Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Jan;171(1):30–36. doi: 10.1128/jb.171.1.30-36.1989

Purification and characterization of a dimeric phenylalanine dehydrogenase from Rhodococcus maris K-18.

H Misono 1, J Yonezawa 1, S Nagata 1, S Nagasaki 1
PMCID: PMC209549  PMID: 2536657

Abstract

NAD+-dependent phenylalanine dehydrogenase (EC 1.4.1.) was purified to homogeneity from a crude extract of Rhodococcus maris K-18 isolated from soil. The enzyme had a molecular mass of about 70,000 daltons and consisted of two identical subunits. The enzyme catalyzed the oxidative deamination of L-phenylalanine and several other L-amino acids and the reductive amination of phenylpyruvate and p-hydroxyphenylpyruvate. The enzyme required NAD+ as a natural coenzyme. The NAD+ analog 3-acetylpyridine-NAD+ showed much greater coenzyme activity than did NAD+. D-Phenylalanine, D-tyrosine, and phenylethylamine inhibited the oxidative deamination of L-phenylalanine. The enzyme reaction was inhibited by p-chloromercuribenzoate and HgCl2. Initial-velocity and product inhibition studies showed that the reductive amination proceeded through a sequential ordered ternary-binary mechanism. NADH bound first to the enzyme, followed by phenylpyruvate and then ammonia, and the products were released in the order L-phenylalanine and NAD+. The Michaelis constants were as follows: L-phenylalanine, 3.8 mM; NAD+, 0.25 mM; NADH, 43 microM; phenylpyruvate, 0.50 mM; and ammonia, 70 mM.

Full text

PDF
35

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano Y., Nakazawa A., Endo K., Hibino Y., Ohmori M., Numao N., Kondo K. Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur J Biochem. 1987 Oct 1;168(1):153–159. doi: 10.1111/j.1432-1033.1987.tb13399.x. [DOI] [PubMed] [Google Scholar]
  2. Asano Y., Nakazawa A., Endo K. Novel phenylalanine dehydrogenases from Sporosarcina ureae and Bacillus sphaericus. Purification and characterization. J Biol Chem. 1987 Jul 25;262(21):10346–10354. [PubMed] [Google Scholar]
  3. Baker J. J., van der Drift C. Purification and properties of L-erythro-3,5-diaminohexanoate dehydrogenase from Clostridium sticklandii. Biochemistry. 1974 Jan 15;13(2):292–299. doi: 10.1021/bi00699a010. [DOI] [PubMed] [Google Scholar]
  4. Barton J. S., Fisher J. R. Nonlinear kinetics of glutamate dehydrogenase. Studies with substrates--glutamate and nicotinamide-adenine dinucleotide. Biochemistry. 1971 Feb 16;10(4):577–585. doi: 10.1021/bi00780a006. [DOI] [PubMed] [Google Scholar]
  5. CIOTTI M. M., KAPLAN N. O., STOLZENBACH F. E. Reaction of pyridine nucleotide analogues with dehydrogenases. J Biol Chem. 1956 Aug;221(2):833–844. [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Engel P. C., Dalziel K. Kinetic studies of glutamate dehydrogenase. The reductive amination of 2-oxoglutarate. Biochem J. 1970 Jul;118(3):409–419. doi: 10.1042/bj1180409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HJERTEN S., LEVIN O., TISELIUS A. Protein chromatography on calcium phosphate columns. Arch Biochem Biophys. 1956 Nov;65(1):132–155. doi: 10.1016/0003-9861(56)90183-7. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. LéJohn H. B., Jackson S. G., Klassen G. R., Sawula R. V. Regulation of mitochondrial glutamic dehydrogenase by divalent metals, nucleotides, and alpha-ketoglutarate. Correlations between the molecular and kinetic mechanisms, and the physiological implications. J Biol Chem. 1969 Oct 10;244(19):5346–5356. [PubMed] [Google Scholar]
  11. Misono H., Soda K. Properties of meso-alpha,epsilon-diaminopimelate D-dehydrogenase from Bacillus sphaericus. J Biol Chem. 1980 Nov 25;255(22):10599–10605. [PubMed] [Google Scholar]
  12. Ohashima T., Soda K. Purification and properties of alanine dehydrogenase from Bacillus sphaericus. Eur J Biochem. 1979 Oct;100(1):29–30. doi: 10.1111/j.1432-1033.1979.tb02030.x. [DOI] [PubMed] [Google Scholar]
  13. Ohshima T., Misono H., Soda K. Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. J Biol Chem. 1978 Aug 25;253(16):5719–5725. [PubMed] [Google Scholar]
  14. Olomucki A., Thomé-Beau F. Study of coenzyme binding site of octopine dehydrogenase using analogues of NAD+. Eur J Biochem. 1975 Aug 1;56(1):109–116. doi: 10.1111/j.1432-1033.1975.tb02212.x. [DOI] [PubMed] [Google Scholar]
  15. SIEGEL J. M., MONTGOMERY G. A., BOCK R. M. Ultraviolet absorption spectra of DPN and analogs of DPN. Arch Biochem Biophys. 1959 Jun;82(2):288–299. doi: 10.1016/0003-9861(59)90124-9. [DOI] [PubMed] [Google Scholar]
  16. Somack R., Costilow R. N. 2,4-diaminopentanoic acid C 4 dehydrogenase. Purification and properties of the protein. J Biol Chem. 1973 Jan 25;248(2):385–388. [PubMed] [Google Scholar]
  17. Stevenson R. M., LéJohn H. B. Glutamic dehydrogenases of Oomycetes. Kinetic mechanism and possible vvolutionary history. J Biol Chem. 1971 Apr 10;246(7):2127–2135. [PubMed] [Google Scholar]
  18. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES