approach biases the evaluation
in favor of the peak detection method, because the true underlying peak positions under realistic
circumstances would have to be estimated from the spectra as opposed to being defined a priori.

The pure peaks were used to define peak integration windows for which the intensities were
summed. The window for a peak was defined for which the peak profile was greater than the
profiles of the neighboring peaks or the width was defined as four standard deviations across
the bottom of the peak (i.e., 200 points). The smaller window obtained from these two criteria
was used. In addition, the intensity of the underlying peak maxima were used to calculate the
Mahalanobis distances. All possible combinations of peaks were evaluated by selecting subsets
of 1 to 6 peaks from the 84 candidate peaks. The entire evaluation took 986 min of CPU time.

Cerebellar specimens from 77 C57Bl6 mice (Mus musculus domesticus) were analyzed. The
mice comprised 42 adults (25 females and 17 males) that were 8 weeks old. The ages of the
mouse pups were 14 or 7 days. There were 9 females and 10 males that were two weeks old.
There were 16 one-week old mice in the study. The genders of the mice were not determined
at seven days of age.

All animal procedures were performed in accordance with the Vanderbilt University Guide for
Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use
Committee. Mice were anesthetized by isofluorane and sacrificed by decapitation. The brains
were dissected, immersed in liquid nitrogen for rapid freezing, and immediately stored at -80
°C until sectioning on a cryostat. For each mouse, each of three consecutive frozen sections
(bregma -6.5 to -6.7 mm) was collected at a 14 μm thickness, deposited and dried on a gold
plate, and a double spot of 0.1 μL of matrix applied under the microscope to ensure consistency
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of spot areas. The matrix solution was saturated in 3,5-dimethoxy-4-hydroxycinnamic acid
(sinapinic acid, Sigma Chemical Co., St. Louis, MO) in acetonitrile/H2O/trifluoroacetic acid
50:49.7:0.3.

Mass spectra were acquired by Voyager-DE™ STR MALDI mass spectrometer (Applied
Biosystems, Foster City, CA). This instrument was equipped with a nitrogen laser (337 nm),
and data were obtained using the linear acquisition mode under delayed extraction conditions.
The laser spot size on target was approximately circular with a diameter of 25 μm. Instrument
settings were an accelerating voltage of 25 kV, 91% grid voltage, 0.05% guide wire voltage,
a delay time of 220 ns and a bin size of 2 ns. Three spectra (each an average of 7 acquisitions
of 50 shots each) were acquired for each of the 77 mice, one on each of the three sections
described above to yield 231 spectra.

Internal calibration standards were single charged alpha and beta hemoglobin chains
(molecular weights [MW] of 14.982 kDa and 15.617 kDa), thymosin beta-4 and thymosin
beta-10 (MWs 4.965 kDa and 4.937 kDa), cytochrome c oxidase polypeptide VIIC (MW 5.444
kDa), ubiquitin (MW 8.565 kDa), and calmodulin (MW 16.791 kDa) that have been identified
in the mass spectra of C57Bl6 mice. The hemoglobin peaks had a peak width defined by a full
peak width at half height of 50 points,

Each spectrum was baseline corrected by dividing the spectrum into windows that span a range
of m/z 100. The minimum intensity was found in each window. An exponential function is
then fit to these minima using a least squares fit. The MALDI-MS spectra were converted to
ASCII text.

All data processing after the baseline correction was performed on a home-built AMD XP-M
2600+ system running at 2.5 GHz (11.5×217 MHz @ 1.875 Vcore) with 2 GB of PC3500 DDR
memory on a DFI NF2 Ultra Infinity motherboard. The system operated in dual channel
memory mode. The operating system was Microsoft Windows XP Pro SP2. MATLAB 7.2
with the Optimization Toolbox 3.0.2 was used to perform the calculations and generate the
figures.

