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Impaired visual attention is a common manifestation of cerebral
dysfunction. In adults, closed head trauma, cerebral
microvascular ischaemia and dementia are common causes. In
children, aetiologies include periventricular leukomalacia,
hydrocephalus, hypoxic ischaemic encephalopathy and brain
damage caused by hypoglycaemia. The resultant visual
disability can be profound even when visual acuities are
unaffected, and can cause significant disability in the execution
of daily activities. This can prompt consultation with an eye care
specialist. Patients complain of poor vision, difficulty in
identifying someone in a group, or finding an object on a
patterned background or among other objects, but a thorough
examination often does not reveal the clinical basis for these
complaints. The diagnosis of attentional dysfunction is also
easily missed because at present it can only be recognised on
the basis of adequate history taking from both the patient and
close relatives and friends. The Useful Field of View test
facilitates the detection and quantification of this disorder.
Management includes the implementation of strategies that
diminish background pattern and foreground clutter.
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VISUAL ATTENTION
There is a considerable body of literature on the
subject of visual attention. A search of Medline
currently reveals over 1600 hits, but few are to be
found in the ophthalmic literature. While we are
alert and awake, our minds are constantly receiv-
ing visual information. When looking at a scene,
we are only aware of those elements we are paying
attention to and those that distract our attention.1

The ability to survey a visual scene, locate and
recognise an object of interest, and decide on an
appropriate plan of action recruits a number of
complex cognitive higher visual pathways. It is
also constrained by the mechanisms of simulta-
neous perception and time.2 Visual sensory data
pass from the eye to the primary visual or occipital
cortex. Thereafter the information is processed in
two principal locations, the temporal and the
parietal lobes.3 The temporal lobes contain ‘‘image
libraries’’ and bring about recognition of what is
being looked at. The posterior parietal lobes
appraise the entire visual scene and interact with
the frontal lobes in choosing the object of interest

and planning appropriate visually guided move-
ment. Recent research suggests that from a
functional point of view there are two pathways,
the dorsal stream, which links the visual cortex
with the parietal lobes, and the ventral stream,
which links the visual cortex with the temporal
lobes.4 5 The posterior parietal cortex contributes
significantly to attentional visual function. Severe
bilateral posterior parietal pathology gives rise to
simultanagnosia in which there is profound
difficulty registering the presence of any object
that is not being attended to. Affected individuals
have an inability to interpret the totality of the
scene despite a preserved ability to apprehend
individual portions of the whole. Natural visual
scenes are cluttered and contain many different
objects that cannot all be processed simulta-
neously. Therefore, from an operational perspec-
tive, visual attention is a matter of organising
multiple brain centres to act in concert to select
relevant and to filter out irrelevant information.
Evidence from functional brain imaging suggests
that attention operates at various processing levels
within the visual system and beyond. The lateral
geniculate nucleus (LGN) appears to be the first
stage in processing visual information. In addition
to retinal afferents, the LGN receives modulatory
inputs from the striate cortex (mainly the V1
layer), the thalamic reticular nucleus (TRN) and
the brainstem; it probably represents the first stage
in the visual pathway at which cortical top-down
signals affect visual information processing.6 The
TRN receives input from the LGN, V1, several
extrastriate areas and the pulvinar. It probably also
acts as a node where several cortical areas and
thalamic nuclei interact to modulate the transmis-
sion of visual information further through the
LGN.7 Second, intermediate cortical processing
levels, such as the V4 and TEO (cytoarchitectonic
area located in the inferotemporal and occipital
cortex, ventral to area V4) areas of the visual
cortex, are important sites where relevant visual
information is selected and irrelevant information
is filtered out.8 9 Third, the superior parietal lobule,
frontal eye fields and supplementary eye fields
serve as sources of top-down feedback signals that
modulate neural processing in the visual system.10–

12 As a whole, this network mediates target
selection and distractor suppression.13–16 Fourth,
visual information from different cortical areas is

