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ABSTRACT

Ethidium bromide (EtBr) is the conventional inter-
calator for visualizing DNA. Previous studies
suggested that EtBr lengthens and unwinds
double-stranded DNA (dsDNA). However, no one
has observed the unwinding of a single dsDNA
molecule during intercalation. We developed a
simple method to observe the twisting motions of
a single dsDNA molecule under an optical micro-
scope. A short dsDNA was attached to a glass
surface of a flow chamber at one end and to a
doublet bead as a rotation marker at the other end.
After the addition and removal of EtBr, the bead
revolved in opposite directions that corresponded
to the unwinding and rewinding of a dsDNA,
respectively. The amount of intercalating EtBr was
estimated from the revolutions of the bead. EtBr
occupied 57% of base pairs on a single dsDNA at
1mM of EtBr, indicating that EtBr molecules could
bind at contiguous sites to each other. The isotherm
of intercalation showed that negative cooperativity
existed between adjoining EtBr molecules.
The association constant of EtBr and dsDNA
(1.9 (+£0.1) x 10°M~") was consistent with that of
previous results. Our system is useful to investigate
the twisting of a single dsDNA interacting with
various chemicals and biomolecules.

INTRODUCTION

Nucleic acid intercalators, such as ethidium bromide
(EtBr), bind specifically to double-stranded DNA
(dsDNA). Intercalators have been used as anticancer
drugs since they inhibit transcription and replication of
the DNA to which they bind (1). They have also been used
as DNA staining dyes because they fluoresce upon binding

to DNA (2). Sequence-specific intercalators have been
developed for the detection of a specific sequence or the
site-specific inhibition of transcription or replication (3).

EtBr binds between adjacent base pairs of dsDNA; the
binding mode is termed intercalation. The distance
between base pairs flanking an EtBr molecule increases
0.34nm, and the angle between them decreases 26°. Then
EtBr intercalation elongates and unwinds dsDNA. This
structural information was derived from the mobility in
solution (4) or the crystal structure (5) of the EtBr/dsDNA
complex. Coury et al. measured the contour length
change of a single dsSDNA during EtBr intercalation (6).
The isotherm of intercalation was obtained using
the absorbance, fluorescence or buoyant densities of the
EtBr/dsDNA complex in bulk (4,7). Previous studies on
EtBr intercalation explained its isotherm by the nearest
neighbor exclusion model assuming that EtBr molecules
cannot bind to next binding sites and that no cooperativity
exists between EtBr molecules on the same DNA
molecule (8).

The effects of external forces on EtBr intercalation were
investigated using several methods. In order to reveal the
torque effect, the conformations of closed circular DNA
before and after EtBr intercalation were observed using
electrophoresis (9) or an electron microscope (10).
Recently, optical and magnetic tweezers were used for
single DNA manipulation and measurement (11-18).
Vladescu et al. investigated the amount of intercalating
EtBr from the changes in length of a stretched DNA
molecule using optical tweezers. They demonstrated that
under high tension (>10 pN) EtBr can bind to dsDNA
more than expected value (50%) from the nearest
neighbor exclusion model (14). Strick et al. used magnetic
tweezers to measure the twist change of a single dSDNA
molecule (15,16). A single dSDNA was attached to a glass
surface of a flow chamber at one end and to a magnetic
bead at the other end. The DNA could be stretched and
twisted using magnetic tweezers. Rotations of the bead
resulted in the coiling of DNA upon itself. The length of
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the DNA shortened as it coiled. The relative twist of the
DNA was estimated from the height change of the bead.
The tension and torque of the DNA had to be kept during
measurement. We also used magnetic tweezers to observe
the revolutions of a single DNA molecule during
transcription (17) and recombination (18). However, in
order to reveal the tension and torque effects on EtBr
intercalation, we need to measure the amount of
intercalating EtBr under various tensions and torques,
including a no-tension and a no-torque condition.

In this report, we developed a simple method to
measure the number of twists in a single DNA molecule
under no external force. We estimated the amount of
intercalating EtBr on the DNA from its twists. Then the
isotherm of intercalation was obtained at a single DNA
level. We discussed whether the nearest neighbor exclusion
model holds true for a single DNA as well as for
bulk DNA.

