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Background. The interactions of the voltage-gated Ca2+ channel (VGCC) with syntaxin 1A (Sx 1A), Synaptosome-associated
protein of 25 kD (SNAP-25), and synaptotagmin, couple electrical excitation to evoked secretion. Two vicinal Cys residues, Cys
271 and Cys 272 in the Sx 1A transmembrane domain, are highly conserved and participate in modulating channel kinetics.
Each of the Sx1A Cys mutants, differently modify the kinetics of Cav1.2, and neuronal Cav2.2 calcium channel. Methodology/

Principle Findings. We examined the effects of various Sx1A Cys mutants and the syntaxin isoforms 2, 3, and 4 each of which
lack vicinal Cys residues, on evoked secretion, monitoring capacitance transients in a functional release assay. Membrane
capacitance in Xenopus oocytes co-expressing Cav1.2, Sx1A, SNAP-25 and synaptotagmin, which is Bot C- and Bot A-sensitive,
was elicited by a double 500 ms depolarizing pulse to 0 mV. The evoked-release was obliterated when a single Cys Sx1A
mutant or either one of the Sx isoforms were substituted for Sx 1A, demonstrating the essential role of vicinal Cys residues in
the depolarization mediated process. Protein expression and confocal imaging established the level of the mutated proteins in
the cell and their targeting to the plasma membrane. Conclusions/Significance. We propose a model whereby the two
adjacent transmembranal Cys residues of Sx 1A, lash two calcium channels. Consistent with the necessity of a minimal fusion
complex termed the excitosome, each Sx1A is in a complex with SNAP-25, Syt1, and the Ca2+ channel. A Hill coefficient .2
imply that at least three excitosome complexes are required for generating a secreting hetero-oligomer protein complex. This
working model suggests that a fusion pore that opens during membrane depolarization could be lined by alternating
transmembrane segments of Sx1A and VGCC. The functional coupling of distinct amino acids of Sx 1A with VGCC appears to be
essential for depolarization-evoked secretion.

Citation: Cohen R, Marom M, Atlas D (2007) Depolarization-Evoked Secretion Requires Two Vicinal Transmembrane Cysteines of Syntaxin 1A. PLoS
ONE 2(12): e1273. doi:10.1371/journal.pone.0001273

INTRODUCTION
A physical and functional coupling of the VGCC with synaptic

proteins provides a close apposition of the Ca2+ signal with the

secretory machinery which is deemed crucial for the fast process of

synaptic transmission [1–4]. It has been postulated, that a signal

initiated by a conformational change during membrane depolar-

ization at the pore of the channel, could trigger the fast secretion of

‘‘channel-associated vesicles’’ [5–8]. The idea that conformational

changes could initiate secretion within microseconds is attractive

because it might account for the rapid process of release that

begins tens of microseconds after VGCC activation at the

presynaptic release site [9]. Several members of the vesicle release

machinery, including Sx 1A, SNAP-25, VAMP2/synaptobrevin,

and synaptotagmin, interact with the cytosolic motifs of Cav1.2,

and Cav1.3 (L-type), Cav2.2 (N-type), and Cav2.1 (P/Q-type)

[10–19]. A functional interaction of Cav2.3 (R-type) with Sx 1A,

SNAP-25, and synaptotagmin was also reported [20].

In vitro studies have shown physical binding of the cytosolic II-III

domains of VGCC’s, Cav2.2 (N773–859) [10], Cav1.2 (Lc753–893),

and Cav2.2 (N710–1080) [2,13,14,16] to Sx1A and other synaptic

proteins. A specific site at the N-terminal of Sx 1A bound at

N773–859, was shown to be responsible for Cav2.2 function [21].

Functional domain analysis revealed an additional site within

the transmembrane domain (TMD) of Sx1A that could modulate

Cav1.2 and Cav2.2 kinetics [21]. A double mutation at Sx 1A

TMD, C271V/C272V, disrupted the Sx 1A inhibitory effect of

Cav1.2 and Cav2.2 current amplitude [22,23].

Different syntaxin isoforms sharing 23–84% identity have been

described in various rat tissues, indicating distinct trafficking

functions [24,25]. Unlike Sx 1A, none of the TMD of these

isoforms have vicinal cysteines [24]. The involvement of Sx

isoforms in secretion differs in various cells. In adipocytes and

muscle cells, Sx 4 was shown to participate in GLUT-4 exocytosis

[26,27]. Over expression of Sx 1A and Sx 3, but not of Sx 2 and 4,

decreased insulin release in b-cells [28]. Sx 2, a Sx isoform whose

TMD is less than 30% homologous to the Sx1A TMD, lowered

Cav1.2 and Cav2.2 activation but had no effect on inward

currents [22,23].

We have examined the role played by the two highly conserved

vicinal Cys residues in Sx1A TMD on evoked-secretion, using Sx 1A

mutants, Sx isoforms, a vicinal Cys block by phenyl arsene oxide

(PAO), and a truncated Sx 1A. Secretion was examined by

monitoring membrane capacitance (Cm) in Xenopus oocytes co-

expressing Cav1.2, Sx 1A, SNAP-25, and synaptotagmin, the

excitosome proteins [13]. This functional reconstitution assay

detected a depolarization-triggered release under voltage-clamp

conditions with high precision and time resolution [29]. It is

dependent on VGCC activation and on the presence of Sx1A,

SNAP-25, and synaptotagmin. Release was triggered also in the

absence of synaptotbrevin 2, suggesting the involvement of an

endogenous tetanus toxin-insensitive synaptobrevin. Evoked-release

was also sensitive to botulinum C1 and botulinum A [13] [29].
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We show that a single point mutation at the TMD of Sx 1A,

C271V (CC/VC) or C272V (CC/CV), disrupted voltage-evoked

secretion, and propose a model to explain the requirement of the

two TMD vicinal cysteines for supporting the secretion process.

Our model suggests a simultaneous interaction of the two adjacent

transmembranal Cys residues of Sx 1A with two VGCC

molecules, and designates the VGCC as an essential member of

the exocytotic-competent macromolecular cluster.