The 231 spectra were pared to a consistent set of 71,879 m/z measurements that spanned 3.5
to 49.8 kDa. Prior to the FuRES analysis the lossless principal component transform (PCT)
was used to accelerate the training rate. Principal components were calculated only for the
training data and used without modification for transforming the prediction data. The entire
data analysis including the 100 bootstrap samples and 201 FuRES models in MATLAB took
170 min of computational processing time. The exact same training and prediction sets were
used for comparisons among the classifiers, thus permitting matched sample comparisons and
removal of variations among the individual spectra. The evaluation constructed two FuRES
models for each training set. One classification tree was built from the individual spectra and
the other from the average of the 3 replicate spectra for each mouse. The evaluation constructed
400 trees for 100 bootstraps of 2 Latin partitions using (231 or 229) individual and 77 average
spectra.

Peaks were detected by the following procedure. The FuRES discriminant weight vectors are
normalized to unit length during rule-construction. The average and standard deviation of the
200 weight vectors are calculated for the 100 bootstraps that each include 2 models. Positive
and negative points in the average FuRES discriminant weight vectors were split into separate
vectors that correspond to peaks, which are positively correlated with the rule. The negative
peaks were multiplied by minus unity. The points were zero filled so that they would maintain
correspondence with the m/z values. A double sided t-statistic was used to construct confidence
intervals from the standard deviations. Data points in the average discriminant weight vector
that were greater than the confidence interval were deemed significant, while the other points
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were set to zero. The t-statistic was not divided by the number of bootstrap samples. Peaks
were detected by finding maxima that occurred within a 20 point or greater window defined
by two valleys or edges (i.e., where the peak returns to baseline).

Although some shoulders and split peaks appeared to be significant, these points were discarded
because ascertaining the protein or peptide identities of these features would be difficult.
Several peak quality criteria were used. The maxima had to have at least 2 points on either side
to be recognized as a peak. For a candidate peak window, the geometric mean of the peak class
average and the weight vector had to exceed an intensity threshold of 1×10-4. The intensity for
each peak was defined as the difference between the peak maximum and the greatest intensity
of its edge. The peak maxima of the class average and the discriminant had to agree within a
tolerance of 10 Thomsons (i.e., m/z units27).

Discussion of Results
Comparison of peak- and point-based methods using simulated data

A set of simulated MALDI spectra in MATLAB were constructed that comprised 200 spectra
of 10,000 data points. The signal-to-noise ratio was set to 10 using the amplitudes of the pure
biomarker peaks as reference. These peaks were added to 100 of the spectra that would
comprise class A, while the other 100 spectra comprise class B. Eighty confounding peaks
were distributed through the spectral range. Each of these peaks was added randomly to half
of the spectra (i.e., 100) in the training set. Figure 1 gives an example of a synthetic spectrum
with the underlying signal. Peak amplitudes larger than unity arise from overlapping peaks.
The averages synthetic spectra for each class are given in Figure 2 and note that the biomarker
peaks are not obvious. Figure 3 gives the three classes averages of each class of the mice
MALDI spectra for the mass range of 8,000-9,000 Th. Several peaks are overlapped and the
peak widths in the synthetic data are reasonable approximations. The Hotelling T2 statistic is
used to define the ellipses for the scores of the first two components.

The first evaluation evaluated a conventional peak-based approach to biomarker detection
using both peak heights and areas. All possible combinations of integrated peak areas were
evaluated with the Mahalanobis distance. The peaks with the largest values were stored as
biomarkers for comparison. Both optimal peak area and peak height were used in two separate
evaluations. The results are reported for peak heights in Table 1 and for peak areas in Table 2.
This procedure was biased in favor of the selection of the biomarkers. Because the pure
synthetic peaks are used to define the optimal peak integration ranges, the results would be
worse if the peak integration windows were ascertained directly from the simulated spectra.
In reality, the peak integration windows would have to be determined from the noisy data.
None of the subsets from 4 to 6 peaks found all 4 of the underlying biomarker peaks. False
positives were obtained from neighboring peaks, which suggests a caveat when selecting
candidate biomarker peaks using peak-based methods. Peaks that are not baseline resolved
from the biomarker peak may appear to be correlated with the class definition, but it is in reality
the neighboring biomarker peak that is affecting the correlation.