MATERIALS AND METHODS
Materials

Streptavidin-coated beads (500nm in diameter) were
constructed as described before (17). The streptavidin-
coated beads randomly formed doublets and larger
aggregates. About 10% of aggregates were doublet
beads. Coverslips (24 x 24 mm, 18 x 18 mm, Matsunami,
Japan) were dipped into 0.5% (w/v) collodion (Nacalai
Tesque, Japan) in isoamyl acetate and dried in air.
N,N-dimethylcasein (Sigma, USA) diluted in Milli-Q
water (10 mg/ml) was autoclaved at 121°C for 20 min
and centrifuged at 15000 x g for 10min at 4°C. The
supernatant was filtered through a 0.2um pore size
polyvinylidene difluoride (PVDF) filter (Whatman,
USA), stored at —20°C, and used within 6 months. The
concentration of EtBr (E-8751, Sigma, USA) stock
solution was determined by the absorbance at 480 nm,
using an absorbance coefficient ¢ = 5800 M~ 'em ™.

DNA preparation

DNA was amplified by PCR using a pair of primers, a
digoxigenin-labeled primer and a biotin-labeled primer.
The three digoxigenin and three biotin labels on the
amplified DNA were used for connecting the DNA to a
glass surface and a doublet bead, respectively. These
multiple labels at both ends prevented the DNA from
rotating freely. The PCR template was constructed by
inserting the following sequence, which had eight repeats
of 50bp sequence each, between Kpnl and Sacl sites of
pBluescriptIISK(-);

CCTAAAGTATCCTCCTAAAGITICACCTCCTAAC
GTCCATCCGGATCCC(TCGAGTAATACGACTCAC
TATAGGGAGACCACAACGGTTTAAATCTAGCG)g
TCGACGAATTCTAACCGAACTAAATCAGGCAIC
TTGAGCATCAAGATTGGTGG.

The 5 underlined region was the sequence of the
digoxigenin-labeled primer; three digoxigenins were con-
jugated to two nucleotides (in bold) and the 5 end of the
primer. The 3’ underlined part was the complementary
sequence of the biotin-labeled primer; three biotins were
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conjugated to two nucleotides (in bold) and the 5 end of
the primer. The total length of the sequence was 499 bp.
The length between the digoxigenin- and biotin-labeled
nucleotide in boxes was 458bp. The template was
amplified by ExTaq PCR system (Takara, Japan). The
PCR product was purified using 8% polyacrylamide gel
electrophoresis.

Construction of DNA-tethered beads

The DNA was attached to a glass surface of a flow
chamber and a doublet bead as follows: a flow chamber
was made of two collodion-coated coverslips separated by
50 um thick spacers. The volume of the chamber was
~5ul. At first, anti-digoxigenin antibody (20 pg/ml) in
H buffer (100mM HEPES-KOH, pH 7.8/100mM
KCl/ImM EDTA) was infused into the chamber and
incubated for 5 min. Unbound antibodies were washed out
with blocking buffer (0.1 mg/ml N,N-dimethylcasein in H
buffer). After Smin incubation, 10 pM of the DNA in
blocking buffer was infused into the chamber. The DNA
molecules attached to the antibodies on the glass surface
at their digoxigenin-labeled ends during 5 min incubation.
The chamber was flushed with blocking buffer. Here,
0.1% (w/v) of streptavidin-coated beads were infused into
the chamber. Beads attached to the biotin-labeled ends of
the DNA molecules on the glass surface during 5min
incubation. Unbound beads were washed out with
blocking buffer. In order to simplify the calculation of
the surface density of DNA molecules, the top and bottom
coverslip were coated using the same procedure. Because
the observation chamber was deeper than the objective
focus, the beads that tethered to the top coverslip were
invisible during the observation of the beads attached
at to the bottom coverslip. The surface density of
DNA was ~0.15molecules/um® when all the DNA
molecules attached randomly to the glass surface.
Almost all (>97%) tethered-doublet beads were connected
with a single DNA following a Poisson distribution.
The DNA-tethered beads rotated randomly. About 80%
of the tethered beads rotated within two turns while the
other tethered beads rotated without any restriction. The
rest of the beads were assumed to be tethered with a
nicked DNA. Therefore, we observed the tethered-doublet
beads that displayed rotational fluctuations within two
turns on a focal plane.

Measurement of the rotating angle of a tethered bead

A DNA-tethered doublet bead was observed on an
inverted microscope (IX70, Olympus, Tokyo, Japan)
with a 60x oil immersion objective. The bright field
image of the bead was projected on a CCD camera
(XC-ST50, Sony, Tokyo, Japan) and recorded on
videotape. The shutter speed of the camera was 1/250s.
Buffers in the chamber were changed with 10 pl of EtBr in
blocking buffer within 10s. The chamber was flushed out
with 20l of blocking buffer within 20s. DNA-tethered
beads were observed in the flow chamber at 26 +2°C.
We analyzed each field of the video images and got
rotating angles of the beads every 1/60s. An image-
processing program Image] (http://rsb.info.nih.gov/ij/)
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was used for the following analysis. The rotating angle of
the bead was determined by its major axis. The bright field
image of the bead was transformed to a binary image,
which was fitted to an ellipsoid. We regarded the major
axis of the ellipsoid as being that of the bead. This
measurement algorithm was very robust against the
translational-Brownian motions of the beads and drifts
and vibrations of the sample stage.

Spectral analysis of thermal fluctuations

A power density spectrum (PDS) of the rotational
fluctuations of a tethered-doublet bead is expressed
as a Lorentzian curve, &(f) = 4&kgT/K*/[1 + (f]f.)7),
fo = k/2n&, where f is the frequency; & is the friction
coefficient of a DNA-tethered doublet bead against
solution; kg7 is the thermal energy; k is the torsional
spring constant of the DNA; . is the corner frequency of
the curve (19). & is given by (7/2)nAnD>, where g = 1.82 is
the factor of a surface effect (20) on the doublet bead
whose center is at a distance of (D/2) + L = 405nm from
the chamber surface; L = 155nm (= 0.34nm x 458 bp),
the length of DNA between the digoxigenin tags and the
biotin tags; n = 8.8 x 107*Pa-s is the bulk viscosity of
water at 26°C; D = 500nm is the diameter of the bead.
Therefore, & = 2.2pN-nm-s. k = 1.4 pN-nm is given by
«/L, where x = 220 pN-nm? is the torsional rigidity of the
DNA (21); kgT = 4.1 pN-nm is the thermal energy at
26°C. Thus f. = 0.1 Hz, and the relaxation time of the
fluctuations v = 1/2nf. = 1.8s. The SD of the rotational
fluctuations is obtained by (0*)!/? = (kgT/k)'* = 1.71
radian = 97°. The experimental value of (9?)!/? was calcu-
lated from the time course of the rotational fluctuations.
We obtained a PDS of the rotational fluctuations using a
fast Fourier transform (FFT) algorithm on a numerical-
calculation software package, Octave (http://www.gnu.
org/software/octave/). We fitted the PDS to a Lorentzian
curve and obtained the experimental value of f..

Analysis of the isotherm of EtBr intercalation

To analyze the EtBr-DNA binding isotherm, we used the
neighbor exclusion model of McGhee and von Hippel
incorporating the cooperative binding of DNA intercala-
tors (8). The equations in the model can be rearranged as
follows:

o Qw— 1)1 —nr)+r+q]""
G =g - nr)[ 2a(1 — nr) ]
2(1 —nr) 2
[ v
q :\/[1 — (n+ DrPP+4owr(1 — nr) 2)

where Cr is the free EtBr concentration; r is the ratio of
bound EtBr to total concentration of DNA in base pairs;
K is the association constant for the intercalation of an
EtBr molecule with an isolated site; n is the number of
base pairs occupied by a bound EtBr molecule; w is the
cooperativity parameter, which may be greater than 1
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(positive cooperativity), equal to 1 (non-cooperativity) or
less than 1 (negative cooperativity).

Under our experimental conditions, Cy was approxi-
mated with the total concentration of EtBr in the chamber
since the concentration of DNA, ~5nM in base pair, was
much smaller than Cy, from 1 to 1000 uM. The ratio r was
expressed as r = Ny/N, where N, was the number of
intercalating EtBr molecules on a DNA molecule; N was
the length of the DNA, 458bp. N, was expressed as
Ny = R/¢, where R was the number of revolutions of a
tethered bead and ¢ was a unit angle of unwinding per
EtBr molecule, 26° (4,5). This was because N, was in
proportion to the twists of the DNA, which equaled R.

