
Microarrays or DNA chips have been hailed as the ulti-
mate experimental tool for research, drug discovery

and diagnostics. They have the potential to perform a multi-
tude of molecular tests simultaneously and to produce a
wealth of information from a single clinical sample.
Applications include genotyping, expression analysis and
sequencing (1-4). The aim of this review is to provide a brief
summary of current microarray technology and highlight the
many ways in which it is being developed for use in clinical
microbiology laboratories.

WHAT IS A DNA MICROARRAY?
A DNA microarray consists of a solid support, usually

glass, with unique nucleic acid sequences (probes) bound at
discrete positions on the slide. Nucleic acid hybridization is
the central event in microarray technology. Sequences from a
labelled target are recognized by the hybridization affinities
of the oligonucleotide probes in a highly specific and sensi-
tive manner. There are a number of different microarray for-
mats, the biggest distinction among them being whether
oligonucleotides are synthesized in situ onto the chip, or
whether cDNA or oligonucleotides are spotted onto the chip
with high precision (5). Recently a light-directed oligonu-
cleotide synthesis process has been developed to generate
probes directly onto a solid surface (6). This procedure uses
combinations of unique masks to allow light to reach prede-
fined sites on the array to build probes up to 30 basepairs in
length accurately. It is possible to produce approximately
400,000 unique probes in squares 20 µm across on a small
glass wafer (7). The numbers of probes are so high that they
can be designed to interrogate every base within genes, in

effect allowing sequencing on the chip (4). The masks are
unique for a given set of probe sequences, and it is time con-
suming and expensive to produce them, which limits the use
of this technology to produce custom arrays. New innova-
tions, such as the introduction of mirrors to direct the light,
may improve flexibility and broaden the use of this type of
array for diagnostics (8). One other way to synthesize
probes directly onto a surface is by using ink jet printers to
direct small volumes of oligonucleotide synthesis reagents
onto predefined sites on the chip (9). This technology
should be both flexible and relatively inexpensive for the
production of custom arrays (10).

Presynthesized oligonucleotides can also be spotted onto a
solid surface using a robot. This type of array may contain
probes designed to pick out short unique sequences or  detect
point mutations for genotyping. Spotted arrays are attractive
because they are very flexible, and more probes can be added
and changes can be made to the chip as new targets are iden-
tified. There are two major practical problems that limit the
development and use of arrays for genotyping. The first is the
difficulty in designing oligonucleotide probes that discrimi-
nate well enough to recognize single base changes under uni-
form hybridization conditions (1,11). The other is in the
preparation of the target sample. The assay requires nucleic
acid amplification of different genomic targets from clinical
samples before hybridization. In this ‘multiplex polymerase
chain reaction (PCR)’ technique, the challenge is to design
numerous sets of primers with similar annealing tempera-
tures for amplification in the same tube (12-14). 

Novel approaches to standardize the hybridization condi-
tions for all the probes on a chip, even if they have different
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guanine-cytosine (GC) contents and binding efficiencies, are
under development. These include the production of DNA
chips containing microelectronic devices to facilitate the
hybridization discrimination of mismatches (15,16), alterna-
tive probe chemistries to equalize the DNA duplex stabilities
of comprehensive sets of oligonucleotide probes (17) and the
use of chaotropic agents in the hybridization reaction (18).

One of the most promising ways to increase specificity on
the microarray is to include an enzymatic step in the assay.
The most popular method using this approach is termed
‘minisequencing’. Hybridization of an unlabelled target to the
arrayed probes is followed by a primer extension reaction
(19). Oligonucleotides are designed to be complementary to
the target, ending immediately adjacent to the base under
interrogation. The probe is then extended by a single-labelled
base using a DNA polymerase, and the identity of the label is
determined by scanning the array. Using the scanners with
four-colour recognition capability, all four nucleotides can be
determined on a single array (20). Another conceptually sim-
ilar method to increase specificity is the inclusion of a liga-
tion step to attach a probe containing either the mutant or
wild type allele. 