One may think it is unreasonable to expect a peak-based method to perform well when the
peaks are not resolved. This thought is precisely the problem with peak-based methods applied
to proteomic mass spectral data. Close examination of the MALDI spectra in Figure 3 shows
that many peaks are overlapping with one another and there are probably likelihood isobaric
peaks in MS measurements from complex biological samples.

The point-based method uses the variable loadings of the FuRES model to find points that
separate the two classes by minimizing the fuzzy entropy of classification. Peaks that are not
consistently correlated with the class definitions will be averaged out by using a random boot-
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strap procedure. The synthetic spectra were randomly divided into two equal size sets of 100
spectra that contained 50 spectra of each class. One set is used for constructing or training the
classifier while the other set is used to evaluate prediction. Then the sets are interchanged for
training and prediction, so after one Latin-partition bootstrap, each spectrum is used once and
only once training and prediction. This procedure was repeated 100 times to build 200 FuRES
classifiers from training sets that comprised different members.

The average of the 200 FuRES variable loadings and 95% confidence intervals of each point
in the classification weight were obtained and given in Figure 4. The negative peaks below the
95% confidence interval correspond to the 4 biomarker peaks in class A. Single peaks can be
easily ascertained from the significant points outside the confidence interval that correspond
to the underlying biomarkers. The peaks were calculated by setting windows large than the
peaks and calculating sums of the points weighted by the peak intensity. The positions of the
discovered biomarker peaks were 2000, 4001, 6016, and 7989. For the 100 bootstrap
evaluations the average prediction rates for positive and negative classes were 95.1 ± 0.3% and
94.4 ± 0.2%.

MALDI-MS classification of mouse brain tissue samples
The MALDI spectra were standardized to a common mass-to-charge scale using linear
interpolation that ranged between 3.5 to 49.8 kDa. The spectra were manually baseline
corrected and described in the previous study1. Each spectrum was normalized to a vector
length of unity. Figure 6 gives the scores of the mean-centered spectra on the first two principal
components. Note that the 14-day old group appears between the adult and 7-day old mouse
spectra.

Before building the FuRES tree, the spectra were transformed using principal components
without mean-centering the data. The full set of object scores were used (i.e., no compression)
which decreased the number of variables in the data set without losing any information. This
transformation increases the speed of the FuRES calculation. The FuRES algorithm uses
multivariate optimization that scales by the square of the number of variables. The principal
component loadings were retained so that the FuRES weight vectors could be reconstructed in
their original representation. During prediction the principal components were only calculated
from the training set of data. The prediction spectra were projected onto these loadings to obtain
scores.

The Latin-partition method was used for evaluation using 100 bootstrap samples of two
partitions28. The spectra were split into equivalent sized training and prediction sets (i.e., there
were 77 mice, one set would contain 3 extra spectra). The spectra were split by mouse so at no
time did the spectra from the same mouse belong to both training and prediction sets. The
Latin-partitions randomly select the spectra in the training and prediction sets so that the class
proportions are the same in each set. Because the partitions were equal in size, each set was
used once for prediction and once for training. The prediction results are pooled for each
partition and every spectrum is used once and only once for partitioning. By bootstrapping the
partitioning into two training and prediction sets, two sources of variation are characterized.
The first source of variation is the robustness of the FuRES model because the weight vectors
are obtained from nonlinear minimizations of the fuzzy entropy. The second source of variation
is the composition of the training and test set of spectra.

Table 4 gives the different classification modes for evaluating training using the Latin-partition
method. The prediction results are given in confusion matrices (Tables Table 5-Table 9) that
have the true classes corresponding to the rows and the FuRES predictions as columns. A
perfect result would have the number of spectra in each class along the diagonals of the matrices
(i.e., each confusion matrix has the number of rows and columns equal to the number of
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classes). Because average values for 100 bootstrap evaluations are reported, each value is also
reported with its 95% confidence interval.