To fit the theoretical model to the experimental data, we
used an inverse function method. In previous studies
about intercalators, the isotherm was fitted to the model
on a Scatchard plot. However, complicated algorithms
had to be applied to estimate experimental errors (23). A
simple method was used for estimating the measurement
errors of r. Equations (1) and (2) give us Cr as an explicit
function of r. We calculated the inverse function r(Cy) by a
numerical solution using the golden section search
algorithm (24) for minimization of (Cir)— Cp>. HCy)
was fitted to a set of data using the non-linear least
squares method (24). The weight given to each data point
was the standard deviation of r. We analyzed data by
using numerical computing software, Octave.

RESULTS
Random twisting of a single DNA molecule

In order to observe twisting motions of a single DNA
molecule, we constructed a simple experimental setup as
shown in Figure 1. A dsDNA was attached to a glass
surface of a flow chamber at one end and to a doublet
bead at the other end. The rotation of the bead reflected
the twisting motions of the DNA. Each end of the DNA
had three tags of biotin or digoxigenin, preventing the
bead from free rotations. We did not use optical or
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Figure 1. Observation system (not to scale). A single dsDNA was
attached to a glass surface at one end and to a doublet bead, which
served as a marker of rotation, at the other end. Each end of the DNA
had three tags of biotin or digoxigenin, preventing the DNA from free
rotations. Since the images of beads on a CCD agreed with the top
view, unwinding or rewinding the right-handed helical structure of a
double-stranded DNA causes clockwise or counterclockwise revolution
of the bead image, respectively.
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magnetic tweezers to pull up the bead or to stretch
the DNA.

The rotations of a DNA-tethered bead reflected
accurately the twists of the DNA. Since the DNA was
shorter than the diameter of the bead, the bead moved
randomly on a focal plane. Translational fluctuations
on the focal plane were smaller than the radius of the
bead. The translational fluctuations had a small effect
on the measurement of the rotational angle since we
measured directly the axis of the doublet bead.
About 80% of tethered beads rotated randomly within
about two turns (Figure 2A) while the other tethered
beads rotated without any restriction. The amplitude of
the fluctuations of the former beads had a constant
variance at all times during observation. The SD of the
fluctuations (6%)'/? was 104°, which was as much as its
expected value, 97°.

A PDS of the rotational fluctuations is shown in
Figure 2B. It followed a Lorentzian curve, which is a
characteristic of restricted Brownian motion. Its corner
frequency f. was 0.1 Hz. The relaxation time of the
fluctuations = (=1/2xf.) was 1.6sec, which was as much
as its expected value, 1.8s.

PaGgedor7

Reversible revolutions of a DNA-tethered bead caused
by the addition and removal of EtBr

We tried to determine whether dsDNA twisted clockwise
or counterclockwise during intercalation. DNA-tethered
beads were observed from the top as described in Figure 1.
We exchanged the solution in a flow chamber for one
containing FEtBr. During the exchange of solutions,
tethered beads pointed downstream since they were
pushed aside by the streaming of the solution.
Immediately after the streaming stopped, the bead started
to revolve clockwise (Figure 3A, Movie S3 in
Supplementary Data). The revolving bead slowed down
and fluctuated around a certain orientation within about
two turns. On the other hand, after the removal of EtBr,
the bead revolved counterclockwise and fluctuated around
the original orientation (Figure 3B, Movie S3 in
Supplementary Data). The changes in the direction of
the bead’s revolution were reversible and could be
repeated more than three times (Figure 3C). The clockwise
and counterclockwise revolutions of the bead corre-
sponded to the unwinding and rewinding, respectively,
of right-handed helices.
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Figure 2. Rotational fluctuation of a DNA-tethered doublet bead. (A) Rotational angle of a doublet bead that was attached to a 458 bp DNA. Data
points were taken for every field (60 Hz). (B) PDS of the rotational fluctuation that is shown in A. The broken line shows a Lorentzian curve with

corner frequency, f., of 0.1 Hz.
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Figure 3. Reversible revolutions of a DNA-tethered bead caused by EtBr. (A and B) Snapshots of rotating beads for 2s at 200 ms intervals after the
addition (A; from 856" in C) or the removal (B; from 10'10” in C) of 1uM EtBr. Arrows indicate the directions of the bead. Asterisks indicate
completion of a turn. (C) Time course of bead rotation during the repeated change of EtBr concentration, 0 (—) and 1 uM (+). See also Movie S3 in

Supplementary Data.
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Figure 4. Time course of bead revolutions in step-wise increments of
EtBr concentration. EtBr concentration was changed by the replace-
ment of solutions within 10s at indicated points. EtBr-DNA binding
ratio, r = 360° x R/26°/458 bp.

