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The application of cytogenetic and molecular genetic analyses
to paediatric sarcomas has identified a number of characteristic
changes associated with types and subtypes of sarcomas. This
has led to increased understanding of the underlying molecular
biology of some sarcomas and provided an important adjunct
to standard morphological and immunohistochemical
diagnoses. Characteristic genetic abnormalities, particularly
specific chromosome translocations and associated fusion
genes, have diagnostic and in some cases prognostic value.
There is also the potential to detect micrometastastic disease.
Fusion genes are most readily detected by fluorescence in situ
hybridisation and reverse transcription-PCR technologies. The
expression profiles of tumours with specific fusion genes are
characteristically similar and the molecular signatures of
sarcomas are also proving to be of diagnostic and prognostic
value. Furthermore, fusion genes and other emerging molecular
events associated with sarcomas represent potential targets for
novel therapeutic approaches which are desperately required to
improve the outcome of children with certain categories of
sarcoma, including rhabdomyosarcomas and the Ewing’s
family of tumours. Increased understanding of the molecular
biology of sarcomas is leading towards more effective
treatments which may complement or be less toxic than
conventional radiotherapy and cytotoxic chemotherapy. Here
we review paediatric sarcomas that have associated molecular
genetic changes which can increase diagnostic and prognostic
accuracy and impact on clinical management.
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S
arcomas are a heterogeneous group of
tumours that are generally classified accord-
ing to the type of tissue that they resemble,

such as rhabdomyosarcoma which resembles
developing skeletal muscle. However, the cell
type(s) that gives rise to particular sarcomas is
not clear. Sarcomas represent a higher proportion
of cancers in children compared to adults, with
11% of all childhood cancers being sarcomas
compared with 1% in the adult population.
Therefore, although relatively rare, they com-
prise a significant proportion of paediatric on-
cology practice, with an incidence of 11.0 per
million in children under the age of 20 (fig 1).1 In
high-risk categories of sarcoma the overall out-
come has not significantly improved in several
decades, despite many clinical trials in different
continents.2

Sarcomas can pose particular challenges in
terms of their differential diagnosis, and accurate
diagnosis is important in optimising the clinical
management of patients. A number of types and
subtypes of sarcomas possess characteristic genetic
abnormalities, including specific chromosome
translocation and associated fusion genes, which
have diagnostic or in some cases prognostic value.
These genetic abnormalities and other emerging
molecular events associated with sarcomas repre-
sent potential targets for novel therapeutic
approaches which are desperately required to
improve outcome in certain categories of sarcomas.
Novel treatments that are less toxic than conven-
tional radiotherapy and cytotoxic chemotherapy
could reduce long-term damage and the risk of
secondary malignancies as well as improve the rate
of survival. Here we review paediatric sarcomas
that have associated molecular genetic changes
which can be used to aid diagnosis and the clinical
management of patients (table 1). We also discuss
the potential for future therapeutic options for
children with specific sarcomas based on our
increasing understanding of the aberrant signal-
ling pathways driving sarcoma development and
the identification of key molecular targets in
tumour cells (fig 2).

PREDISPOSITION TO SARCOMAS
Germ-line genetic abnormalities are known to
predispose to the development of sarcomas, in
many cases through increasing susceptibility to
DNA damage (table 2). Germ-line mutations of the
p53 tumour suppressor gene are associated with
Li–Fraumeni syndrome and an increased risk of
tumours including sarcomas. Ten per cent of
children with rhabdomyosarcoma have been iden-
tified with p53 mutations.18 19 Germ-line mutation
and subsequent inactivation of a second copy of
the RB1 gene result in retinoblastoma through the
classic two-hit mechanism. This genetic change is
also associated with an increased frequency of
osteosarcomas and rhabdomyosarcomas.
Additionally, predisposition to osteosarcoma is
also found in Rothmund–Thomson and Werner
syndromes that are associated with mutations in
the RECQL4 and RECQL2 genes, respectively, which
are involved in genomic instability.20 Costello
syndrome is caused by mutation of the HRAS gene
at 11p15.5, a locus of frequent allelic imbalances in
sporadic embryonal rhabdomyosarcomas. Children
with Costello syndrome have a high incidence of
rhabdomyosarcoma,21 but significantly sporadic
embryonal rhabdomyosarcomas show uniparental
disomy at the same locus, which is not driven by

1187

www.jclinpath.com



HRAS mutation.22 Beckwith–Wiedemann syndrome also
involves the 11p15.5 locus although the gene involved is not
yet clear. This syndrome is associated with overgrowth,
malformations and predisposition to embryonic tumours
including rhabdomyosarcomas23

APPROACHES TO THE DIAGNOSIS AND PROGNOSIS
OF PAEDIATRIC SARCOMAS
Accurate diagnosis of paediatric sarcomas involves rational
integration of clinical parameters, morphological features and
investigation of tumour samples by appropriate immunohis-
tochemistry and genetic analyses (table 1). Standard cytoge-
netic analysis can be used to identify chromosome
translocations but it requires fresh material. Preparation and
analysis of chromosomes can be both technically difficult and
time consuming. The advantage of karyotype analysis is that it
gives a global view of chromosome aberrations and can be
combined with chromosome painting or fluorescence in situ
hybridisation (FISH) approaches to aid definition of changes.
The most convenient and widely used approaches for inferring
the presence of specific fusion genes are reverse transcription
PCR (RT-PCR) and interphase FISH. Using these methods
fusion genes can be detected in fresh, snap frozen and formalin
fixed paraffin embedded tumour material, including fine
needle biopsy samples. RT-PCR and FISH detect specific fusion
gene transcripts and disruption or juxtaposing of specific DNA
segments associated with a translocation, respectively. The list
of variant translocations has grown over the years and therefore
a negative result for a particular gene fusion may not exclude a
particular diagnosis. Also, although the specificity of particular
gene fusions is high it is not exclusive. For example, the TMP3-
ALK and CTLC-ALK gene fusions can be associated with both
myofibroblastic tumours and anaplastic large cell lympho-
mas.12 13 33 34 Translocations involving the EWS gene are
associated with several tumour types and therefore identifica-
tion of disruption of the EWS gene using FISH analysis is not
specific, although useful when variation in fusion partners
occurs (table 1). The exons which fuse in, for example, the
EWS-FLI1 fusion genes associated with Ewing’s sarcomas vary
and therefore RT-PCRs need to be designed in order to detect
these. The sensitivity of RT-PCR allows the detection of

micrometastases; this has been demonstrated in a number of
sarcomas although the clinical significance of this is not yet
clear. Quantification of RT-PCR products through real time RT-
PCR analyses may ultimately become useful in clinical
management.35

Different fusion gene products are associated with the same
sarcoma type, involving either different genes or different exons
of the same genes (table 1). This may affect the molecular
biology of the tumour cells and the clinical behaviour of the
tumour. These different fusion proteins and other aberrantly
expressed proteins associated with tumours may have profound
effects on the overall RNA expression profile associated with a
tumour. Both the fusion gene types and the expression profiles
of tumours are emerging as having prognostic significance in
sarcomas and are included in the discussion below on
individual sarcoma types.

RHABDOMYOSARCOMA
Rhabdomyosarcomas (RMS) are the most common soft tissue
sarcomas in children and are thought to be derived from a
primitive mesenchymal cell committed to the skeletal lineage
but arrested in the processes of differentiation.36 The main
histological subtypes are alveolar (ARMS) (20%) and embry-
onal (ERMS) (60%); survival rates vary from ,25% to .95%
respectively for these subtypes.37 Molecular genetics has
increased diagnostic accuracy of these tumours and is
anticipated to increasingly impact on the management of
patients.