Abbreviations: LGN, lateral geniculate nucleus; TRN,
thalamic reticular nucleus; UFOV, Useful Field of View
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integrated in the pulvinar of the thalamus. The visual maps in
the pulvinar are arranged in such a way that neurons
representing corresponding parts of the visual field in cortical
visual areas project to similar parts of the pulvinar maps,
thereby allowing the pulvinar to act as an integrator.17–19 The
pulvinar can in turn be influenced by signals originating in the
frontal and parietal eye fields, with the superior colliculus
acting as an important link.20 21 The overall view that emerges is
that neural mechanisms of selective attention operate at
multiple stages in the visual system. In this respect, attention
can be considered to be a multilevel selection process.6

These levels of attention can further be divided into
subconscious and conscious visual processes. Loss of the striate
cortex in both the human22 and monkey23 leaves elements of
intact visual function, which in humans are at least ostensibly
subconscious24 and primarily serve movement perception.
Recent functional magnetic resonance imaging evidence
indicates that brain activation caused by conscious attention
can be detected in a variety of brain areas including V1.25 26

Such observations reinforce the work of animal studies, which
indicate that persistent subcortical mechanisms mediated by
the pulvinar and superior colliculus contribute to such
subconscious visual function.27 28

Visual attention is not, however, an all or nothing phenom-
enon and there are many ways of both describing and
quantifying it. Searching the visual scene involves both parallel
and serial mechanisms.29–31 The capacity to move effortlessly
through the visual world has recently been argued to be
subconscious, reflexive and remarkably accurate. Such pre-
attentive vision does not entirely entail conscious analysis of
the visual world and is a global visual function providing simple
analysis of the whole scene in a parallel fashion. Foveation on
the other hand requires sequential serial attentive mechanisms
for the conscious analysis of the visual world. Pre-attentive
vision is responsible for the phenomenon of ‘‘pop out’’ in which
an element of the visual scene is sufficiently different from the

background that it spontaneously stands out. Such differences
include movement, colour and contrast. On the other hand,
complex images such as faces and words require serial search to
identify, and this constitutes a bottleneck in visual information
processing, as this takes much longer to process.32 33

Profound cognitive visual impairment caused by parietal and
temporal lobe pathology is rare, but minor dysfunction,
especially as a result of aging is relatively common. There is a
consensus among scientists and clinicians that the speed with
which we process information gradually slows down with age.
This may be as a result of the decreased speed of neural
transmission.2 Older adults have greater difficulty than young
people in carrying out everyday tasks that require visual search,
peripheral visual attention and the extraction of information
from cluttered visual scenes.34 Elderly people need visual
information to be more conspicuous, presented for longer
periods of time, or presented in isolation, for it to trigger an

Figure 1 Neural architecture of visual attention. The schematic diagram
illustrates the widely distributed networks of brain areas that subserve visual
attention and operate across various processing levels. The lateral
geniculate nucleus (LGN) is the first stage at which visual processing is
modulated by attention; this modulation may be under control of the
thalamic reticular nucleus (TRN), which operates as a local integrator of
visual information (striped blue box). Intermediate cortical areas V4 and
TEO act as filter sites to reduce the amount of unwanted information (green
boxes). Higher order areas in the lateral intraparietal (LIP) area and frontal
eye field (FEF) cortices integrate information from the visual system and
provide top-down attentional control via feedback connections (blue
boxes). Furthermore, the pulvinar (Pul) may act as an additional integrator
receiving information from both the visual system and the higher order
areas via the superior colliculus (SC). The connectivity of these brain
systems is indicated in simplified form and does not reflect the complexity of
the known anatomical connections. It should be noted that most, if not all, of
the connections are reciprocal. Reprinted from Kastner and Pinsk.6

Copyright 2004, with permission from Psychonomic Society, Inc.