Number of twists of a dsSDNA molecule at various EtBr
concentrations

DNA-tethered beads revolved a certain number of turns at
various concentrations of EtBr. Figure 4 shows the time
course of the revolutions, R, in a stepwise increase of EtBr
concentration. Immediately after the increase of EtBr
concentration, R increased and reached a certain value
within several seconds. At concentrations of EtBr lower
than 10 uM, R reached a maximal value within several
seconds and then decreased slowly. The glass surface of
the flow chamber became weakly fluorescent as caused by
EtBr after washing it out. The fluorescence intensity
became saturated with concentrations of EtBr higher than
10 uM (data not shown) at which point the decrease was
probably a result of the adsorption of EtBr to the glass
surface. The half-life of the decrease was ~300s and was
much slower than that of the initial increase, which
was ~3s. Then, to minimize the adsorption effect, we used
R in 155 after the solution exchange. R was reproducible
with SDs as large as the rotational fluctuations of the
DNA-tethered beads, about two turns. When using longer
DNA, tethered beads revolved more (Figure SI in
Supplementary Data). The bead revolutions R and the
length of dsDNA L were directly proportional.

Isotherm of EtBr intercalation at a single DNA level

Next, we evaluated the kinetic parameters of EtBr
intercalation at a single DNA level. We calculated the
number of intercalating EtBr molecules to dsDNA
assuming that the tethered bead rotated clockwise
¢ = 26° when one molecule of EtBr intercalated (4,5).
Then r, the ratio of the intercalating EtBr to base pairs,
was calculated as r = 360R/¢/N, where N was the length
of the DNA. The dependence of r on EtBr concentration
Cyis shown in Figure 5A and B. The Scatchard plot of the
isotherm (Figure 5B) was a downward concave, which was
the characteristic shape of the isotherm of intercalation in
bulk experiments (4,8,22). EtBr bound to DNA at the
ratio r of more than 0.5 when added at a high
concentration; r = 0.57at 1 mM EtBr. The isotherm was
fitted to the neighbor exclusion model of McGhee and von
Hippel incorporating the cooperative binding of DNA
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Figure 5. Direct plot (A) and Scatchard plot (B) of the data derived
from the time course of bead revolutions such as that shown in
Figure 4. Each data point is the average of four data with SDs.
Theoretical curves were the best fits to the data. The fitting parameters
were n=1.60+0.03, K= 1.9 (£0.1) x 10° (M™"), ® = 0.38 £0.07 (with
cooperativity; the solid lines); n=1840.1, K=12 (+0.4)x 10’
(M1, w =1 (without cooperativity; the broken lines).

intercalators, as described in the Materials and Methods
section (22). Assuming no-cooperativity (w = 1), the
model did not fit the data (Figure 5, broken lines).
When using a cooperative model (w#1), however,
the data agreed with the model (Figure 5, solid lines).
The fitting parameters of the cooperative model
were n=1.60%0.03, K=19(£0.1)x 10°M™ ",
w=0.38£0.07. The parameter n indicated that EtBr
could bind to up to 67% (=1/n) of base pairs. The
association constant agreed with that in the bulk
measurement at 100mM KCI (25). r increased as the
concentration of KCI decreased at a fixed concentration of
EtBr (Figure S2 in Supplementary Data). Negative
cooperativity (w<1) existed between bound EtBr mole-
cules on the same DNA.

DISCUSSION

We developed a simple method to measure the twists of a
single DNA molecule using an optical microscope
(Figures 1 and 2). This system enabled us to observe
that EtBr unwinds the double helical structure of dsSDNA
at a single molecule level (Figure 3). The amount of
intercalating EtBr into each DNA molecule was calculated
from the twists of the DNA. The isotherm of intercalation
was obtained from a single DNA molecule (Figures 4
and 95).