RESULTS

Replacing cysteine residues of Sx 1A TMD abolished

voltage-induced capacitance
We monitored whole cell membrane capacitance transients (Cm)

induced by the activation of Cav1.2 subunits [a11.2 (dN60-

del1773), a2d and b2A] without and with SNAP-25, Sx 1A and

synaptotagmin (SytI) (excitosome complex) expressed in Xenopus

oocytes, as previously described [29] (Fig. 1A). Two depolarizing

pulses of 500 ms 100 ms apart, from a holding potential of

280 mV to 0 mV, according to the protocol in Fig. 1 [29]) were

applied to oocytes co-injected with the corresponding proteins.

The changes in Cm induced by Cav1.2 were 0.760.05 nF (n = 13)

and by Cav1.2 with the synaptic proteins, 2.2660.15 nF (n = 15)

(Fig. 1 A, C). The Cm changes in Xenopus oocytes corresponds to

the fusion of ,105–106 cortical granules of 0.5–2 mm diameter

[30] with an individual average membrane capacitance of ,7–

120 fF [29]. These values correspond to ,1–3% of an oocyte’s

total membrane surface area.

The depolarization-induced capacitance change showed two

distinct phases a fast transient component that was observed in

oocytes expressing the Ca2+ channel alone (Fig. 1A left) and a

capacitance increase that was either stationary or slowly decaying,

in oocytes expressing Cav1.2 in combination with syt1, SNAP-25,

and Sx1A (Fig. 1A right). Because of the nature of the transient

increase in Cm, and to avoid possible current changes in Cm

measurements as well as any contribution of a fast transient

component to our signal, which could be due to the effect of ionic

current, we determined Cm just after the current had returned to

its previous basal level. These considerations although underesti-

mating the extent of the exocytosis, provide more precise and

convincing measurement of the change in capacitance [29]. It

should be mentioned the Sx1A cRNA concentration used in the

capacitance assay was within the linear phase of its activity on

Cav1.2 current amplitude [22,23].

Membrane-depolarization of oocytes expressing the multi-

protein complex centered on Cav1.2 channels in which Sx 1A

Figure 1. Mutation of Cys residues within the syntaxin 1A TMD disrupts depolarization-evoked capacitance transient. (A) Upper protocol,
depolarizing voltage command consisting of depolarization from a holding potential of 280 mV to 0 mV for 26500 ms, separated by 100 ms at
280 mV. Continuous monitoring of membrane capacitance of exemplary recordings, showing the effect of depolarization on membrane capacitance
(Cm) in an oocyte expressing, Lc-type Ca2+ channel (Cav1.2) subunits a11.2, b2A, a2d without (left) and with SNARE’s: Sx1A 1A, SNAP-25 and
synaptotagmin (right). The SNAREs and synaptotagmin were injected 24 hr after the injection of the channel subunits. (B). Monitoring Cm in oocytes
expressing different Sx 1A mutants- Oocytes expressing heterologously Cav1.2 subunits (a11.2, b2A, a2d), SNAP-25, synaptotagmin I with either one of
the Sx mutants: C271V/C272V, C272V, C271V, or V271C/V272C (Trus et al., 2001; Arien et al., 2003) or a truncated Sx 1A (1–167) (C) Summary: effect of
depolarization on Cm. Groups as in (B). DCm, depolarization-induced change of membrane capacitance; bars show mean6SEM (n = 13). Inset, The
effect of depolarization on membrane current (InA mean6SEM, n = 13–18). (D) Monitoring differences in Cm induced by different pulse duration via
excitosome composed of Sx 1A and Sx CC/VV- Capacitance induced by varying depolarizing pulses as indicated; bars show mean6SEM (n = 13–15).
doi:10.1371/journal.pone.0001273.g001

Ca2+ Channel Coupled Secretion

PLoS ONE | www.plosone.org 2 December 2007 | Issue 12 | e1273



wt was replaced with either single or double Cys mutants, Sx1A

C271V (CC/VC) or Sx1A C272V (CC/CV) or Sx1A C271V/

C272V (CC/VV), showed a basal increase in membrane capaci-

tance that was similar to those elicited by Cav1.2 expressed alone

(0.7160.05 nF; n = 13) (Fig. 1B,C).

Sx1A/Sx 2 chimera failed to support voltage-

induced secretion
To separate the role of the two vicinal Cys from the other amino

acids of the Sx TMD, we studied Cav1.2 interactions using a Sx 1-

2 chimera, derived from the Sx 1A cytosolic domain and Sx 2

TMD [22]

The chimeric molecule unlike Sx 1A wt, had no effect on current

amplitude. When the chimera was further mutated by replacing two

vicinal Val with two vicinal Cys at the TMD, it restored interaction

with the channel [22]. However, when used in the release-assay,

despite the presence of the two Cys residue, depolarization-evoked

Cm changes corresponded to basal levels (Fig. 1B). These results

indicate a likely contribution of other TMD amino acids to

exocytosis required perhaps, for the lining of the fusion pore [31]

or for the correct folding and organization of the excitosome into a

competent secretory cluster (see below: Fig. 1B,C).

Next, we examined replacement of Sx 1A with a truncated Sx

1A (Cyt) mutant (amino acids 1–267; [15,24]). As shown,

depolarizing pulses evoked no change in membrane capacitance

(Fig. 1B,C). Average Cm jumps monitored in groups of oocytes

expressing excitosome complexes consisting of single, double, and

cytosolic Sx1A mutants (above) are shown (Fig. 1C; n = 11–15).

Cav1.2 current amplitude was only marginally affected by

substituting the various Sx1A mutants (Fig. 1C inset). In the

absence of any changes in Ca2+ influx, the large increase in Cm

observed with wt Sx1A, indicate a better coupling and a more

efficient assembly of the excitosome with Sx1A wt, rather than a

result of a larger cation influx.