Effect of outliers
A FuRES classification tree that is obtained from the full set of spectra is given in Figure 7.
The two 14-day old pup spectra that were grouped with the adult spectra after the first rule are
labeled in the PC score plot in Figure 6. These two spectra were acquired on the same plate
but were from different mice. There were no distinguishing features in the spectra that made
them appear as outliers, other than their spectra fall out of the 95% confidence ellipses. An
advantage of fuzzy systems is that they are resistant to outlier points. If these two spectra were
resolved in the first rule as with other hard classification methods, the classification model
could be ill-conditioned and overfit the data. When the evaluations were conducted with these
outlier spectra included and excluded similar results were obtained, which is one advantage of
classification trees in that they are robust with respect to outliers. The first comparison
evaluated the full data set and the culled data set that had the two outlier spectra removed. In
Table 5, note that inclusion of the outlier spectra did not deleteriously affect the predictions,
although the results were improved with these two spectra removed. The 14-day old pup class
has increased with the number of misclassification by approximately 2 which would be
expected, because both outliers belonged to the 14-day old pup class. Henceforth all results
were generated with these two spectra culled from the evaluation. A new tree was generated
from the culled data set and is given Figure 8.

For quality control, DPLS was used in parallel using the same input and output data as the
FuRES model for each Latin partition of the individual full data set. The results are reported
in Table 6 for the optimal DPLS model that yielded the lowest prediction error and the
parsimonious DPLS model that yielded the model with the fewest latent variables to perfectly
classify the training set. When evaluated from 1 to 100 latent variables the maximum difference
between the root mean square errors of calibration between the linear and nonlinear DPLS
models was 1×10-16. The differences were attributed to rounding errors in the computation and
indicate that the DPLS model is linear. All further DPLS predictions were obtained from the
linearized regression coefficients29.

The FuRES confusion matrix for the full individual spectra in Table 5 is bracketed by these
two validation methods. A matched sample t-test with 23099 degrees of freedom that compared
the correct classifications among the 100 bootstraps of the 231 prediction objects yield a p-
value of virtually zero (10-31) that indicated FuRES predicted better than the DPLS
parsimonious model and a similar result was obtained for the DPLS optimal model that
predicted better than FuRES with a p-value of 10-43. Therefore, the two control methods
bracketed the FuRES prediction results, which reside between those generated by the best
possible DPLS and the most parsimonious DPLS models.

Feature selection
A reduced data set was constructed by selecting the union of all the points that were outside
the 95% confidence intervals of the two average discriminant weight vectors. The compression
was quite modest so the full data set comprised 71,789 data points and the feature selected data
points comprised 40,059 data points. However, the comparison of the confusion matrix in Table
7 with Table 5 shows an improvement for the 14-day old pups. Significant peaks were detected
that satisfied the quality criteria were integrated and the peak areas were used to construct a
matrix comprising 55 points and the prediction results improved further. Although some of the
95% confidence intervals may not appear to be significant, matched-sample t-tests revealed
that the predictions for each class statistically improved for each feature selection step.
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Averaging replicates versus averaging results
An interesting hypothesis that arises in classification problems is the choice of model building
with a larger number of individual spectra or using averages of the replicate spectra that furnish
a smaller number of higher quality spectra. In the previous study, all the replicate mass spectra
from tissue sections of the same mice were averaged1. FuRES models were built with
individual spectra and average spectra from three replicates of the same mouse. The average
spectra were used for the prediction set. Latin-partitions were used to construct the two
confusion matrices given in Table 8. In this case, both the confusion matrices and the matched
sample t-statistic revealed that models built with the individual spectra were significantly better
than those built with average spectra.

Alternatively, the effect of using individual spectra for prediction and then averaging the
predictions for each sample was evaluated. These results are reported in Table 9 along with
results obtained from the 55 peak areas and averaging the predictions. This approach did not
yield improved predictions compared to training with individual spectra and predicting with
the average spectra in Table 8. Differences between the average predictions and the predictions
of the average spectra are indicative of nonlinearity in the classifier30. Therefore, this data set
appears to be linearly separable. Using the 55 peak areas and averaging the FuRES predictions
significantly improved the results for the 14-day old pup class compared to using the full
spectrum.