Seventy per cent of ARMS harbour the translocation
t(2;13)(q35:q14) which fuses the 59 end of PAX3 with the 39

end of the FOXO1a gene.3 A further 10% of ARMS are associated
with fusion of PAX7 to the FOXO1a gene.3 The remaining 20% of
ARMS do not have these fusion genes detectable by routine RT-
PCR and comprise cases with a very low expression of a fusion
gene, a rare variant fusion, or are true fusion negative cases.4 In
addition to being of diagnostic relevance, the fusion status
correlates with clinical outcome in RMS.

Evaluating clinical features in 34 patients with RMS, Kelly
et al found significantly longer overall and event free survival in
patients with tumours harbouring PAX7-FOXO1a fusion gene
in comparison with the PAX3-FOXO1a group of patients.38 In

Figure 1 Distribution of childhood
sarcomas.1 MPNST, malignant peripheral
nerve sheet tumour; DFSP,
dermatofibrosarcoma protuberans.
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univariate analysis of 80 patients with localised disease,
comparing patients with PAX3-FOXO1a and PAX7-FOXO1a, the
presence of the PAX3-FOXO1a fusion gene was an adverse
prognostic factor, implying that these patients might benefit
from treatment intensification.39 Sorensen et al evaluated 78
ARMS tumours, reporting an overall survival rate of 8% for
patients with metastatic disease and PAX3-FOXO1a, whereas
survival was 75% for patients with PAX7-FOXO1a tumours.40

Therefore the presence of a PAX3-FOXO1a fusion gene is an
indicator of adverse outcome in RMS, but independence of
alveolar histology has not been tested in any clinical trials.

The fusion genes encode chimeric transcription factors with
the DNA binding domain from PAX3/PAX7 fused to the potent
transactivation domain of FOXO1a. Wild type PAX3 and PAX7
are transcription factors required for primary myoblast migra-
tion and specification of muscle satellite cells, respectively.41

The fusion proteins are 10 to 100-fold more potent as
transcription factors than the wild type PAX3 or PAX7 gene
products.42 Although the fusion protein can transform NIH3T3
cells in vitro,43 this rarely results in tumours in vivo,44 without
additional changes such as disruption to the INK4a/ARF and
TP53 pathways.45

Wild type FOXO1a regulates myoblast differentiation and cell
fusion. Loss of a complete copy of the FOXO1a gene as a result of
the translocation event in RMS results in reduced FOXO1a
expression.41 Artificial restoration of FOXO1a expression has
been shown to induce G2/M cell cycle arrest, morphological
changes resembling muscle cell differentiation and apoptosis
through increased transcription of caspase 3.41 Restoration of
FOXO1a function may represent a potential pathway for
therapeutic intervention. Trp53/Fos double knockout mice
develop highly proliferative and invasive ERMS of face and
neck with 90% penetrance providing an excellent model for
RMS development in humans.46

A number of downstream targets of the fusion gene have
been shown through expression analyses, such as EN2, BVES,
FLT1 Itam2A and MET.47 48 MET encodes the HGF/SF receptor
(hepatocyte growth factor/scatter factor); silencing MET
expression in both ERMS and ARMS cell lines impaired cell
replication, survival, invasiveness and anchorage independent

growth.49 Furthermore, RMS were induced in mice at a high
frequency and with short latency through simultaneous loss of
INK4a/ARF function and disruption of MET.50 MET represents a
possible therapeutic target in RMS and in gastric tumours,
which overexpress MET through amplification events, a MET
inhibitor has recently been shown to be effective.51

Recurrent translocations have not been reported in ERMS.
However, ERMS and ARMS in addition to the presence of
translocations have characteristic chromosomal imbalances
including amplification events. Furthermore, ARMS and the
rare anaplastic variant of ERMS both exhibit a high frequency
of amplification events involving similar genomic regions,
which may contribute to their similar adverse clinical out-
come.36 52 53 Amplification of MYCN is used in the stratification
of neuroblastoma and has been described in RMS.54 55

Significantly, amplification and overexpression of MYCN in
ARMS has been associated with adverse clinical outcome in
ARMS, but not ERMS, and MYCN also represents a possible
molecular therapeutic target.56 The hallmark of ERMS tumours
is recurrent loss of heterozygosity, loss of imprinting or paternal
disomy at the 11p15 locus which leads to overexpression of the
IGFII gene.57 58 Coupled with a report of amplification of the
15q25–26 region encompassing the IGFR1 locus in an ERMS
case,53 this suggest a role for the IGF pathway in ERMS
development.