Pulse duration influences depolarization-evoked

secretion
The kinetics of release triggered by varying the length of the

depolarizing pulses according to von Gersdorff [32], was recorded

for excitosome complexes composed of Sx1A wt or Sx 1A (CC/VV)

double mutant (Fig. 1D). Oocytes expressing the corresponding

excitosome complexes were depolarized by pulse durations of

250 ms, 500 ms or 26500 ms 100 ms apart. Unlike Sx 1A wt, the

Sx1A (CC/VV) mutant showed capacitance transients of magni-

tudes similar to those induced by Cav1.2 expressed without synaptic

proteins, indicating an ‘inactive’ secreting complex (Fig. 1C, D). We

cannot rule out possible contribution to Cm that arises from an

increase in intracellular divalent cations that promotes a Ca2+-

dependent, SNARE independent process, similar to caffeine and

ionomycin [33,34]. Therefore, as voltage pulse duration increased

and more channels were opened Cm was elevated in both

complexes. Even under these conditions, of larger Ba2+ influx, the

ineffectiveness of Sx1A(CC/VV) was apparent.

Expression and targeting of Cav1.2 and syntaxin 1A

mutants to the cell membrane
The obliteration of the capacitance response by substituting one of

the Sx 1A mutants was substituted for Sx1A could result from

difficulties in protein expression or targeting to the cell membrane, or

both. Therefore, we prepared the fluorescent fusion proteins, RFP-

Sx1A wt and RFP-Sx1A(CC/VV), that enabled us to evaluate

protein expression and localization using confocal imaging.

Cav1.2 interaction with the two tagged-proteins was determined

electrophysiologically by monitoring current kinetics in Xenopus

oocytes injected with cRNA encoding the three channel subunits

GFP-a1C/b2A/a2d with RFP-Sx1A or RFP-Sx1A(CC/VV).

Inward currents were elicited from a holding potential of

280 mV to various test potentials in response to 500 ms and

recorded using the two-electrode voltage-clamp assay ([6,14,15]

Fig. 2). Consistent with Sx 1A wt ([6,15]) current amplitude

elicited to +10 mV in oocytes expressing 0.8 or 1.2 ng/oocyte of

RFP-Sx1A, was reduced as shown by superimposed current traces

(Fig. 2A upper). The Sx1A cRNA concentration used was within

the linear phase of its activity on Cav1.2 current amplitude as

previously determined [22,23].

RFP-Sx1A(CC/VV) marginally affected current amplitude

(Fig. 2B upper), similar to the effect of the un-tagged

Sx1A(CC/VV) ([22,23]). Leak-subtracted peak currents from

oocytes co expressing the three channel subunits and RFP-Sx

1A, or RFP-Sx 1A (CC/VV) were plotted as current-voltage

relationship, showing current modulation at various test potentials

(Fig. 2A,B middle). The rate of activation, demonstrated by the

time constant of activation (tact) was accelerated to the same

extent by the two RFP-Sx1A proteins (Fig. 2A,B lower)

consistent with the untagged Sx1A [22,23].

The difference in current modulation is depicted by a shift in

RFP-Sx1A and RFP-Sx1A(CC/VV) concentration dependency

(Fig. 2C). The absence of the Cys271 and Cys 272 interaction

with the channel could be held responsible for the Sx 1A (CC/VV)

inability to support release (see Fig. 1).

After establishing that the RFP incorporation into Sx1A did not

interfere with the Sx1A/Cav1.2 interaction, we measured RFP-

Sx1A and RFP-Sx1A(CC/VV) levels in the cells. Oocytes co-

expressing the channel subunits and RFP-Sx1A or RFP-

Sx1A(CC/VV) were lysed and the proteins were separated on

SDS-PAGE, blotted into nitrocellulose membrane and detected

using specific Sx1A antibodies (Fig. 2D). Western blot analysis

showed that the protein level of the tagged-proteins was lower than

non tagged Sx1A wt, most likely due to the incorporated RFP-tag,

but RFP Sx1A and RFP- Sx1A(CC/VV) were equally expressed,

demonstrating that the mutation did not affect protein expression

(Fig. 2D). Similarly, RFP- Sx1A and RFP-Sx1A(CC/VV) levels

within the excitosome (Ex) were detected (Fig. 3A).

Targeting of the excitosome complexes Cav1.2, SNAP-25, Syt I

Sx1A or Sx1A(CC/VV) to the cell membrane was detected by

confocal fluorescence imaging of GFP-a11.2 (Fig. 3B,C top) and

RFP-Sx1A or Sx1A(CC/VV) (Fig. 3B,C middle). As anticipated

from the functional a11.2 interaction with Sx1A, both proteins

were co localized and targeted to the cell membrane (Fig. 3
lower). Protein levels of RFP-Sx1A and RFP-Sx1A (CC/VV)

(Fig 3B,C middle) as well as current amplitudes were similar

(Fig. 1C upper) indicating a similar number of active channels at

the cell membrane. Nevertheless, the fluorescence intensity of

a11.2/RFP-Sx1A (CC/VV) was smaller compared to a11.2/RFP-

Sx1A, suggesting a smaller number of clusters. Further studies

using higher resolution systems are required to confirm putative

changes in clusters size and distribution.

PAO interferes with syntaxin 1A /VGCC interaction

and decreases depolarization-induced secretion
Phenyl arsene oxide (PAO), a thiol reagent that selectively reacts

