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ABSTRACT We suggest a minimal model for the coupling of the lateral phase behavior in an asymmetric lipid membrane across
its two monolayers. Our model employs one single order parameter for each monolayer leaflet, namely its composition. Regular
solution theory on the mean-field level is used to describe the free energy in each individual leaflet. Coupling between monolayers
entails an energy penalty for any local compositional differences across the membrane. We calculate and analyze the phase
behavior of this model. It predicts a range of possible scenarios. A monolayer with a propensity for phase separation is able to
induce phase separation in the apposed monolayer. Conversely, a monolayer without this propensity is able to prevent phase
separation in the apposed monolayer. If there is phase separation in the membrane, it may lead to either complete or partial
registration of the monolayer domains across the membrane. The latter case which corresponds to a three-phase coexistence is
only found below a critical coupling strength. We calculate that critical coupling strength. Above the critical coupling strength, the
membrane adopts a uniform compositional difference between its two monolayers everywhere in the membrane, implying phase
coexistence between only two phases and thus perfect spatial registration of all domains on the apposed membrane leafs. We
use the lattice Boltzmann simulation method to also study the morphologies that form during phase separation within the three-
phase coexistence region. Generally, domains in one monolayer diffuse but remain fully enclosed within domains in the other
monolayer.

INTRODUCTION

One of the most challenging problems in membrane bio-

physics is to understand the influence of lipids on the lateral

organization of biomembranes. Numerous experimental

results point at the existence of lateral domains—membrane

rafts—and their various functional roles (1,2). Yet, size,

stability, and dynamic behavior of domains in biomembranes

remain poorly characterized. This is in contrast to model

membranes, consisting of only a few lipid species at well-

characterized conditions, for which a wealth of detailed

information on structural and phase behavior exists. Espe-

cially the ability of cholesterol to induce phase coexistence

between two fluidlike lateral phases, the more condensed

liquid-ordered (lo) and the less condensed liquid-disordered

(ld) phase, has been well-characterized experimentally and

through various subsequent modeling attempts (3–5).

An interesting problem concerns the coupling of coexist-

ing liquidlike domains between the two leaflets of a lipid

bilayer (6). Current evidence suggests matching of like-

phase domains across a symmetric bilayer (7–10). That is,

domains are observed to be in perfect registration, implying

that some degree of composition-sensitive structural cou-

pling must exist between the two apposed monolayers. The

strength of this coupling could possibly be of importance for

biomembranes. This is because the plasma membrane generally

has an asymmetric lipid distribution, with domain-forming

lipids enriched in the extracellular monolayer but depleted

from the cytoplasmic monolayer (11). Indirect evidence (the

colocalization of raft proteins with inner leaflet proteins (12)

and the presence of inner leaflet proteins in detergent-resistant

membranes (13)) could suggest the presence of domains in

the cytoplasmic monolayer (12). The question arises whether

domains in one monolayer can be imposed (imprinted) by

the presence of domains in the other monolayer.

An experimental method to produce asymmetric mem-

branes and to study their phase behavior is provided by

combining the Langmuir-Blodgett/Schäfer method with

fluorescence-based imaging. As the domains within the

monolayer facing the solid support are immobile, they do not

register with domains in the apposed monolayer (14,15).

Yet, complete registration can be recovered by introducing a

polymer cushion that sufficiently increases the substrate-

membrane distance (16,17). The study by Garg et al. (16)

clearly shows that domains in one monolayer can induce

registered domains in the other monolayer, even if the latter

monolayer has an insufficient tendency to phase-separate on

its own. Kiessling et al. (17) also report cases where the

domain-forming monolayer was unable to induce formation

of registered domains in the apposed monolayer. In sum-

mary, present experimental evidence points to a composition

dependence of a monolayer’s ability to imprint its phase

structure onto the apposed monolayer.

A number of recent theoretical studies have addressed

consequences of a coupling between the two monolayers in a
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membrane (18,19). Two studies directly address the coupling

of thermodynamic phase formation across the two membrane

leaflets (20,21). Hansen et al. (20) have considered the cou-

pling of two monolayers where each individual monolayer

was modeled as having both a compositional and curvature

degree of freedom. Based on Landau theory, the formation of

a number of different phases, some of them flat and others with

shape modulations, are predicted. In another study, Allender

and Schick (21) also used Landau theory with two order pa-

rameters; again one was a compositional order parameter (an

effective cholesterol concentration) but the other one described

the thickness of a monolayer. The choice of this second-

order parameter is common (22,23) and is well-motivated

by the different chain ordering in the lo and ld phases (24).