Expression profiling at the chromosomal level has shown
discriminating patterns of expression in ARMS and ERMS.59

Higher resolution expression analysis has also demonstrated
distinctive expression profiles in fusion gene positive and
negative tumours. A subset of genes were able to identify three
ARMS risk groups with very different overall survival rates (7%,
48% and 95% overall survival).60 Further discriminatory
patterns and key genes are likely to emerge from this and
similar data.

EWING’S SARCOMA FAMILY OF TUMOURS
The Ewing’s family of tumours (ESFTs) encompasses Ewing’s
sarcoma, peripheral neuroectodermal tumour, Askin tumour
and neuroepithelioma. For Ewing’s sarcoma, 5-year survival
with combination treatment of surgery, chemotherapy and

 
 

Figure 2 Application of molecular genetics
to tumour development, diagnosis and
treatment.
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radiotherapy is 55–60% in localised disease, while patients with
metastatic disease have a 5-year survival of only 30%. The
ESFTs share genetic alterations consisting of a number of
translocations, most frequently (80–85%) the translocation
t(11;22)(q24;q12) which results in the fusion of the 59 end of
the EWS gene to the 39 end of FLI1.61 62 A further 5–10% of these
tumours are associated with the t(21;22)(q22;q21) and EWS-
ERG fusion gene.7 63 In addition there are rare variant
translocations in which EWS is fused to other members of the
ETS family genes (table 1). Depending on genomic breakpoints
and the exons fused, there are two types of EWS-FLI1
transcripts: EWS exon 7 is most frequently fused to either
FLI1 exon 6 (type-1 transcript (60%)) or FLI1 exon 5 (type-2
transcript (25%)).64 65 Patients with a type-1 EWS-FLI1 fusion
transcript have been reported to have a better disease-free
survival compared with those with other fusion transcripts
types.66 The type-1 fusion encodes a less active chimeric
transcription factor67 and is associated with a lower proliferative
index.64 However, other authors report a lack of evidence for the
EWS-FLI1 type 1 fusion impacting on disease-free or overall
survival, but in comparison with EWS-ERG tumours.68

EWS belongs to a family of genes that encode proteins
involved in RNA processing, while FLI1 is part of the ETS family
of DNA-binding transcription factors. EWS-FLI1 is a more
potent transcriptional activator than FLI1.62 Furthermore, EWS-
FLI1 promotes transforming and tumourigenic activities,69 70

which are abrogated when either EWS or FLI1 are mutated. The
fusion protein affects the cell cycle, disrupts signal transduction
pathways, affects cell differentiation and changes the status of
p53 tumour suppressor.3 Mutation of p53 and homozygous
deletion of p16/p14ARF have been found in 25% of 60 patients

with Ewing’s sarcoma. This subgroup is defined by highly
aggressive tumours which have poor response to chemother-
apy.71

Gene expression profiling reveals an association of the EWS-
FLI1 fusion gene with overexpressed genes encoding cell cycle
regulators, genes associated with invasion and metastasis and
down-regulated genes including tumour suppressor genes and
inducers of apoptosis.72

Modulation of the tumourigenic properties of EWS-FLI1 may
also take place through the basic fibroblast growth factor
pathway.73 EWS-FLI1 suppresses TGF-type II receptor tran-
scription and histone deacetylase inhibitors can reverse this
effect. Restoring TGF signalling in this way has been shown to
suppress the growth of Ewing’s cells.74 Another promising agent
that down-regulates EWS-FLI1 protein and restores TGF-
receptor II expression is rapamycin which acts by inhibiting
the intracellular protein kinase mTOR.75 IGF1 is also a down-
stream target of the EWS-FLI1 protein.76 IGF1 and IGF1R
trigger growth, proliferation and antiapoptotic signals in
tumour cells. The insulin-like growth factor binding protein
(IGFBP3) is expressed at low levels in ESFTs and influences
regulation of IGF1. Silencing EWS-FL1 with siRNA is asso-
ciated with increased levels of IGFBP3 and apoptosis, and
exogenous IGFBP3 significantly inhibits the growth of Ewing’s
cell lines in culture. Recombinant IGFBP3 could therefore have
therapeutic potential in ESFTs.77 78