with two adjacent Cys residues to form a stable arsenic complex,

interfered with the cross-talk of Sx 1A with the channel, most likely

reacting with the vicinal Cys of Sx TMD and [23]. We tested the

PAO effect on reconstituted secretion, applying 10 mM PAO

Ca2+ Channel Coupled Secretion
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Figure 2. Expression and interaction of RFP-Sx1A and RFP-Sx1A(CC/VV) with Cav1.2. Superimposed current traces of GFP-a11.2/b2A/a2/d (5/5/
5 ng/oocyte) co expressed with (A) RFP-Sx1A (0.8 ng/oocyte and 1.6 ng/oocyte) or (B) RFP-Sx1A(CC/VV) (0.8 and 1.6 ng/oocyte) in 10 mM Ba2+.
Currents were elicited from a holding potential of –80 mV to +10 mV in response to 500 ms pulse (upper panels). Leak-subtracted peak current–
voltage relations collected data from oocytes expressing GFP-a11.2/b2A/a2/d (5/5/5 ng/oocyte) without (-#-) and with RFP-Sx1A (0.8 ng/oocyte -N-
and 1.6 ng/oocyte -&-) (A) and RFP-Sx1A(CC/VV). Currents were elicited in response to 500 ms pulse from a holding potential of –80 mV to various
test potentials at 5-sec intervals (B) (middle). Activation rate constants (t, mean6SEM, n = 12) of currents generated in oocytes by GFP-a11.2/b2A/a2/d
without (-#-) and with RFP-Sx1A (0.8 ng/oocyte -N- and 1.6 ng/oocyte -&-) (A) and RFP-Sx1A(CC/VV) (B) (lower). The data points correspond to the
mean6SEM of currents (n = 8-14) at each experimental point. Two-sample Student’s t tests assuming unequal variance were applied, and P values
,0.01 were obtained (C) Dose dependent of GFP-a11.2/b2A/a2/d current inhibition, plotted against increasing RFP-Sx1A and RFP-Sx1A(CC/VV) RNA
concentration injected into oocytes. (D) Sx1A expression was tested in a western blot analysis of oocyte plasma membrane fraction co expressing
GFP-a11.2/b2A/a2/d and 1.6 ng/oocyte RFP-Sx1A, 1.6 ng/oocyte RFP-Sx1A(CC/VV), 1.6 ng/oocyte Sx1A. Proteins were detected with anti-Sx1A
antibodies.
doi:10.1371/journal.pone.0001273.g002
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directly into the recording bath (Fig. 4A). Membrane capacitance

in oocytes expressing Cav1.2 along with the synaptic proteins, was

monitored prior to PAO addition (Fig. 2A, upper right) and then,

after 10s exposure to 10 mM PAO (Fig. 4A, lower left). The

DCm observed was similar to the change observed in oocytes

expressing Cav1.2 without synaptic proteins (Fig. 4A, upper
left). An averaged DCm signal in 10 oocytes treated with PAO is

shown in Fig. 4B, C. The oocytes were then exposed for 2.5 min

to 2 mM 2,3-dimercaptopropanol (BAL), a reagent that reverses

PAO reaction [35]. The external application of BAL to PAO-

treated oocytes, resulted in a small but significant reversal of the

PAO inhibitory effect (Fig. 2A, right lower and Fig. 4B left).

The partial effect of BAL might be due to irreversible changes at

the oocyte membrane, which could have affected directly the

capacitance measurement [23]. The high selectivity of PAO for

vicinal cysteines provides additional evidence for the importance

of the highly conserved Cys residues of the TMD of Sx 1A to

depolarization-evoked capacitance. As shown in Fig. 4B, right,
oocytes treated with PAO, or PAO+BAL displayed statistically

similar current amplitudes and could not account for the changes

in Cm transients (see [29,36]) (n = 11–12).

Although PAO’s effect on secretion could be attributed also to its

other activities in the cell, it had no direct effect on Cav1.2

amplitude; it acted rapidly (,2 sec) to reverse the syntaxin effect and

fully restored current amplitude [22]. The PAO results on secretion

are consistent with those of Sx1A mutants, and support the possible

involvement of two adjacent Cys in the release process.

Syntaxin isoforms affect the kinetic properties of

Cav1.2
To expand and further complement our insight of Sx1A role in

depolarization evoked-release, we compared the ability of three Sx

1A isoforms, Sx 2, Sx 3, and Sx 4 to modulate Cav1.2 kinetics.

Cav1.2 was expressed with each one of the Sx isoforms and inward

Figure 3. Expression and localization of Sx1A and Sx1A(CC/VV) on the
cell membrane. (A) Western blot analysis of membrane fraction of
oocyte expressing GFP-a11.2/b2A/a2/d (5/5/5 ng/oocyte) with either
RFP-Sx1A (1.6 ng/oocyte) or RFP-Sx1A (CC/VV) (1.6 ng/oocyte) or Sx1A
(1.6 ng/oocyte), with or without SNAP-25 (1.6 ng/oocyte) and Syt I
(3.2 ng/oocyte) (Excitosome, Ex), using anti-Sx1Aa antibodies. (B)
Oocytes were injected with cRNA mixture encoding the excitosome
complex (GFP-Cav1.2/RFP-Sx1A/SNAP-25/SytI) or (C) (GFP-Cav1.2/RFP-
Sx1A(CC/VV)/SNAP-25/SytI) and fluorescence was measured using
confocal microscopy. GFP-Cav1.2 fluorescence (upper panel) and RFP-
Sx1A fluorescence (middle panel) were localized at the cell membrane
and a merge of the showed co-localization of both proteins. The
enlarged area is depicted at the right hand side. The experiment was
repeated two times with 4 oocytes in each group.
doi:10.1371/journal.pone.0001273.g003

Figure 4. Phenyl arsene oxide abolished depolarization evoked DCm.
(A) Continuous monitoring of membrane capacitance induced by a
depolarizing voltage command from a holding potential of 280 mV to
0 mV of 26500 ms, separated by 100 ms at 280 mV in an oocyte
expressing, Cav1.2 subunits, a11.2, b2A, a2d without (upper left) and
with SNARE’s: Sx1A, SNAP-25 and SytI (upper right), and with either PAO
(10 mM) (lower left) or PAO (10 mm) followed by 2 mM BAL (lower right).
(B) Summary of effect of depolarization on Cm. Groups as in the
exemplary recordings shown in (A). DCm, depolarization-induced
change of membrane capacitance; (left) bars show mean6SEM
(n = 13) and the Effect of depolarization on mean peak Ba2+ currents:
InA (mean6SEM, n = 11; right).
doi:10.1371/journal.pone.0001273.g004
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currents were elicited in response to a 160 ms pulse, from a

holding potential of 280 mV to various test potentials, according

to the voltage protocol [6]; Fig. 5A). Superposition of current

traces and current-voltage relationship of several oocytes are

shown (Fig. 5A,B). Cav1.2 current amplitude was significantly

decreased by Sx 1A, and to a smaller extent, by Sx 3 and Sx 4, but

not by Sx 2 (Fig. 5A). All four isoforms showed a similar shift

towards positive potentials as depicted in the I/Imax ratios

(Fig. 5C). All Sx isoforms caused an increase in the time constant

of activation (tact) at voltages above 0 mV, while Sx 1A increased

tact also at negative potentials (Fig. 5D).