Monolayer-monolayer coupling was assumed to emerge only

from a coupling between the thickness order parameters in

each leaflet. Allender and Schick have specifically analyzed a

situation where, without coupling, the outer leaflet of a mem-

brane is unstable, whereas the inner one is stable. The cou-

pling between the two monolayers then leads to a transition

(though a weaker one) in the inner monolayer as well.

In this work, we analyze a minimal model of the coupling

between monolayers and its influences on the phase behavior

of a lipid bilayer. To this end, we shall employ only one

single-order parameter, the composition of a binary mono-

layer. (Note that by merging two lipid species into a single

effective one, we may, in principle, apply our results to a

ternary lipid mixture that contains cholesterol; similar to

Allender and Schick (21).) Each of the two individual

monolayers will be described by the familiar regular solution

model on the mean-field level (25,26). Without coupling

between the two monolayers, each leaflet can independently

undergo a lateral phase transition. We may, somewhat arbi-

trarily, refer to the two phases as condensed and uncondensed.

Monolayer-monolayer coupling acts on the difference between

the local compositions across the membrane. To suggest a

physical mechanism we consider Fig. 1. It schematically

displays two (initially symmetric) membranes that have

undergone phase separation in both monolayers. Only in the

lower membrane are the phases of the same type in registration.

Despite being entropically unfavorable and creating a thickness

mismatch (and corresponding line tension (27)) between the

condensed and uncondensed regions, this is the experimentally

observed scenario in a symmetric membrane (7–10). Various

mechanisms such as van der Waals interactions or cholesterol

flip-flop might contribute to the coupling (21). However, we

speculate the main contribution has entropic origin and results

from the conformational confinement of the lipid chains in the

uncondensed phase when being opposite to a condensed

monolayer. This confinement would concern predominantly

the terminal segments of the lipid chains in the uncondensed

monolayer. Facing a more condensed (i.e., more rigid)

monolayer makes it more difficult for these segments to

explore their conformational degrees of freedom by dynami-

cally interpenetrating into the apposed monolayer. Note that the

strength of this type of coupling would increase with the local

compositional difference between the monolayers. This con-

sideration motivates the simple expression for the coupling (see

below in Eq. 2) that we use in this work.

We shall provide a complete thermodynamic analysis of

our model as a function of the coupling strength. The results

will be presented in phase diagrams. In addition, we analyze

our model in terms of a Landau expansion which connects the

present with previous work (20). The Landau expansion allows

us to express the phase behavior in the limiting cases of small

and large coupling analytically. Our model, despite being

simple, would explain a range of possible observations, in-

cluding the induction or suppression of phase separation due to

the presence of monolayer-monolayer coupling and the forma-

tion of three-phase regions; i.e., incomplete spatial registration

of domains between the monolayers. We finally use the lattice

Boltzmann method to simulate possible morphologies during

the process of phase separation in the three-phase region.

FREE ENERGY MODEL

Consider a planar, binary lipid membrane with the same lipid

species but possibly different compositions in each of its two

apposing monolayers. Assume the two lipid species exhibit

nonideal mixing, with a tendency toward phase separation.

FIGURE 1 Schematic illustration of two mixed bilayer membranes. The

two membranes have the same average composition in both monolayers.

Each monolayer separates into two fluidlike phases, a condensed and an

uncondensed one. A practical realization of this scenario could contain

cholesterol and additional lipid species (in this case the phases would

correspond to the lo and ld phases). In the upper membrane the condensed

domains in one monolayer face the uncondensed ones in the apposed

monolayer. We argue that this mismatch entails an energy penalty that is

proportional to the square of the local compositional difference across the

bilayer. The coupling between the two monolayers leads to complete

registration of domains of the same kind, as illustrated for the lower

membrane. Note that domain registration can be incomplete if the membrane

is asymmetric; i.e., if there is a mismatch in composition between the two

monolayers (this case is not shown but is part of our analysis).
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We model this tendency using regular solution theory on the

mean-field level which is also referred to as the Bragg-

Williams or random mixing approximation (25,26). The free

energy per lipid fBW of a single two-component lipid mono-

layer can then be written as a function of its composition f,

fBWðfÞ ¼ flnf 1 ð1� fÞlnð1� fÞ1 xfð1� fÞ: (1)

Note that here and in the following, all energies are expressed

in units of kBT (Boltzmann’s constant 3 absolute temperature).

The nonideality parameter x describes the effective strength

of nearest-neighbor interactions. For x . 0 this interaction is

attractive, and for x . xc it is able to induce phase sep-

aration. Mean-field theory predicts the critical point xc ¼ 2.

We note that in a more general approach each monolayer

would have its own nonideality parameter. In view of our

objective to formulate a minimal model, we assume that both

monolayers have the same underlying energetics (namely,

the same x). What may be different are the average compo-

sitions of the two monolayers.