APPLICATIONS OF OLIGONUCLEOTIDE ARRAYS
IN DIAGNOSTICS AND SURVEILLANCE

Traditionally many of the standard methods for looking at
characteristics of pathogenic organisms, such as typing of
isolates, resistance to drugs and the identification of viru-
lence, were performed on laboratory cultures. Often the scope
of such tests is limited by the slow growth and fastidiousness
of the organism. As a result, it can be difficult to provide
information about phenotypes fast enough to be clinically
relevant. In addition this information does not reveal any-
thing about the mechanisms behind particular characteris-
tics. Many molecular tests used in microbiological diagnos-
tics rely on DNA sequencing or nucleic acid hybridization to
identify specific sequences or point mutations that vary
between different clones (21-24). An array format expands on
these methods by enabling the simultaneous detection of
thousands of genomic targets. This will result in more accu-
rate and efficient genotyping plus information on the expres-
sion of specific phenotypic characteristics, such as drug
resistance (13,25). 

The utility of high density DNA chips for typing has been
demonstrated for both HIV and Mycobacterium tuberculosis
using high density arrays of in situ synthesized oligonucle-
tides (25,26). In the M tuberculosis studies, probes were
designed to characterize the 16S rRNA for typing of tubercu-
losis strains and the rpoB gene for analyzing mutations
linked to resistance against the antibiotic rifampicin (25,27).
The chip consists of a ‘tiled array’ of oligonucleotide probes
20 to 25 bases in length, with four different probes designed
to interrogate each base of the target sequence in turn (28).
The base under interrogation is in the central position of the
probe where a mismatch produces the greatest degree of
hybridization instability. Quantitation of hybridization sig-

nals allows perfectly matched probe and targets to be dis-
criminated over mismatched duplexes under stringent condi-
tions. This study illustrates the utility of DNA arrays for
identifying sequence changes leading to drug resistance. The
use of a standard chip for identifying multiple bacterial
pathogens and drug resistance markers would be a cost effec-
tive diagnostic tool (27). A universal sequencing chip is also
under development, and this will have many potential uses
for the sequencing of short genomic targets for typing and
other diagnostic applications (10,29).

The detection of viral pathogens is another application for
which microarrays have potential as a diagnostic tool. Low
density, spotted oligonucleotide arrays that define either
short sequences of interest or individual mutations could be
used to identify virulence markers that distinguish viral vac-
cine strains from wild type isolates. Microarrays that include
both generic and strain-specific probes could also be used for
identifying both previously recognized strains and new or
‘variant’ viruses associated with outbreaks (30-32). DNA
chips have the capability to genotype viral pathogens and
may be useful in determining viral transmission pathways,
and the source of outbreaks (33). Another application for
arrays could include the identification of distinct subspecies
of vectors and reservoirs that harbour zoonotic pathogens
such as hantaviruses and various kinds of arboviruses (34).

APPLICATIONS OF GENOMIC DNA ARRAYS IN
STUDIES OF GENE EXPRESSION AND PATHOGENS

Pathogen gene expression: The most common use of DNA
microarrays is for monitoring expression levels of transcripts
from cells, viruses and bacteria (35-37). Probes to be spotted
onto slides can be made in three ways: PCR amplicons gener-
ated from genomic regions defining predicted open reading
frames; cDNA generated from mRNA by reverse transcriptase
(RT)-PCR; and oligonucleotides (35-37).

The mRNA target can be used directly from culture or RT-
PCR amplified and subsequently labelled (35). One challenge
in performing microarray analysis in bacteria is the need to
extract mRNA quickly due to its short half-life in many organ-
isms. Priming for cDNA synthesis can be achieved using ran-
dom hexamers or short oligonucleotides (38-41). A recent
study reports that the use of random hexamer priming result-
ed in the most accurate quantitation of expression levels (42).