For assessment of syntaxin isoform modulation of Cav1.2

kinetics, representative current traces of Cav1.2 co-expressed with

each Sx isoform were superimposed. Currents were evoked by a

voltage step from a holding potential of –80 mV to +5 mV in

response to a 160 ms pulse (Fig. 6). A graded effect on the

Figure 5. Modulation of Cav1.2 kinetics by syntaxin isoforms. Oocytes were injected with a11.2 (2 ng/oocyte), b2A (5 ng/oocyte), a2d (5 ng/oocyte)
and 24 hr later, with either one of the syntaxin isoforms (2 ng/oocyte). (A) At day 6 after cRNA injection Ba2+ currents were elicited from a holding
potential of –80 mV by voltage steps applied at 5-sec intervals to test potentials between –35 to +45 mV in response to 160 ms pulse duration.
Representative traces of inward currents are shown. (B) Leak subtracted peak-current relationship: collected data form oocytes expressing Cav1.2 (o)
and Cav1.2 with each one of the Sx isoforms (N). The data points correspond to the mean6SEM of currents (n = 8) at each experimental point. (C) The
effect of syntaxin isoforms on I/Imax ratio. Peak current amplitudes normalized to maximum current (I/Imax) (data from B) are plotted against test
potentials and displayed with a Boltzmann fit (mean6S.E.M; n = 8–10; more details in Experimental Procedures). (D) The averaged time constant of
activation (tact mean6S.E, n = 11–13) are plotted against test pulses between 225 and +20 mV in the absence of (o) and in the presence (N) of Sx
isoform as indicated.
doi:10.1371/journal.pone.0001273.g005
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decrease in current amplitude was observed with Sx 3,Sx 4,Sx

1A. Sx 2 displayed no inhibitory effect (Fig. 6A; [22,23]). All Sx

isoforms shifted considerably the Cav1.2 normalized current,

confirming functional interaction with Cav1.2 (Fig. 6B). The ratio

of G/Gmax was shifted towards positive potentials by all Sx

isoforms (Fig. 6C) and the largest shift of I/Imax was observed for

Sx 2 (Fig. 6D). Consistent with previous reports [24–28], the

functional modulation of the channel kinetics by the Sx isoforms

similar to Sx 1A, shows a correct functional engagement with the

channel.

Sx 1A supports depolarization-induced capacitance

increase
Given this framework, we next tested each of the syntaxin isoforms

for supporting depolarization-evoked release. Oocytes expressing

Cav1.2 without, and with Sx 1A, SNAP-25, and SytI (excitosome)

were depolarized according to the protocol in Fig. 1, and Cm

monitored (Fig. 7A left). Using the same depolarizing protocol,

Cm was monitored in oocytes injected with a cRNA mixture of

Cav1.2, SytI, SNAP-25 and one of the Sx isoforms, Sx 2, Sx 3 or

Sx 4 (Fig. 7A). The amino acid sequences of the TM domains of

Sx isoforms are indicated in Fig. 7A, right. The averages of

capacitance transients (DCm) were: for Sx 1A, 2.6560.17 nF

(n = 18), Sx 2, 1.0460.13 nF (n = 16), Sx 3, 0.8660.12 nF (n = 12)

and Sx 4, 0.4860.11 nF, while DCm of Cav1.2 alone was

0.760.1 nF (Fig. 7B left panel). Thus, except for Sx 1A, none of

the Sx isoforms supported depolarization-evoked release. Cav1.2

current amplitude recorded in the presence of the synaptic

proteins was only slightly smaller, and not correlated to the

calculated Cm (Fig. 7B, inset).

DISCUSSION
We have used a functional reconstituted assay of secretion in

Xenopus oocytes [29] as an approach to studying the crosstalk

Figure 6. Comparison of syntaxin isoforms effects on the kinetics of
Cav1.2. Cav1.2 subunits were co-injected with syntaxin isoforms
(data from Figure 3). Ba2+ currents were elicited from a holding
potential of –80 mV by a voltage step applied to +4 mV in response to
160 ms pulse duration. (A) Superposition of representative online leak-
subtracted current traces measured with Sx isoforms as indicated with
voltage protocols diagramed at the top. (B) The first 30 ms of the
response is shown. The normalized traces show a shift of Cav1.2
activation by Sx isoforms. (C) Normalized conductance–voltage (G/
Gmax) relationship obtained from (Fig. 3.B) displayed with a Boltzmann
fit. The mid-point of activation (V1/2) and the Boltzmann slope (k) of
Cav1.2 were: V1/2 = 27.660.2 mV, k = 6.360.3; with Sx 1A, V1/
2 = 23.561.9 mV; k = 5.961; with Sx 2, V1/2 = 21.861.9 mV;
k = 560.661; with Sx3, V1/2 = 23.760.9 mV, k = 5.960.5; and with Sx
4, V1/2 = 23.561.4 mV; k = 6.360.7. (D) Peak current amplitudes
normalized to maximum current (I/Imax) (data from Fig. 3B) are plotted
against test potentials and displayed with a Boltzmann fit. The data
points correspond to the mean6S.E.M. (n = 10–12). Statistical signifi-
cance was determined by Student’s t-test.
doi:10.1371/journal.pone.0001273.g006