Statistically based feature selection and peak integration
The average weight vectors for each rule from the 200 FuRES models (100 bootstrap samples
with 2 partitions) were calculated. This approach allows precision bounds to be obtained for
the variable loadings of the discriminant weight vector as defined by the standard deviation
about each weight vector average loading. All results are reported with 95% confidence
intervals obtained from the t-statistic.

The variable loadings with 95% confidence intervals for the rule #1 discriminant, which
separates the adult and pup mice spectra, is given in Figure 9. A similar plot is given in Figure
10 that separates the 7-day and 14-day mice spectra.

Significant points are weight vector loadings that are obtained outside the confidence interval.
For each weight vector the significant points are separated by the sign of the loading into
positive and negative sets. The sign of the loading corresponds to the rule and a class separation.
In Figure 9, for example positive loadings are correlated with peaks that are larger for the pups
and negative loadings for those correlated with the adult mice. Thus four sets of loadings (i.e.,
adults, pups, 14-day old pups, and 7-day old pups) were obtained from the two weight vector
loadings from the two rules of the FuRES model in Figure 8. These sets of points are evaluated
with several peak-quality criteria before integration into peaks to find useful candidates for
identification. Some of the points may correspond to peak valleys, low intensity peaks or
overlapping peaks that would be difficult to identify, so these points were removed using the
following criteria to facilitate peak integration.

Peak-quality criteria were used to define candidate peaks for identification. The peaks had a
minimum width of 20 Th. Consequently, the peak maximum in the average FuRES weight
must have a downward slope of at least 10 Th on either side of the peak maximum. An additional
intensity criterion was used so that the geometric mean of the discriminant peak maximum and
the average class average exceeded 0.001. A peak list was obtained for each of the 4 sets of
weights; adult, pup, 14-day pup, and 7-day pup. The four groups of mice yielded 26, 14, 7, and
8 peaks, respectively. The significance of each peak can be calculated using a t-statistic on the
peak areas from the 200 discriminant loadings. The largest probability (i.e., p-value) was less
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than 0.001 for the discriminant peaks. Therefore, relaxing the intensity criterion would have
generated a large number of discriminant peaks.

Detection and integration of peaks is facilitated because the points have been resolved into 4
sets with zeros typically separating peaks. Peaks that were not resolved were removed using
the peak quality criteria. Each step, point selection and peak selection improved the predictions.

Conclusions
An automated procedure was developed for selecting biomarker peaks that uses bootstrap
pattern recognition. This new point-based approach disclosed points in the spectra that offer
better predictions. Because predictive points in the data are gleaned first, the peak integration
is much easier because points belonging to peaks correlated to each class are resolved by the
discriminant weight vector. This approach was demonstrated with FuRES models but is general
and can be used with any classifier that furnishes discriminant weight vectors.

Because the points are distributed among the target properties, confounding points with no
predictive power are eliminated. Thus, many of the problems of peak selection and peak binning
are avoided by integrating the candidate biomarker peaks at the end of the process instead of
the beginning. Furthermore, the significance of the peaks and points can be assessed by using
bootstrapped Latin partitions and calculating the standard deviation about the average weight
vector variable loading.

FuRES is one example of an open pattern recognition system that discloses the mechanism of
inference. This capability allows the detection and study of features that may be candidates for
biomarkers, in this case proteins that can lead to new discoveries and treatments for disease.
FuRES provides a classification tree that can accommodate outlier spectra and the tree
furnishes inductive logic regarding the structure of the spectra. The linear discriminants that
are used by the FuRES rules can be interpreted as spectra. By combining FuRES with Latin-
partitions, significantly relevant features can be gleaned from the data and spurious features
can be removed the discriminants. FuRES is also a soft modeling method that is robust with
respect to outliers in the training data sets.

Sets of statistically significant features were obtained. At a 95% level of significance, a
minimum peak width of 20 amu, an intensity threshold of 0.001, and 100 bootstrap samples
26, 14, 7, and 8 predictive peaks for age were discovered for adult, pup, 14-day old pup, and
7-day old pup classes. There was an agreement of 70% for the features selected using this
method compared to the features detected using nonparametric statistics1. These features can
be subjected to new experiments to elucidate the identity of the age-related mass spectral peaks.