Figure 2 The first subtest is for central attention. It requires the
identification of a silhouette of a car or truck presented in a central fixation
box. The second subtest measures divided attention and involves
identification of the central target along with localisation of a simultaneous
peripheral target (silhouette of a car) presented at a fixed eccentricity of
12.5 cm from the central target, near the edge of the screen (at
approximately 30˚ visual angle). The peripheral target is presented at one
of eight locations along the cardinal and oblique axes. The subject is asked
to identify the centrally presented object and to locate the direction of the
peripheral target. The third subtest repeats these two tasks, but also
includes additional visual distracters consisting of triangles or rectangles of
the same size and luminance as the peripheral targets, which fill the rest of
the visual display. Pictures of the Useful Field of View (UFOV) subtests are
reprinted with permission of Visual Awareness, Inc. UFOVH is a registered
trademark of Visual Awareness, Inc.
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appropriate response. This slows down quick reactions, which
are important for safety, such as in driving, crossing roads and
accurately performing various daily activities. Children with
impaired visual attention presenting to ophthalmologists have a
characteristic symptom complex. This comprises difficulty
seeing something pointed out in the distance, disability
identifying a well-known person in a group, problems finding
an item of clothing in a pile and inability to find a chosen toy in
a toy box without separating all the toys out.35 Visual neglect on
one side, most commonly on the left, is occasionally seen in
children as a sequel to unilateral, particularly right-sided
posterior parietal damage.

CLINICAL INVESTIGATION OF VISUAL ATTENTION
Attention can be studied in many different ways. Most studies
are conducted using customised stimuli and a methodology
unsuitable for clinical practice. Certain tests have, however,
been modified for use in a non-research setting. Most of these
are aimed at particular conditions, such as attention deficit/
hyperactive disorder or dementia, and test attention across
multiple modalities. A review of these is beyond the scope of
this article. Many add a single test of visual attention to a
battery of visual perception assessments. The most popular of
these are discussed below.

The Cookie Theft Picture36 taken from the Boston Diagnostic
Aphasia Battery, is designed to have a balance of information in
all four quadrants. Individuals with attentional disorders may
not be able to describe the picture in a coordinated fashion.
There may be an asymmetric perception of the scene in
unilateral neglect. Qualitative assessment of the patient’s
verbal description of the diagram enables various attentional
disorders such as hemifield neglect37 or Balint’s syndrome38 39 to
be identified. It has also been used in dementia40 and in
perceptual defects after eclampsia.41 Exclusion criteria include
aphasia sufficient to prevent verbal description and significant
visual acuity or perimetric visual field loss.

The Line Bisection Task, first described by Best,42 involves the
patient marking the middle of a number of horizontally drawn
lines on a piece of paper. These vary in length and position.
Information is gathered concerning how accurate the indivi-
dual is and whether any lines are left unmarked. For example,
those with left-sided hemineglect may leave some lines

unmarked on the left hand side and may also manifest a
rightward bias when estimating and marking the mid-point of
a line. Similar findings have been reported in patients with
frontal lobe lesions.44 Despite repeated findings of systematic
bias among normal individuals,45 the test has been shown to be
useful in detecting unilateral neglect.46 47

The Visual Exploration Test by Poppelreuter48 involves a large
board hung vertically, on which numbers, letters and symbols
are placed. The patient’s task is to locate a particular target or
group of targets. By observation of which ones are found, and
in what timescale, the test provides information on attentional
mechanisms. Many patients with neglect will be unable to find
targets in their affected hemifield, despite being able to locate
all four corners of the board. General attention can be tested by
asking the participant to mark a subgroup of targets such as
odd numbers. Some may be missed or the task may take a
much longer time than usual. This test in particular has
inspired many of the modern tests for attention currently
available. Modern versions with validated normative data
include the Gainotti Test and the Sky Search subtest in the
Test of Everyday Attention in Children (Harcourt Assessment).

The Useful Field of View test (UFOV; Visual Resources, Inc.,
Chicago, Illinois, USA) developed by Ball and colleagues49–52 is
usually performed binocularly, and measures the ability to
process rapidly presented, increasingly complex information,
within a restricted time period. Unlike conventional measures
of visual field, which assess visual sensory sensitivity, this test
also relies on higher-order visual processing skills, such as
selective and divided attention and rapid visual processing
speed. It is assessed by means of computer-based software and
comprises three (or four in a few versions) increasingly difficult
visual subtests, evaluating central, divided and selective
attention. Usually a 17-inch touch-sensitive monitor is used
to view the images, and participants are seated 40 cm from the
screen. The targets measure approximately 2 cm2 each and
subtend a visual angle of 3 .̊ All targets are presented at
progressively decreasing exposure durations, between 500 and
16 milliseconds, using a seven-reversal staircase paradigm.