Figure 7. Assembly of the excitosome with syntaxin isoforms does
not support depolarization-induced secretion. (A) Oocytes were
injected with Cav1.2 subunits (as detailed in legend to Fig. 1) and
24 hr later with cRNA encoding SNAP-25, Syt 1 and either one of the
syntaxin isoforms. Capacitance steps were elicited by two consecutive
pulses of 500 ms, 100 ms apart as depicted in the protocol in Fig. 1D.
Monitoring Cm in representative oocytes expressing heterologously
Cav1.2 without and with SNAP-25, synaptotagmin and different
syntaxin 1A isoforms. The amino acid sequence of Sx isoforms TMD
are shown (left). (B) Summary of the exemplary recordings shown in (A)
of the Sx isoforms effect on Cm induced by membrane depolarization
of Cav1.2 0.7160.07 nF; n = 11; and with: Sx 1A, 2.6560.17 nF (n = 20),
Sx 2, 1.0460.13 nF (n = 16), Sx 3, 0.8660.12 nF (n = 12) and Sx 4,
0.4860.11 (n = 12) (Groups as in A). insert, Average the corresponding
peak currents amplitudes of VGCC expressed with SNAP-25, synapto-
tagmin and syntaxin isoforms, as indicated.
doi:10.1371/journal.pone.0001273.g007
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between Sx 1A and VGCC in exocytosis, and a means of

examining the role of VGCC activation during the exocytotic

events.

Whole cell membrane capacitance transients were monitored in

oocytes expressing the recombinant excitosome complex consisting

of Cav1.2, Sx 1A, SNAP-25, and SytI [13] or mixtures where Sx

1A was replaced by Sx1A TMD mutants, the Sx 1A/Sx 2

chimera, truncated Sx 1A, or different Sx isoforms.

Sx 1A TMD mutants
We examined three Sx 1A TMD mutants: C271V (CC/CV),

C272V (CC/VC) C271V/C272V (CC/VV) and a truncated

cytosolic Sx1A (1–267) missing the TMD [15,22].

Previously, it was shown that when a single Val residue was used

to replace either one of the two highly conserved Cys 271 or Cys

272 residues of the Sx 1A TMD, modifications of Cav1.2 kinetics

was similar to wt Sx 1A [22,23]. A loss of current modulation was

observed only when both vicinal Cys were mutated.

Despite the similar modulation of Cav1.2 kinetics by either one

of the the single Cys mutants or wt Sx1A, we showed that neither

CC/CV nor CC/VC supported depolarization-evoked release.

These results reveal that both of the adjacent Cys residues are

essential for promoting release.

Sx 1A/Sx 2 chimera
Sx 2 has two vicinal Val residues, instead of two Cys at the

corresponding position in the Sx 2 TMD. As previously shown, Sx

2 did not lower VGCC current amplitude, consistent with the

need of two vicinal Cys residues for modulating inward current

[24]. Hence, if the two Cys were solely responsible for decreasing

VGCC current amplitudes, mutating Val residues to Cys at the Sx

1-2 chimera (constructed by cytosolic Sx1A and transmembrane

domain of Sx 2) would restore inhibitory activity. Indeed, the

mutated chimera, Sx1-2 (VV/CC), restored the predicted

inhibitory activity [2,22]. Despite this gain of activity, Sx1-2

(VV/CC) did not support release, indicating that in addition to

Cys 271 and Cys 272, other amino acids at Sx 1A TMD play a

role in the process of evoked release. These results reflect more

stringent requirements for the release process, and are consistent

with amperometry studies in PC 12 cells, where over-expression of

only selective TMD Sx 1A mutants were reported to alter Ca2+-

evoked release [31].

Sx isoforms
The essential role of two vicinal Cys residues in depolarization

evoked-release was further corroborated by the use of Sx isoforms,

lacking the TMD vicinal Cys residues. Here we have demonstrat-

ed that none of the isoforms, supported evoked-release in the

functional secretion assay. Unique sequences of both the cytosolic

and transmembrane domains of Sx 1A appear to act in concert to

support depolarization-evoked release. In further support of this,

when Sx 1A is cleaved by botulinum C1, both evoked-release and

modulation of VGCC currents [22] are lost [29,37].

Previously, it was reported that in the retina, Sx 3 mediates

presynaptic transmitter release from ribbon synapses, as opposed

to the presynaptic Sx 2 and Sx 4 which are likely to mediate post-

synaptic trafficking [38]. In an insulinoma cell line [28] and in

pancreatic b cells, Sx 4 facilitates secretion of insulin over

expression of Sx 1A and Sx 3 but not Sx 2 and Sx 4, strongly

inhibited actions on insulin release [39]. In view of the data

presented, it will be of interest to test whether Sx 2, Sx 3 and Sx 4

can support secretion perhaps, by interacting with different SNAP-

25 and/or VAMP isoforms [40] .

Proposed model
The most commonly accepted model for exocytosis is the

SNAREs’ model where the SNARE proteins (Sx.1A, SNAP-25

and synaptobrevin 2) are suggested to fuse with each other forcing

the membranes into a close proximity to form a bilayer [41].

Initial reconstitution experiments using liposome containing

recombinant SNAREs supported this model and led to the

hypothesis that SNAREs by themselves are sufficient to account

for the membrane fusion process [42]. However, un-physiologi-

cally high concentrations of SNAREs were required for the fusion

and membranes breakage during fusion, have suggested that

SNAREs alone are not sufficient to account for biological

membrane fusion [43,44]. These results raised the question

whether the SNAREs just bring the membranes together or

actually initiate fusion [45].

A more integral role of Sx 1A in the SNARE complex was

implicated by its interaction with Munc-18 [46–48]. A tentative

working model suggested that Munc18-1 promotes vesicle delivery

most likely through the actin network [49] and then leads to vesicle

docking [48]. According to this model, Sx1A/Munc18-1 dimer is

formed and by unknown mechanism, transits to Munc18-1–

SNARE complex. This complex was suggested to promote vesicle

fusion by accelerating the fusion reaction [50].

Hence, in addition to the ‘‘leaky’’ type ‘SNARE’s-only’ model, a

more tightly controlled model was suggested which involves

SNAREs, Rab, and SM proteins [45,48,51,52]. See also

[45,48,51,52].