DESMOPLASTIC SMALL ROUND CELL TUMOUR
The desmoplastic small round cell tumour (DSRCT) is a rare,
poorly understood neoplasm primarily affecting adolescents

Table 1 Chromosomal rearrangements in childhood sarcoma

Tumour type Chromosomal rearrangement Genes involved Prevalence Reference

Alveolar rhabdomyosarcoma t(2;13)(q35:q14) PAX3-FOXO1a ,70% 3
t(1;13)(p36;q14) PAX7-FOXO1a ,10% 4

Alveolar soft part sarcoma t(X;17)(p11;q25) ASPL-TFE3 ,100% 5

Angiomatoid fibrous histiocytoma t(12;16)(q13,p11) FUS-ATF1 NA 6

Clear cell sarcoma/malignant melanoma of the
soft parts

t(12;22)(q13;q12) EWS-AFT1 NA 7

Congenital fibrosarcoma/mesoblastic nephroma t(12;15)(p13,q25) ETV-NTRK3 ,100% 8

Dermatofibrosarcoma protuberans Ring chromosome with sequences
from chromosome 17 and 22
t(17;22)(q22;q13)

COL1A1-PDGFB 92% 9

Desmoplastic small round cell tumour t(11;22)(p13;q12) EWS-WT1 93% 10

Ewing’s sarcoma family of tumours t(11;22)(q24:q12) EWS-FLI1 85% 11
t(21;22)(q22:q12) EWS-ERG 10% 11
t(7;22)(p22;q12) EWS-ETV1 ,1%
t(7;22)(q21;q12) EWS-E1AF ,1%
t(2;22)(q33;q12) FUS-ERG ,1%

EWS-FEV ,1%

Giant cell fibroblastoma (juvenile form of DFSP) t(17;22)(q22,q13) COL1A1-PDGFB 100% 9

Inflammatory myofibroblastic tumour t(2;19)(p23;q13) TPM4-ALK NA 12
t(1:2)(q22:p23) TPM3-ALK 12
t(2;17)(p23:q23) CLTC-ALK 13
t(2;2)(p23:q13) RANBP2-ALK 14

Rhabdoid tumour t(1;22)(p36:q11.2) SNFS/INI1 NA 15

Synovial sarcoma t(X:18)(p11.2;q11.2) SSX1/SYT 63% 16
SSX2/SYT 37% 16
SSX4/SYT rare 17

NA, not available.
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and young adult males. It presents with widespread intra-
abdominal serosal involvement not related to a particular organ
system.79 DSRCT is usually a disseminated tumour at diagnosis
and most patients die within 2 years despite aggressive
treatment. In children the 3 and 5 year survival is 44% and
15%, respectively.80

DSRCTs harbour a specific translocation t(11;22)(p13;q12)
which juxtaposes the 59 end of the EWS gene to the 39 WT1
(Wilms’ tumour) tumour suppressor gene, resulting in forma-
tion of EWS-WT1 fusion protein.81 As in the ESFT, the EWS-WT1
fusion gene includes up to exon 7 or more rarely exons 8–10 of
the EWS gene.82 83 The fusion includes exons 8–10 of the WT1
gene. EWS fusion products have been shown to be potent
transcriptional activators and can transform NIH3T3 cells. The
amino-terminal domain of EWS is required for both of these
activities. The EWS-WT1 chimeric protein probably functions as
an inappropriately expressed transactivator, whereas native
WT1 is primarily a repressor.