The fourth subtest36 is similar to the third subtest except that
the central task is more demanding. Two targets are presented
in the central fixation box (either two cars, two trucks, or one
car and one truck) and the participants must indicate if the
targets inside the box are the same or different. As in subtest 3,
simultaneous localisation of a peripheral target is also required.
Scores for each subtest are expressed as the display duration, in
milliseconds, at which the participant performed accurately on
75% of the trials, using a seven-reversal double staircase
method. The scores of each test can range from 16 to 500 ms.

Poor performance in the UFOV test has being found to be a
significant predictor of future at-fault road traffic accidents.53 54

MANAGEMENT OF IMPAIRED VISUAL ATTENTION
Preliminary results suggest that the UFOV may be a useful tool
for occupational therapists in retraining visual attention. When
used as part of a battery of exercises, the UFOV has been shown
to improve driving performance (for up to 18 months post-
training)55and the execution of instrumental activities of daily
living56 57 in older adults. Stroke patients often have poor UFOV
scores, indicating a substantial reduction in visual attention.58

UFOV performance has been found to improve significantly
after retraining exercises with the software (by manipulating
various parameters such as the colour of peripheral targets,
luminance of distracters, duration of presentation of a target on
the screen). It is uncertain, however, whether these positive
changes represent improved overall visual attention or isolated
learning of the UFOV tasks, and this is the subject of further
investigation.

Figure 3 The graph represents the sum total score of all the Useful Field of
View (UFOV) subtests by age group. Smaller scores reflect better
performance. Reprinted from Edwards et al.43 Copyright 2006, with
permission from Elsevier.
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Recent research suggests that reading-disabled individuals
process visual information differently from normal readers as a
result of a presumed magnocellular pathway deficit.59–62 In the
light of this hypothesis, using the UFOV test, Edwards and
Ball63 found that children with reading disability process visual
information more slowly, are more easily distracted, and make
more localisation errors, than children without such disabil-
ities. Irrelevant peripheral information is more distracting in
those subjects, resulting in poorer visual search skills and less
effective allocation of visual attention.62 On the other hand,
visual processing deficits play a relatively minor role in adult
reading disability.64 Masking off adjacent text as well as using
large print (to provide less crowding) can facilitate reading in
adults with impaired visual attention. The role of the UFOV as a
practice tool for improving reading skills has yet to be
investigated.

In children, various coping strategies can improve visual
attention. Diminishing background pattern and foreground
clutter, along with the organisation of possessions assist in
finding things. Friends/relatives need to understand that they
will be identified more easily if standing alone and not in a
group of people. To aid reading, text should be broken down
into small parts and presented sequentially. Widening the gap
between words, double spacing of printed text as well as
covering words as they are read can be quite helpful. Some
parents report that their child appears not to hear instructions if
asked to do something when concentrating on another task,
such as watching television. To communicate properly, the
television had to be turned off or a favourite toy removed.
Reduction in background noise also helps in improving
attention.65

CONCLUSION
Visual attention is an important element of visual perceptual
function. Attentional disorders occur commonly in young
children, in the elderly and in patients with cerebral damage.
A tendency to bump into obstacles and difficulty seeing, despite
normal visual acuities, are common presenting complaints both
for the young and old. Such symptoms can easily be dismissed
when in fact they are far from trivial because they can be
profoundly disabling and place both the patient and others at
risk of injury. It is therefore important for ophthalmologists to
be able to recognise the features of impaired visual attention.

Contemporary research shows that the UFOV test can be
used to provide a rapid quantitative measure of visual attention
and processing speed. It can also potentially be used as a part of
speed of processing training. The remaining step is to apply this
knowledge base in a reasonable and concise manner as a means
of increasing the viability and safety of older adults in daily
activities such as driving and navigation, and to help children
improve performance at school and other educational and
recreational activities.
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