Our previous work has indicated that a minimal set of proteins

assemble into a complex composed of the Ca2+ channel, tSNAREs

and Syt1 [1,5,13,14,16,23,29,53]. A functional assay was used that

mimics several of the characteristics of exocytosis found in

excitable cells; it is driven by membrane depolarization, sensitive

to botulinum toxins (C and A), non-linear with divalent cation

concentrations, and responds differently to various types of

VGCC. In the functional secretion assay however, unlike in

neuronal cells, synaptobrevin-2 contributed to an increase but was

not absolutely necessary for secretion. This suggested the

involvement of endogenous tetanus toxin-insensitive synaptobrevin

(or cellubrevin) in the fusion process [29].

We propose here a working model that is based on a non-linear

allosteric functional interactions of Sx1A with VGCC [29]. We

have scrutinized the model in light of our results with the

functional secretion assay that measures the fusion event. We

assume that in our assay the vesicles in the oocytes are properly

primed and associated with the VGCC [22,23].

Consistent with our findings of the necessity of a minimal fusion

complex, each Sx1A is in a complex with SNAP-25, Syt1, and the

Ca2+ channel. The failure to support release when either of the two

adjacent Cys residues in Sx 1A TMD are substituted by Val most

likely results from structure alteration of Sx1A, that could affect the

interaction and the allosteric regulation of the channel [23].

Based on a Hill coefficient of nH = 2.0260.2, indicating the

non-linear dependency of Sx 1A concentration on current

modulation [23], we propose that three (or more) Sx1A molecules

assemble with equal number of Ca2+ channels to generate an

exocytotic complex. The adjacent two Cys residues of Sx1A are

proposed to play a role in the supra molecular assembly of channel

molecules into a secreting competent complex [54–56].

Located far apart on a helical wheel model, we propose that one

Cys residue could interact with one channel and the other, with a

second channel (Fig. 8A left). The two vicinal Cys at the Sx 1A

TMD would enable one Sx 1A molecule to connect with two

adjacent VGCC molecules. The association of three Sx1A with

three channels would generate a cluster that mediates secretion
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(Fig. 8A right), and a top view (Fig. 8B). This would explain why a

single Cys mutation could disrupt the assembly of the multiprotein

complex thereby, obliterating secretion. The observation of an

apparently lower number of clusters detected with confocal

imaging of RFP-Sx1A(CC/VV) substituted for RFP-Sx 1A, would

support this model. We believe that the hetero-oligomer complex

generates a fusion pore (Fig. 6B; shaded area) that is lined by

alternating transmembrane segments of Sx 1A and the calcium

channel. Previously, a fusion pore formed by the circular

arrangement of 5 to 8 Sx1A TMD segments was suggested [31,57]

Our working model, which is based mainly on secretion of vesicles

assembled with VGCC, does not preclude the participation of

Munc18-1, Rab, or other proteins in the multiprotein complex.

Further studies should clarify how and when does the Munc18-1/

closed Sx1A dimer becomes a Munc18-1 trans SNARE complex,

and whether Munc18-1/SNARE complex accelerates vesicle fusion

via the multiprotein complex presented above.

In summary, unlike existing models of secretion, our model

incorporates the VGCC as a pivotal member of the secretory

complex. The close proximity of the channel to the exocytotic

proteins allows for fast transmission of conformational changes

from the channel to the release machinery. Secretion triggered by

conformational change induced by cation bound at the channel

selectivity filter prior to cation entry, implies a role of the VGCC

as the Ca2+ sensor protein of secretion [7,8]. Lastly, the channel as

part of the exocytotic complex could be a constituent of the fusion

pore, directly controlling the fusion process.

MATERIALS AND METHODS
cDNA Constructs—a11.2 (dN60-del1773; X15539 [GenBank]) and rat

b 2a (m80545) were obtained from Dr. N. Qin and Dr. L.

Birnbaumer (University of North Carolina); a 2/d1 rabbit skeletal

(M21948) [GenBank]) from A. Schwartz (University of Ohio). Sx

isoforms, 2, 3, 4 were a kind gift of H. Y. Gaisano (Toronto Ontario,

Canada). Sx point substitutions at residues 271 and 272 and Sx1A/

Sx2 chimera, were previously described [22]. Anti syntaxin

antibodies were the kind gift of M Takahashi (Tokyo, Japan).

DNA constructs and RNA preparation
RFP-Syntaxin 1A (RFP-Sx1A) was prepared by insertion of the

Eco47III-HindII RFP monomer fragment into EcoRV site of

syntaxin 1A (#M95734). RFP-Syntaxin1A (CC/VV) was prepared

by the quick-change method (Stratagene, LaJolla, CA) using RFP-

Syx1A as a template with the primers- 59 GGAAGAAGATCAT-

GATCATCATTGTCGTTGTGATTCTGGGCATCATCATC-

GCC and 39 CCTTCTTCTAGTACTAGTAGTAACAGCAA-

CACTAAGACCCGTAGTAGTAGCGG. GFP-Cav1.2 was a gift

from Hagalili Yamit (unpublished data).

In vitro transcription kit was from Stratagene (La Jolla, CA).

Phenyl arsene oxide and 2,3-dimercaptopropanol (British anti-

Lewisite; BAL) from Sigma, Jerusalem.

Heterologous protein expression in Xenopus

oocytes
cRNA Injection into Oocytes—cRNAs were prepared using the T7/T3

Stratagene transcription kit, and the product was monitored by gel

electrophoresis and optical density measurements.

Stage V and VI oocytes were surgically removed from female

Xenopus Laevis and were injected with cRNA mixtures encoding

Ca2+ channel subunits that were adjusted empirically to make the

inward current lower than 24 mA. cRNA mixtures were injected

into oocytes using a microdispenser (Drummond 510, Broomall,

PA), in a final volume of 40 nl.