The downstream targets for EWS-WT1 include exocytosis
regulator BAIAP3, TALLA 1 (T-cell acute lymphoblastic leukae-
mia associated antigen), IL-2R, MLF1 and LRRC15. LRRC15
probably contributes to the invasive phenotype of DSRCT.84

EWS-WT1 induces expression of platelet derived growth factor
(PDGF) growth factor, which has weak transforming capacity
but is a potent mitogen and chemo-attractant for fibroblasts
and endothelial cells. PDGF contributes to the characteristic
reactive fibrosis associated with DSRCT.85 A phase I clinical trial
using the PDGF inhibitor SU 101 (leflunomide) has been
conducted with encouraging results.86

GIANT CELL FIBROBLASTOMA
Giant cell fibroblastoma (GCF) represents the juvenile form of
dermatofibrosarcoma protuberans (DFSP),87 88 occurring exclu-
sively in the first two decades.9 Although histologically different
these two diseases share a number of similarities: clinical
localisation and course, CD34 positivity, and most importantly,

genetic background. Genetic changes in both diseases result in
the COL1A1-PDGFB fusion protein. COL1A1 is located at 17q22
encoding a1 chain of type 1 collagen, while the PDGFB gene
located at 22q13 encodes the b chain of the PDGF ligand. The
mechanism of genetic alteration is different and appears to be
age related: in GCF this is mostly an unbalanced translocation
t(17;22), while in DFSP it appears as supernumerary ring
chromosome. In both disorders the fusion transcript is under
the control of the regulatory sequences of the COL1A1 gene,
which leads to continuous activation of PDGFR receptor
tyrosine kinase that promotes tumour growth. Imatinib
mesylate is a small molecule inhibitor of tyrosine kinases
including PDGFR, and the clinical response in adults has been
dramatic.89 However, there has not been a specific clinical trail
for imatinib in children with GCF.90 The use of other PDGFR
inhibitors, such as sunitinib and sorafenib, has recently
commenced in patients with metastatic DFSP.91

SYNOVIAL SARCOMA
Synovial sarcoma is the second most common soft tissue
sarcoma in children and adolescents. It arises in the para-
articular structures of the limbs, though it might occur in other
locations. This is a spindle cell tumour which presents as two
major histological subtypes, biphasic or monophasic, defined by
the presence or absence of areas of glandular epithelial
differentiation, respectively. Treatment is multimodal and 5
and 10 year survival rates are 60% and 50% respectively.92

The main molecular event is a reciprocal translocation
t(X:18)(p11;q11) present in more than 90% of synovial
sarcomas.93 The translocation results in fusion of the SYT gene
at 18q11 to either the SSX1 gene (Xp11.23) or the SSX2gene
(Xp11.21),94 or in very rare case to the SSX4 gene.95 Seventy-five
per cent of synovial sarcomas involve the SSX1 fusion type
which is associated with biphasic histology, while 12% of
tumours involve SSX2 fusions in association with monophasic
histology. Several studies have shown that the type of fusion

Table 2 Syndromes which predispose to paediatric sarcoma

Cancer syndrome Locus Gene Characteristic malignancy Sarcoma type Reference

Beckwith–Wiedemann
syndrome

11p15.5 Unknown Wilms’ tumour, hepatoblastoma,
adrenocortical carcinoma

Rhabdomyosarcoma 23

Bloom syndrome 15q26.1 RECQL3/BLM All common malignancies with
increased frequency

24

Costello syndrome 11p15.5 HRAS Rhabdomyosarcoma, neuroblastoma,
transitional cell carcinoma

21

Li–Fraumeni syndrome 17p13.1 TP53 Breast carcinoma, CNS tumours Rhabdomyosarcoma 25, 26
Osteosarcoma

Hereditary retinoblastoma 13q14 RB1 Retinoblastoma Osteosarcoma 27
Rhabdomyosarcoma

Neurofibromatosis type 1 17q11.1 NF1 Glioma, neurofibroma Rhabdomyosarcoma 28
Malignant peripheral nerve
sheet tumour

