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Abstract
Using an example of physical interactions between proteins, we study how a perturbation propagates
in the equilibrium of a network of reversible reactions governed by the law of mass action. We
introduce a matrix formalism to describe the linear response of all equilibrium concentrations to
shifts in total abundances of individual reactants, and reveal its heuristic analogy to the flow of electric
current in a network of resistors. Our main conclusion is that, on average, the induced changes in
equilibrium concentrations decay exponentially as a function of network distance from the source of
perturbation. We analyze how this decay is influenced by such factors as the topology of a network,
binding strength, and correlations between concentrations of neighboring nodes. We find that the
minimal branching of the network, small values of dissociation constants, and low equilibrium free
(unbound) concentrations of reacting substances all decrease the decay constant and thus increase
the range of propagation. Exact analytic expressions for the decay constant are obtained for the case
of equally strong interactions and uniform as well as oscillating concentrations on the Bethe lattice.
Our general findings are illustrated using a real network of protein–protein interactions in baker’s
yeast with experimentally determined protein concentrations.

1. Introduction
Equilibria in a broad class of microscopically reversible processes where the direct and reverse
reaction rates are proportional to the product of concentrations of reactants are described by
the law of mass action (LMA). It has been rigorously proven that such processes have a unique
equilibrium state which is completely defined by the set of initial concentrations and reaction
constants [1]. Well-known examples include equilibria in chemically or physically reacting
systems such as e.g. a pair of molecules reversibly binding each other. Large sets of interacting
substances are often represented by networks, with nodes and links corresponding to reactants
and their propensity for pairwise interactions correspondingly. One of the best-studied
examples of such networks is that formed by all protein–protein physical interactions (pairwise
bindings) in a given organism. In this case, the LMA determines the equilibrium free (unbound)
concentrations of individual proteins as well as those of complexes formed by two or more
proteins bound to each other given the set of dissociation constants of all pairwise protein–
protein interactions and abundances (total concentrations) of all participating proteins. The
protein abundances are subject to both stochastic fluctuations in the course of their production
and degradation as well as to systematic changes in response to external and internal stimuli.
This results in dynamical fluctuations in the LMA equilibrium state of the network.

A surprising feature observed in virtually all recent large-scale studies of these networks in a
wide-ranging variety of biological organisms is their globally connected topology. Indeed,
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most pairs of protein nodes are linked to each other by relatively short chains of interactions.
A change in the total abundance of a protein modifies free and bound concentrations of its
immediate neighbors, which in their turn influence their neighbors, etc. Thus a fluctuation
localized on just one reactant to some degree affects equilibrium concentrations of all nodes
in the same weakly-connected topological component of the network. In biology such
propagation of fluctuations far away from their source presents a great threat of undesirable
cross-talk between different functional processes, simultaneously taking place in an organism.
Thus it is important to understand whether and how this propagation gets attenuated and under
what conditions it is minimized. On the other side, it has been shown that sometimes changes
in equilibrium concentrations propagating beyond immediate neighbors of the perturbed
protein are used for meaningful biological regulation or signaling. An example is a sensitive
balance of interactions between sigma-factors, anti-sigma factors, and anti-anti-sigma-factors
in bacteria [2]. In this case, a relevant question is under what conditions the propagation of the
signal in a desirable direction is least attenuated while its indiscriminate spread is minimized.

In this work, we numerically and analytically study how localized perturbations such as
changes of concentrations of individual reactants affect the binding equilibrium at all nodes of
a reaction network. Our main conclusion is that under a broad range of conditions such
perturbations exponentially decay with the network distance away from the perturbed node.
Luckily, this makes protein binding networks poor conduits for indiscriminate propagation of
fluctuations which would have led to a chaotic mutual influence between biologically distinct
pathways. On the other hand, we also show that under carefully selected conditions, a
perturbation can propagate relatively far with a minimal attenuation. We first develop a linear
response theory and numerical methods for a general case of propagation of perturbations in
a network of an arbitrary topology, concentrations and dissociation constants. A realistic
protein binding network of baker’s yeast is used for illustration. Then several simpler
analytically solvable case studies are shown to confirm the predictions of linear response theory
and numerical results.

2. Methods and results
2.1. LMA equilibrium

In what follows we will use a simple case of our general formalism in which the reaction
network is fully determined by a network of pairwise binding interactions between N distinct
types of proteins (or any other molecules for that matter). The existence of a link between
vertices i and j means that these proteins reversibly bind each other to form a two-protein
complex (hetero- or homo-dimer) ij. Throughout this paper, we will consider only such dimers
and ignore the existence of multi-protein complexes consisting of three or more proteins.
However, our main results could be easily extended to an arbitrary composition of complexes
or even to a more general situation of a set of substances that reversibly convert into each other
and the equilibrium of every reaction is determined by the LMA (see appendix for this most
general scenario).

The LMA states that free concentrations of proteins Fi and those of dimers Dij obey
Fi Fj = kij Dij, (1)

where Kij is the corresponding dissociation constant. A dissociation constant has units of
concentrations, the smaller is kij, the higher is the binding affinity of a pair i and j. Taking into
account the conservation of mass of each substance i, one obtains the following system of
equations that relates total concentrations Ci of proteins to their free concentrations Fi

Ci = Fi + ∑
j↔i

Dij = Fi + ∑
j↔i

Fi Fj
kij

. (2)
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Here and below the notation ∑j↔i means a sum over all vertices j that are the network neighbors
of the vertex i. In a general case of four or more interconnected interacting pairs this system
of non-linear equations allows for only numerical solution. One particularly convenient
computational method involves rewriting the equation (2) as

Fi =
Ci

1 +∑ j↔i Fj /kij
, (3)

and successively iterating it starting with Fi = Ci until the LMA is satisfied with a desired
precision. The proof presented in [1] guarantees the uniqueness of the solution found this way.

2.2. Propagation of concentration perturbations in LMA equilibrium
As a concrete example, we consider the propagation of small concentration perturbations in
the protein binding network of baker’s yeast, Saccharomyces cerevisiae. The set of protein–
protein physical interactions (PPI) from the BIOGRID dataset [3] was automatically curated
to include only interactions which were reported in at least two publications. Total
concentrations of proteins for yeast grown in rich growth medium conditions were taken from
a genome-wide experimental study in which Tandem-affinity precipitation (TAP) of individual
proteins was followed by the Western blot analysis [4]. The resulting dataset consists of 4185
interactions among 1740 proteins with total concentrations ranging between 50 and 1 million
molecules/cell with the median concentration of ~3000 molecules/cell. In the absence of
genome-wide information regarding the value of dissociation constants in our simulations we
assume them all to be the same kij = Kd. It turns out that apart from their overall strength the
assignment and distribution of equilibrium concentrations to individual links in the network is
relatively unimportant. In a follow up study we found [6] that Spearman and Pearson correlation
coefficients between all equilibrium concentrations calculated using different assignments of
dissociation constants of a given strength is usually as high as 0.8–0.95.

We observe that the magnitude of relative changes in free concentrations exhibits a universally
exponential decay with the network distance from the source of perturbation (figure 1(A)).
Approximately the same exponential damping was observed in response to a small 20%
decrease of a protein abundance (which is roughly the range of intrinsic noise reported in [5])
as well as to a complete elimination of individual protein (which is experimentally realizable
as a gene knock-out or inactivation). Stronger binding (smaller values of Kd) generally results
in a longer range of propagation (slower decay) of perturbations.

A much less computationally demanding (and, as shown below, quite heuristic) approach to
find δFj induced by a small perturbation of total concentrations δCi is to invert the matrix Λ̂
obtained by linearizing equation (2) around the equilibrium point:

δCi
Ci

= ∑
j

Λij
δFj
Fj

, (4)

with Λ̂ defined as

Λij = Aij
FiFj /kij

Ci
+ δij

(Fi +∑m↔i FiFm/kim)

Ci
= Aij

Dij
Ci

+ δij. (5)

Here, Aij is the adjacency matrix of the network. If complexes consisting of more than two
proteins were included into consideration, Dij would have been replaced by the total
concentration of all complexes containing both i and j among their constituents5. It follows
from equation (4) and equation (5) that when the change in total concentration is limited to just
one node 0, the induced relative change of free concentration of any other node i ≠ 0 satisfies
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δFi
Fi

= − ∑
j↔i

Dij
Ci

δFj
Fj

. (6)

This equation shows that changes in free concentrations on nearest neighbors tend to be of the
opposite sign. Also, since ∑j↔i Dij/Ci = 1 − Fi/Ci < 1, the absolute magnitude of perturbation
|δFi/Fi| on any node away from the source is less than or equal to its maximal value among its
neighbors: maxj↔i |δFj/Fj|. Bonds with higher Dij/Ci are better transmitters of perturbations
from node j to node i. Note, that this quantity is non-symmetric: the transmission along any
particular edge is directional with preferred direction pointing from the higher total
concentration to lower one.

Inverting equation (4) one obtains the desired expression for the linear response of any free
concentration to an arbitrary perturbation in total concentrations

δFi
Fi

= ∑
j

(Λ̂−1)
ij

δCj
Cj

. (7)

The physical meaning of each column j of the inverse matrix Λ ̂−1 is that it determines relative
changes in free concentrations of all proteins per relative change δCj/Cj in the total
concentration of the protein j.

While the linear response approximation (7) describes infinitesimally small perturbations, we
observed that it approximates the response to a finite perturbation (even in the extreme case of
a gene knock-out) rather well. The exponential decay of perturbation was found to be identical
to that calculated using equation (3) and (with the exception of dimers containing the knocked-
out protein) the overall magnitude of changes in free concentration is comparable to the full
numerical solution.

2.3. Analogy with resistor network
To develop a better understanding of the developed matrix formalism, first consider the case
when the underlying network is bipartite (but not necessarily acyclic). To take into account the
natural sign-alternation of δFi/Fi on immediate neighbors in the network (see equation (6)),
we introduce new variables ϕi = (−1)si δFi/Fi where index si is 0 on one sublattice and 1 on the
other. This allows us to rewrite the equation (4) and equation (5) as

δC
~
i = ∑

j
σijϕj. (8)

Here δCĩ = (−1)si δCi and σ̂ is given by

σij = − Aij
FiFj
kij

+ δij (Fi + ∑
m

Aim
FiFm
kim

) = − AijDij + δij ( ∑
k↔i

Dik + Fi). (9)

In the situation when δCĩ = δi0δC0 (i.e. when the perturbation is limited to a single node 0), the
equation (8) and equation (9) can be interpreted as describing ‘electric potentials’ ϕi in the
network of resistors with resistances Rij = 1/σij = 1/Dij subject to the injection of the current
δC0 at the node 0. Each node is also shunted to an auxiliary ‘ground node’ with potential ϕG
= 0 by the resistance RiG = 1/Fi. Potential gradients along edges ϕi − ϕj = (−1)si δFi/Fi −
(−1)sj δFj/Fj = (−1)si δDij/Dij determine relative (dimensionless) changes in concentrations of
heterodimers, while currents Iij= (ϕi − ϕj)/Rij = (−1)si δDij—the absolute (dimensional) changes.

5Above we implicitly assumed that every protein enters every dimer in one copy. That is obviously not true for homodimers. For proteins

forming homodimers the conservation law 2 changes to Ci = Fi + 2Fi
2/kii +∑ j≠i FiFj /kij. In this case the diagonal term of

the matrix Λ̂ is not 1 but 1 + 2Dii/Ci.
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Similarly, currents to the ground IiG = ϕi/RiG = (−1)si δFi are equal to changes in free
concentrations of proteins. As in resistor networks, the Kirchoff law here follows from the
mass conservation which states that everywhere the total current flowing out of node i, IiG +
∑j↔i Iij = (−1)si (δFi + ∑i↔j δDij) = (−1)si δCi = δC̃i is equal to the external current δCĩ =
δi0δC0 of changes in total concentrations.

2.4. Effects of network topology and concentration assignment
The interpretation of the free concentrations Fi as ‘shunt conductivities’ leaking the ‘current’
to the ground means that the smaller they are, the weaker is the decay of both currents δD and
δF with the distance. Since stronger binding generally decreases free concentrations of all
proteins, it naturally reduces the rate of decay of perturbations (visible in figure 1(A)).
However, the exponential decay constant γ(Kd) appears to saturate around 2.25 as Kd → 0
(figure 1(B)). This saturation is easy to understand. Indeed, consider the most ideal scenario
in which all free concentrations Fi are very small and thus the ‘current’ δD is approximately
conserved (loss to the ground is negligible). The exponential growth in the number of neighbors
Nn(l) ~ ( d(d − 1) / d )l as a function of distance l from the perturbation source means that even
in this ideal setup the average current at distance l would be proportional to 1/Nn(l) and thus
exponentially small. The same rate of decay describes the ‘potentials’ δFi/Fi as well.

However, it is important to emphasize that the ideal scenario outlined above almost never
occurs with real-life concentrations. Indeed, the limit of infinitely strong binding k12 → does
not make all but only some of free concentrations Fi to go to zero. One can see it clearly already
for two interacting proteins. When their concentrations C1 and C2 are not equal to each other,
in the strong binding limit k12 → 0 the free concentration of the more abundant protein (say
1) remains nonzero F1 → C1 − C2, while the free concentration of its less abundant partner
F2 → 0. Consider another simple example of a chain of three proteins with initial concentrations
C1, C2 and C3 reacting to form dimers 1–2 and 2–3 with the same dissociation constant k. In
this case one could still analytically calculate all free and bound concentrations,

D12 =
C1

2(C1 + C3)
C1 + C2 + C3 + k − (C1 + C2 + C3 + k)2 − 4C2(C1 + C3) ,

D23 =
D12C3

C1
,

and F1 = C1 − D12, F2 = C2 − D12 − D23, F3 = C3 − D23. The logarithmic derivative,

µ1→3 =
∂F3
∂C1

C1
F3

,

quantifies the propagation of perturbation of the node 1 through this three-node channel and
in the strong binding limit has a maximum around C2 = C1 + C3 (see figure 2). i.e. when all
three substances are completely bound: {F1, F2, F3} → 0. In a general case of a PPI network
of arbitrary topology the only situation in which free concentrations of all proteins would
approach zero as kij → 0 is when their total concentrations Ci are proportional to their degrees
di. For a given topology of the network such concentration setup has the slowest decay of
perturbations.

Most real-life PPI networks are characterized by a positive correlation between total
concentrations of interacting proteins. In the yeast network used in this study we observed this
effect to be present and highly statistically significant, (the Spearman rank correlation
coefficient was 0.27 with a P-value of 10−54). Such correlation improves the balance between
total concentrations of interacting nodes and thus somewhat lowers the average free
concentration of proteins compared to a case where this correlation is absent. Based on this we
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expect that real protein–protein networks would be more prone to propagating perturbations
than their counterparts in which concentrations of proteins are randomly reshuffled and thus
the correlation between concentrations of interacting nodes is destroyed. This theoretical
expectation was indeed verified in figure 1(B) (compare filled circles and open diamonds for
the network with real concentrations and the reshuffled ones).

Naturally occurring PPI networks are not bipartite. Fortunately, due to a relative sparsity of
links the number of odd-length loops in them is small and our resistor network analogy provides
a reasonable approximation. For any starting point of perturbation 0 the optimal way to define
sign-alteration in variables ϕi = (−1) si δFi/Fi is by using si = li0 (here li0 is the distance from
the source of perturbation 0 to the node i). The majority of links would connect nodes with
opposite ‘parities’, while the remaining non-bipartite links could be treated as a small but
important correction to the ideal case. Like shunt conductivities to the ground, they contribute
to the dissipation of the ‘current’. Indeed, if a link i ↔ j is of this anomalous kind, its
contributions to the current leaving nodes i and j are equal to each other and given by Dij(ϕi +
ϕj). One example of such anomalous (non-bipartite) links is given by homodimers (see footnote
6). In general, these anomalous links lead to the loss of the total current from the system and
thus tend to suppress the propagation of perturbations.

2.5. Analytical solution for Bethe lattice
To illustrate and rigorously validate conclusions of the previous section, we analytically
investigate a simple example of a bipartite network, the Bethe lattice, where each vertex has
the same number of interaction partners (degree) di = d. In addition, we assume that all
dissociation constants are equal, kij = k. When total concentrations of all proteins are also
identical Ci = C, the equilibrium concentrations of all monomers and heterodimers are given
by

Fi = F = k
2d ( 1 + 4dC

k − 1), Dij = D = k
2d ( 2Ck + 1

d − 1
d 1 + 4dC

k ). (10)

For arbitrary concentrations Ci, using the mass conservation and LMA, it is also simple to
derive the following recurrent in the lattice index l relation for free concentrations

Cl − Fl =
Fl
k (d − 1) Fl+1 + Fl−1 . (11)

Assuming that the total concentration is perturbed from its universal for all network value C
at node 0, and the deviation δFl of free concentrations from their equilibrium value given by
equation (10) are small, equation (11) yields

− (d + k
F ) δFl = (d − 1)δFl+1 + δFl−1. (12)

It has an exponentially decaying solution δFl = δF0λl, where

λ = − 1
d − 1

d + k / F
2 − ( d + k / F

2 )2 − (d − 1) . (13)

As expected, −1 < λ < 0 which means that perturbations sign alternate and exponentially decay
as a function of l. In a strong binding limit the combination of equation (13) and equation (10)
yields

λ = − 1
d − 1 (1 − 1

d − 2
dk
C ) + O ( dk

C ). (14)

This confirms our qualitative prediction that in the ‘ideal’ scenario when no current is lost to
the ground, the perturbation still decays exponentially due to branching of the current at each
node. For a linear chain of proteins (d = 2), the complete solution in terms of C and k looks
particularly elegant
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λd=2 = − (1 + 8C /k)1/4 − 1

(1 + 8C /k)1/4 + 1
. (15)

As one expects heuristically, in the limit of strong binding, a perturbation in a linear chain
propagates indefinitely, |λd=2| → 1.

To explore the effect of non-ideal concentration setup on propagation of perturbation, we solve
for the decay exponent in the linear chain (d = 2) with oscillating total concentrations,

Ci = C 1 + ( − 1)ia . (16)

Response to perturbation of the even- and odd-numbered vertices has different amplitudes
A2i and A2i+1 yet decays with the same exponential coefficient λ1D±.

δF2i = A2iλ
2i, δF2i+1 = A2i+1λ

2i+1. (17)

Substitution of (17) into linearized around the equilibrium concentration recursion relation (12)
yields the system of two equations for the relative amplitude A2i/A2i+1 and λ with the solutions

A2i
A2i+1

=
F2i(k + 2F2i)

F2i+1(k + 2F2i+1)
, (18)

λ± = − 4χ 1 − a2 − 2 f (1 + 4χ) − 2 f 2

1 + 4χ − f , (19)

where χ = C/k and f = 16a2χ2 + 8χ + 1. Evidently, |λ±(C/k, a)|  |λd=2(C/k)| with equality
being achieved only for a = 0. For example, for k/C → 0 and a small

λ± → − (1 − 2a).

Thus, as it was discussed above, any variation in Ci/di, which results in larger average unbound
concentrations Fi, leads to a faster decay of perturbations.

3. Conclusions
We investigated the propagation of perturbations caused by change of concentrations of
individual reactants in a reaction network whose equilibrium is governed by the LMA. We
found that in general, such perturbations decay exponentially in the network distance from the
perturbation source. It was also observed and explained that the concentration perturbations
propagate with less attenuation along the links between highly sequestered (low free
concentration) reacting substances. While the reaction network itself is non-directional, the
concentration perturbation preferably propagates down the abundance gradient, i.e. from the
substance with higher total concentration to that with the lower one. To illustrate the
propagation of concentrational perturbations, we constructed an effective resistor network with
edge and shunt resistivities inversely proportional to the dimer and free concentrations. Current
flow in such a weighted network provides a good approximation to propagation of small
concentrational perturbations. In the case of perfect sequestration, i.e. when neighboring
concentrations are perfectly balanced and binding is strong, the perturbation is still attenuated
by a factor 1

d − 1  at each node due to the branching of the ‘outgoing current’.

While only the case of pairwise interaction has been considered, our numeric and analytic
approaches can be easily generalized to include the three- and higher-molecular complexes.
We considered the protein binding network of baker’s yeast as the example, yet the methods
developed here are very general and can be applied to any reaction network with the LMA
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equilibrium. A more detailed account of the biological implication of our analysis of
perturbations of protein–protein binding equilibrium can be found in [6]. Future studies will
include the temporal effects of the perturbation propagation, which could be reaction- or
diffusion-limited; effects of correlated and uncorrelated multiple small abundance
perturbations (noise, see [6] and references therein), fluctuations of free and bound
concentrations around LMA equilibrium for fixed abundances, and non-LMA interactions such
as catalytic reactions.
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Appendix
The most general formalism suitable to any set of reversible reactions whose equilibrium is
governed by the LMA is as follows:

Consider a network of R reactions labeled by Greek letters α = 1, …, R with equilibrium
constants Kα and M substances labeled by Latin letters, i = 1, …, M. Each elementary act of
reaction α produces niα molecules of substance i (negative numbers indicate that the substance
is consumed). The M × R matrix n̂ = {niα} = is referred to as the stoichiometric matrix of the
reaction network. The system is prepared in an initial state where each substance i has the
concentration Ci. After the equilibrium is reached the concentrations become equal to Fi,

defined by the LMA ∏i Fi
niα = Kα. In our general case of both production and consumption

of substances, Fi could be either larger or smaller than Ci. The approach to equilibrium in every
reaction channel α is characterized by the reaction coordinate rα, equal to the number of direct
elementary reactions minus the number of reverse ones. The mass conservation dictates that

Ci = Fi +∑
α

niαrα, (A.1)

while the LMA can be written in the logarithmic form as
n̂T ln F→ = ln K→. (A.2)

Evidently, the rank of stoichiometric matrix cannot be larger than M − 1 so that equation (A.
2) has a continuous family of solutions for varying initial concentrations. A small perturbation
Ci → Ci + δCi leads to shifts in both equilibrium concentrations: Fi → Fi + δFi and equilibrium
reaction coordinates: rα → rα + δrα. These R + M unknowns could be calculated from the
linearized LMA equations ∑i niα δFi/Fi = 0 and conservation laws δCi = δFi + ∑α niαrα δrα/
rα. In vector notation the solution of these two sets of equations is given by

δr→ = Û−1n̂T δC / F
→

, (A.3)

and
δF→ = δC→ − n̂δr→, (A.4)

where the R × R matrix Û is defined as Uαβ = ∑i niαniβ/Fi. Here, we assumed that R < M so the
condition rank (n̂) < M is satisfied and the inverse matrix Û−1 is well defined.
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Figure 1.
(A) The averaged over perturbation of all nodes magnitude of normalized changes in free
concentrations |δFi/Fi| per unit of δC0/C0 plotted as a function of the distance li0 from the
perturbed node 0. The propagation of perturbations (equation (7)) was computed in a highly
curated yeast PPI network [3] with real-life total concentrations of individual proteins [4]; the
dissociation constant Kd was increased in 10-fold increments starting from 1 nM (or 34
molecules/cell) and up to 0.1 mM (the steepest decaying curve). (B) The exponential decay
constant γ(Kd) obtained as the best fit of the form A exp[−γ(Kd)li0] to curves shown in the panel
A with the real-life concentrations (filled circles), and for randomly reshuffled concentrations
(open diamonds).
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Figure 2.
The propagation ratio µ1→3 defined in the text in a linear chain C1 → C2 → C3 with strong
binding (k = 1 nM) as a function of concentration of the intermediate substance C2. All curves
have the same concentration of the target protein C3 = 1 µM and different concentrations of
the source of the signal C1 = 2 µM (green dashed line), C1 = 1 µM (red solid line), and C1 =
0.5 µM (black dot-dashed line). In the strong binding limit the propagation ratio reaches its
maximum when all three substances are completely bound, C2 = C1 + C3. Note also that the
peak propagation is higher in the direction opposite to the concentration gradient, i.e. when
C1 > C3.
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