Figure 8. Assembly of VGCC Sx 1A, SNAP-25, and SytI, to generate a releasing complex; A Schematic model. The voltage -gated Ca2+ channel is
schematically illustrated as a transmembrane barrel (yellow), and Sx 1A as a single transmembrane domain (red). (A) The Ca2+ channel, interact with Sx
1A transmembrane domain either via Cys 271 or Cys 272 residues, where one channel molecule interacts with one Sx1A (left). A simultaneous
interaction of one Sx 1A molecule with two adjacent VGCC molecules via two vicinal Cys resides, lead to the Sx1A lashing two VGCC molecules,
consequently, three Sx1A together with three VGCC molecules generate a secreting competent cluster (right). For simplicity, SNAP-25, and
synaptotagmin were not inserted. (B) Top view of the cluster formed by three Sx1A and three Ca2+ channel molecules, clearly illustrates the fusion
pore that traverses the plasma membrane to form a circle (shaded area).
doi:10.1371/journal.pone.0001273.g008
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Xenopus oocytes were injected with a mixture of cRNAs

encoding the Cav1.2 Ca2+ channel subunits a11.2 (Lc-type

(D1733); rabbit; 5 ng/oocyte) a2/d (rabbit; 5 ng/oocyte) and

b2A (rat; 10 ng/oocyte) and one day later either with water (for

controls) or with a mixture of cRNAs encoding SNAP-25 (rat;

0.5 ng/oocyte, SytI (rat; 1.0 ng/oocyte) and Sx1A (0.5 ng/

oocyte), or the equivalent amount of the corresponding isoform

(as previously described [15]. Oocytes were kept in 18 uC until

depolarization-induced exocytosis or inward currents were re-

corded after further incubation for 4 or 6 days.

Capacitance monitoring in Xenopus oocytes
Membrane capacitance (Cm) was monitored in the two-electrode

voltage-clamp configuration as published elsewhere [36]. Briefly,

Cm was determined from the current response to a triangular,

symmetrical voltage command of ‘‘Paired ramps’’ [45]. In a

typical voltage stimulus, command voltage Vcom increases by

40 mV within 20 ms, equivalent to a ramp slope of 2 V/s and

with this slope, capacitance is obtained from the difference

Î up
m {Î down

m

� �
via simple division by 4:

C~ Î up
m {Î down

m

� �
|

Dt

2DV

� �
[Cm~

Î up
m {Î down

m

� �
4

(see ½45�,½58�) :

The up- and down-ramps (620 mV in 20 ms each) elicit membrane

currents that are the sum of resistive and a capacitive current

component. Switching from up- to down-ramp reverses the sign of

the capacitive component but not that of the resistive component.

Thus, subtraction of the down-ramp current integral from the up-

ramp current integral Î up
m {Î down

m

� �
eliminates the resistive compo-

nent; the resulting pure capacitive charge allows one to compute-

together with the known amplitude of the voltage stimulus-

membrane capacitance. Continuous monitoring is achieved by

applying this stimulus repetitively at a high rate (up to 10/s; normally

at 4/s). Comprehensive tests in an electrical cell model as well as in

Xenopus oocytes have demonstrated high precision, accuracy, and

robustness of this technique [36]. Starting from a holding potential of

280 mV, depolarizing stimuli were applied by clamping the cells to

0 mV for 26500 ms, separated by 100 ms at 280 mV (unless stated

otherwise). Capacitance was monitored before and after the

stimulus, together with membrane potential (Vm) and current (Im).

Confocal imaging
Single optical sections through the oocytes were acquired with an

Olympus FV1000 (Olympus, Japan) equipped with a 406 oil

objective (N.A. 1.3). Two excitation lasers were used sequentially:

488 nm for the GFP and 543 nm for RFP. Narrow-band emission

filters 505–525 nm were used in the GFP channel and 560–

620 nm in the RFP channel. Sequential scanning was performed

with a resolution set to 5126512 pixels (0.621 mm/pixel), and

single optical sections ,0.5 mm thick were captured. Exposure

time was 8 msec/pixel. Protein expression and co-localization were

analyzed using Image J software

Membrane protein separation and Western analysis

identification
Oocytes were homogenized (Kontes homogenizer) in buffer

containing (mM): Tris–HCl 10 (pH 7.4), EDTA 1, sucrose 250

and 0.5% triton and a mixture of protease inhibitors: phenymethyl

sulfonyl fluoride (PMSF), pepstatin A and luepeptin. Homogenates

were then centrifuged (12,0006g, 10 min) to remove the yolk.

Protein samples were quantified (Bradford reagent, BioRad, USA),

using bovine serum albumin as a standard, then separated by 10%

sodium dodecylsulphate–polymerase gel electrophoresis PAGE

and detected using the electrochemiluminescent system using anti

Sx1A.

Electrophysiological assays
Whole-cell voltage clamp recordings were acquired from oocytes

at day 5 or six after cRNA injection, as described previously [13].

To minimize Ca2+ -activated Cl2 currents, oocytes were injected

with BAPTA (final 5 mM) prior to recordings. Membrane currents

were recorded by a two-electrode voltage clamp method using a

DAGAN 8500 amplifier (Dagan). Bath solution contained (in

mM): 5 Ba(OH)2, 50 N-methyl-D-glucamine, 1 KOH, 40

tetraethylammonium, 5 HEPES, titrated to pH 7.5 with metha-

nesulfonic acid CH3SO3H.

Pulse duration for activation was 160 ms in 10 s intervals.

Current traces were leak-subtracted on-line by the Clampex 8

software, and channel activation rates were analyzed by applying a

mono-exponential fit (Axon instruments, Foster City, CA) to the

current traces at the relevant ranges.

Fit~A exp½t:=t act�zB

where A = current amplitude, t = time constant, t = time to peak.

Activation was determined from the beginning of the trace just

after the capacitative transient to the peak-current region.

Data Presentation and Statistical Analysis-Peak current

and time constant values analyzed by Clampfit 8 and transferred

as ASCI file to an Excel worksheet (Microsoft Inc.). Data were

averaged for each group of oocytes, and S.E. was determined.

Data are presented as means6S.E. Statistical significance relative

to the control group in each experiment was done by Student’s t

test by the Excel software. Statistical significance between multiple

groups in each experiment was determined using one-way analysis

of variance test using the Origin 6 software (Microcal). Final data

was transferred to Origin 6 worksheet, plotted, and printed as final

figures.
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