Profiling gene expression levels in an isolate is useful to
predict the function of uncharacterized genes or for analyzing
the expression of virulence-associated genes. Monitoring the
levels of expression of certain genes in pathogens may be
important for diagnosing particularly virulent strains or com-
paring responses to different drugs (37). This type of assay
may be useful in deciding on an effective drug treatment
against organisms that are initially unresponsive to therapy.
The use of whole genome microarrays is not limited to bacte-
ria. Recent publications show how microarray analysis was
used to study human cytomegalovirus and herpes simplex
virus 1 gene expression (43,44).
Host gene expression: The response of a host to an invading
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pathogen involves a variety of mechanisms. With the avail-
ability of arrays of human genes comes the opportunity to
investigate in detail the relation between host and pathogen
(45-47). As well as providing clues into the mechanisms of
microbial pathogenicity, results from this type of study may
provide indicators to identify those individuals most suscep-
tible to infection and prognostic markers for the outcome of
the infection. This type of information could be used to pre-
dict the most effective course of treatment during infection or
possibly even to screen susceptible populations where pre-
ventative measures could be taken. 

Comparison of gene expression patterns has already been
validated as a means to classify tumour types in human can-
cer studies (48,49). Host expression patterns could also be
used as a diagnostic tool in infectious disease and as an indi-
cator of disease progression. This kind of application is sup-
ported by the finding that the patterns of gene expression
induced in primary human monocytes infected by two closely
related strains of Ebola viruses, Zaire and Reston, are signifi-
cantly different. In this study microarray methodology was
able to differentiate between host gene expression profiles
generated during infection with the two Ebola strains (50). 

One of the most important aspects of this type of approach
involving the analysis of thousands of genes simultaneously
is the development of algorithms for the analysis of the huge
amounts of data produced. The term ‘data-mining’ has been
adopted to encompass this field (2,51). 
Comparative genomic hybridization: Comparative genomic
hybridization has been used for a number of years. One
important application is scanning for differences in DNA
sequence copy number in tumour cells to characterize certain
tumour types or stages of tumour progression (52). This type
of assay can be readily transferred to an array format to pro-
duce information on the number of DNA copies and the per-
sistence of particular genes between different pathogens
(53,54). Amplicons representing some or all genes from a
particular species are spotted onto arrays and interrogated
with labelled genomic target sequences derived from differ-
ent strains or disease states (54). An example of the utility of
this method is provided in a study on bacilli Calmette-Guérin
vaccine strains resulting in a reconstruction of the phylogeny
of the vaccine over time (53).

One pitfall of this approach is that only known sequences
can be represented on the array, which means that insertions
in the target sequence are not detected. Another consideration
is that the degree of sequence variation tolerated in the
hybridization reaction on the microarray has not been charac-
terized, and could lead to anomalies. The more sequence
information that is gained from genomic sequencing projects
and functional genomic studies the greater the potential for
the design of reference arrays as diagnostic and surveillance
tools. 

CONCLUSION
The variety of approaches described above illustrate the

enormous potential for microarray analysis in almost every

aspect of clinical microbiology. The huge amount of commer-
cial and academic interest in microarray technology will guar-
antee continued innovation and improve the accessibility of
arrays for routine diagnostics and surveillance. Although few
studies are as yet published for many of the microarray
approaches described, projects using DNA chip methodology
will increase exponentially in the near future. The develop-
ment of arrays for clinical use in infectious disease is limited
by the amount of sequence information available for patho-
genic organisms. The standardization of systematic methods
to allow comparisons of array data and the computational
tools necessary to analyze and model huge sets of biological
data are also not sophisticated enough for routine use at
present. Nevertheless the promise of flexible, simultaneous,
high-throughput diagnostics will ensure that DNA array
analysis will eventually become a standard part of the diag-
nostic microbiology laboratory.
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