Useful prediction results were obtained from the MALDI-MS data, especially considering that
the data set was split into equal sizes for training and prediction and that the training and
predictions sets comprised spectra from different mice. Usually, biological variation is a
significant factor. The selected peak areas furnished classification rates of 100%, 93.7±0.6%,
and 97.4±0.3% for adult, 14-day old pups, and 7-day old pups using 100 bootstrap samples
using Latin partitions evaluations when the average predictions were evaluated. The significant
points and integrated peaks statistically improved the prediction rates, thereby demonstrating
that the selected candidate biomarker peaks have predictive power.

Building FuRES models with individual spectra as opposed to averaged spectra across
replicates yields models that performed significantly better during prediction. If the classifier
is robust, it can exploit the variations within the samples to yield improved models.
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Figure 1.
Simulated spectrum with 80 randomly distributed peaks and 4 biomarker peaks. The pure signal
is superimposed on the composite spectrum.
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Figure 2.
The averages for each class of the synthetic data sets.
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Figure 3.
Averages for the 3 classes of MALDI-MS spectra for a reduced range of [8, 9] kDa. The peak
for ubiquitin (MW 8.565 kDa) was one of the internal mass calibration standards.
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Figure 4.
The average variable loadings from the FuRES classification tree with upper and lower 95%
confidence intervals. The average was obtained from 200 averaged FuRES models acquired
from 100 bootstraps of two Latin-partitions of the synthetic data. The biomarkers were located
at 2,000; 4,000; 6,000; and 8,000 points.
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Figure 5.
The average MALDI-MS spectra for each of the three classes of mice. The two outlier spectra
have been removed.
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Figure 6.
PC score plot giving the overall distributions of the MALDI spectra. The 95% confidence
ellipses were calculated using the Hotelling T2 statistic.
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Figure 7.
FuRES classification tree from the entire set of MALDI-MS spectra. The branches give the
fuzzy entropy H. The leaves give the class identifier and number of spectra Nc.
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Figure 8.
FuRES classification tree from the culled set of MALDI-MS spectra. The branches give the
fuzzy entropy H. The leaves give the class identifier and number of spectra Nc.
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Figure 9.
The average FuRES discriminant vector for rule #1 that separates adult and pup spectra. The
95% confidence interval is given in red and green. Features in the weight vector that extend
beyond the confidence interval are significant at a 0.05 probability. Negative features
correspond to peaks that are larger in the adult spectra and positive features are those that are
larger for the pup spectra.
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Figure 10.
The average FuRES discriminant vector for rule #3 separates 14- and 7-day old pup spectra
from 200 FuRES models. The 95% confidence interval is given in red and green. Features in
the weight vector that extend beyond the confidence interval are significant at a 0.05
probability. Negative features correspond to peaks that are larger in the 14-day old pup spectra
and positive features are those that are larger for the 7-day old pup spectra.
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Table 3
Confusion Matrix of Average Predictions for 100 Bootstrap Evaluations of the Full Synthetic Data and Significant
Features Defined by the 95% Confidence Interval.

Full Data 10,000 Points Selected 702 Points Outside the 95% Confidence Interval
Positive Negative Positive Negative

Positive 95.3±0.4 4.7±0.4 99.96±0.05 0.04±0.05
Negative 5.5±0.3 94.5±0.3 0.6±0.1 99.4±0.1
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Table 4
Comparison of Modes of FuRES Classification for Mouse Tissue Sections

Mode Training Prediction
Full 231 Individual Spectra 231 Individual Spectra

Culled 229 Individual Spectra 229 Individual Spectra
Culled 229 Individual Spectra Significant Points 299 Individual Spectra Significant Points
Culled 229 Individual Spectra Integrated Peaks 229 Individual Spectra Integrated Peaks
Culled 229 Individual Spectra 77 Average Spectra
Culled 77 Average Spectra 77 Average Spectra
Culled 229 Individual Spectra 229 Individual Spectra 77 Average Predictions
Culled 229 Individual Spectra Integrated Peaks 229 Individual Spectra 77 Average Predictions
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