A DNA-tethered bead reflected accurately the twisting
motions of the DNA molecule. The dsDNA was attached
to a glass surface of a flow chamber at one end with three
digoxigenin tags and to a doublet bead at the other end
with three biotin tags. The multiple tags prevented the
DNA from rotating freely. About 80% of tethered beads
rotated randomly within about two turns. The amplitude
of the rotational fluctuations of the beads coincided with
the expected amplitude of the DNA’s twisting motions
that was caused by the thermal energy. This coincidence
indicated that the twists of the DNA molecule were
transmitted accurately to the motions of the bead. The
twists of the DNA molecule can be measured by the
revolutions of the tethered bead without stretching or
coiling it. This was made possible by the short DNA
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(155nm) and the large doublet bead (500 nm in diameter).
Since the DNA was three times as long as its bending-
persistence length, 50 nm (21), the DNA transmitted its
twists to the bead like a universal joint. The large doublet
bead, whose diameter was larger than the length of the
DNA, kept the DNA on a vertical axis. The twisting angle
of the DNA molecule during EtBr intercalation had an
error as large as the rotational fluctuations of the bead.
The error was small enough to evaluate the isotherm of
EtBr intercalation as described later. The response time of
the bead to the twist of the DNA was as much as the
relaxation time of the bead’s rotation, T = 1.6s. Although
this was much slower than the dissociation of EtBr from
dsDNA, which was ~30ms (26), it was sufficient for the
investigation about the equilibrium state of EtBr
intercalation.

Using the tethered bead method, we succeeded in
observing the unwinding of each DNA molecule caused
by EtBr intercalation. Previous studies using electrophor-
esis (9) and electron microscopy (10) showed that the
compactness of closed circular dsDNA changes with the
concentration of EtBr. The change in compactness can be
explained by the unwinding of the DNA. The crystal
structure of the EtBr/dsDNA complex indicated the
direction and dimension of the unwinding (5). In this
article, we observed the unwinding and rewinding during
EtBr intercalation. When EtBr molecules bound to a
dsDNA molecule, it twisted in a counterclockwise
direction, which coincided with the unwinding of the
right-handed DNA helix. On the other hand, the
dissociation of EtBr from dsDNA resulted in clockwise
twists of the DNA. Our observations were consistent with
the model of intercalation that was derived from previous
studies using bulk DNA (4,5).

The tethered-bead method enabled us to estimate the
amount of intercalating EtBr molecules at a single DNA
level. Previous studies measured indirectly the amount of
EtBr bound to bulk DNA using fluorescence or buoyant
densities of the EtBr/dsDNA complex. Since our method
measured the structural change of a single DNA molecule,
we could only count intercalating EtBr molecules. The
linear relationship between the bead revolutions R and the
length of dsDNA L indicated that R reflected the number
of intercalating EtBr molecules.

We calculated n, K and o from the titration data
of EtBr intercalation using the McGhee and von
Hippel model (22). We obtained the association constant
K=19(£0.1)x 10°M~" which had a coefficient of
variation (CV) of 5%. In a previous report using the
absorbance titration of bulk EtBr/dsDNA (27),
K =6.52(£0.63) x 10*M~" (including 10% CV); in a
report measuring the contour length change of a
single dsDNA  during EtBr intercalation (06),
K =3.6(£0.5)x 10*M™" (including 14% CV). Hence,
the K obtained in our method was as accurate as that
of previous methods. The variation of K among these
reports might be due to the composition of solutions.
For example, the amount of intercalating EtBr was
sensitive to the salt concentration (Figure S2 in
Supplementary Data).

PAGE6GOF 7

In the nearest neighbor exclusion model (8), EtBr can
bind to every other base pair (n = 2), and there is no
cooperativity between EtBr molecules on the same
dsDNA (w = 1). We showed that EtBr molecules could
bind to neighboring sites (n<2) with negative coopera-
tivity (w<1), in violation of the previous model. The
negative cooperativity indicated the instability of neigh-
boring EtBr molecules on dsDNA. The instability is
explained by the fine conformational imbalance of two
DNA backbones (8). Vladescu ez al. (14) showed that EtBr
could bind to every base pair (z = 1) under high tension
(>10 pN) with a large association constant (K = 10’ M™").
They explained that the strong tension, which imposed the
backbone conformation of dsDNA, released the require-
ment for site exclusion and promoted further EtBr
intercalation. The determination of n, K and w in a wide
range of dsDNA tension and EtBr concentration will
reveal much about the site exclusion mechanism of EtBr
intercalation.

In this report, we determined the kinetic parameters of
EtBr intercalation under no external force. In order to
reveal the torque and tension effects on EtBr intercalation,
we have to evaluate the parameters about stretched or
twisted dsDNA molecules using optical or magnetic
tweezers. Our system can be applied to other chemicals
and biomolecules which have DNA-twisting activity.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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