Noonan syndrome 12q14.13 PTPN11 Juvenile myelomonocytic leukaemia,
neuroblastoma

Rhabdomyosarcoma 29

Gorlin syndrome 9q22 PTCH Basal cell carcinoma, medulloblastoma Rhabdomyosarcoma 30

Rapadilino and Rothmud–
Thomson syndrome

8q24.3 RECQL4 Osteosarcoma 20

Werner syndrome 8p11.2 RECQL2/WERN Osteosarcoma 20

Mosaic variegated aneuploidy 15q15 BUB1B Wilms’ tumour, leukaemia Rhabdomyosarcoma 31, 32
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has prognostic implications.16 96 97 SYT-SSX1 is associated with
higher proliferation rate and has shorter progression-free
survival.96 SYT-SSX status has been demonstrated as the single
most significant prognostic factor for overall survival in patients
with localised disease at diagnosis in a multi-institutional study
of 243 patients.16 In patients with metastatic disease, the
tumour spread seems to outweigh any influence of the fusion
protein.98 However, a European study of 141 patients chal-
lenged these findings.99

Identification of the fusion gene is a useful tool in difficult
diagnostic cases, and may be valid for stratification. Blocking
the fusion gene with antisense oligonucleotides results in
decreased expression of the DNA repair gene XRCCR4 and cyclin
D1.100 The fusion protein may serve as target for tumour specific
cytotoxic lymphocytes T,101 which a phase I pilot trial has
confirmed.102 Alterations affecting cell cycle regulators involved
in the G1 checkpoint are also frequent events in synovial
sarcomas and could be associated with poor outcome.103 Bcl-2
is overexpressed in 79–94% of biphasic SS and likely to be
related to protecting cells from apoptosis, which could
contribute to their resistance to conventional chemotherapy.104

Overexpression of epidermal growth factor receptor (EGFR) is
found in 55.3% of tumours by immunohistochemistry105; a
phase II trial of the EGFR inhibitors in patients with both
localised and metastatic synovial sarcomas that overexpress
EGFR has commenced in Europe.106 Quantitative RT-PCR
analysis of ErbB2 has shown that it is expressed in 73.3% of
patients with synovial sarcoma.105 cDNA microarray analysis
indicates that, in contrast to other soft tissue sarcomas, ErbB2
expression is found in synovial sarcoma.107 A phase II clinical
trial of trastuzumab, which targets ErbB2, in recurrent or
metastatic synovial sarcoma is underway in adult patients.108

CONCLUSIONS
In childhood sarcomas specific fusion genes have provided a
sensitive and accurate approach to assist with diagnosis,
treatment stratification and in some cases prognostication.
However, inconsistencies have emerged from different studies
supporting prognostic factors.16 38–40 64 65 68 99 Possible reasons for
these discrepancies include different study designs and treatment
protocols, confounding variables associated with retrospective
analyses and use of diverse molecular methods. In order to resolve
these issues, prognostic factors should be validated using uniform
and multiple methods in both retrospective investigations and

prospective multinational multicentre studies.109 The Euro Ewing’s
99 Clinical Trial (in accrual at the moment) plans to prospectively
study the prognostic significance of EWS-FLI1 transcripts as well
as the value of detecting minimal residual disease.110

The advent of the human genome map and techniques to
interrogate abnormalities in multiple genes has seen the
identification of genes and pathways associated with the
development sarcomas, both with and without fusion genes.
Patterns of gene expression provide a new approach to
classifying tumours and predicting clinical behaviour. In
addition, understanding of the underlying molecular biology
in paediatric sarcomas is leading to the identification of targets
for novel therapeutic approaches. Targeted agents have already
been used in some sarcoma patients, enabling treatment with
improved efficacy and reduced toxicity and long-term side
effects, which is of utmost importance in this young group of
cancer patients.
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Take-home messages
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fusion products are of particular diagnostic and prog-
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therapeutic approaches.
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