The main focus of this work is to investigate the conse-

quences of the energetic coupling between the two apposed

monolayers of a lipid bilayer. The coupling is local and

likely reflects the dependence on composition of interactions

between lipid tails across the bilayer midplane, such as

interdigitation or, more accurately, dynamic interpenetration,

as outlined in the Introduction. That is, any local composi-

tional differences across the bilayer give rise to an extra

energy penalty. If the compositional difference is sufficiently

small this energy penalty must be proportional to (f – c)2

where f and c denote the local compositions in the upper

and lower monolayers, respectively. (Note that invariance of

the free energy with respect to exchanging the upper and

lower monolayer excludes the presence of the linear term

f – c.) Denoting the coupling strength by L (with L . 0),

we can write for the local free energy of a lipid bilayer

f ðf;cÞ ¼ fBWðfÞ1 fBWðcÞ1 Lðf� cÞ2: (2)

The first two terms describe the free energies of each mono-

layer leaflet individually, and the last term accounts for the

coupling between the apposed monolayers. To obtain the

overall free energy F of a lipid bilayer we integrate f(f, c)

over the total lateral area A of the membrane,

F ¼ 1

a

Z
A

daf ðf;cÞ; (3)

where a denotes the cross-sectional area per lipid (which we

assume to be the same for both species). Equations 1–3 form

the basis of the present work. In the following, we theo-

retically analyze and discuss the implications of a nonvan-

ishing coupling strength L.

PHASE BEHAVIOR

We characterize the phase behavior as a function of the two

membrane compositions, f and c, in the upper and lower

monolayers, respectively. Let us first calculate the spinodal

line that separates locally stable and unstable regions in the

phase diagram. At the spinodal line, the determinant

@
2f

@f
2

@
2f

@c
2 �

@
2f

@f@c

� �2

¼ 0 (4)

of the stability matrix corresponding to f(f, c) vanishes.

Carrying out the derivatives using Eqs. 1 and 2 gives rise to

the relation

0 ¼ 1

2fð1� fÞ � x

� �
1

2cð1� cÞ � x

� �

1 L
1

2fð1� fÞ1
1

2cð1� cÞ � 2x

� �
: (5)

Solutions of that equation specify the spinodal lines for any

given x and L. Fig. 2 displays a number of representative

examples of spinodals, derived for x ¼ 2.2 and different

choices of the coupling parameter L. We note that sets of

spinodals for values of x different to x ¼ 2.2 (but with x .

2) appear qualitatively equivalent to those shown in Fig. 2.

Let us discuss the behavior of the spinodal lines: First, all

spinodal lines exhibit fourfold symmetry about the two axes

f¼ c and f¼ 1 – c. Second, the smallest x for which Eq. 5

can be fulfilled is x ¼ xc ¼ 2 with the corresponding

compositions f ¼ c ¼ 1/2. Hence, the coupling parameter

does not affect the critical point. Also, close to the critical

point, the behavior of the spinodals is independent of L. This

becomes evident from an expansion of the spinodal up to

quadratic order in f and c in the vicinity of the critical point,

leading to ffiffiffiffiffiffiffiffiffiffiffiffi
x � 2

4

r !2

¼ f� 1

2

� �2

1 c� 1

2

� �2

; (6)

which describes a circle of radius
ffiffiffiffiffiffiffiffiffiffiffiffi
x � 2
p

=2; independent of

L. Third, for vanishing coupling parameter, L ¼ 0, the

spinodals consist of the two sets of straight lines,

f ¼ 1

2
1 6

ffiffiffiffiffiffiffiffiffiffiffiffi
x � 2

x

s !
; c ¼ 1

2
1 6

ffiffiffiffiffiffiffiffiffiffiffiffi
x � 2

x

s !
: (7)

The four points where these lines cross each other are part of

the entire set of spinodals for fixed x but variable L (see Fig.

2). What changes at these four points as a function of L (but

fixed x) is the curvature of the spinodal. For small L the

spinodal is convex, and for large L it is concave. For the

discussion below we note that the curvature vanishes at L ¼
Lv with

Lv ¼ x
x � 2

2x � 3
: (8)

For example, for x ¼ 2.2 this is the case at L � 0.31 (a

spinodal close to that, namely for L ¼ 0.275, is shown in

Fig. 2). And finally, note that for small L each spinodal (for
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fixed x and L) consists of four individual segments. For

sufficiently large L, the spinodal is described by a single

closed curve in the f,c-plane. The smallest L for which this

appears to be the case is

L ¼ x � 2: (9)

For example, x ¼ 2.2 leads to L ¼ 0.2; shown in Fig. 2. To

summarize, a growing coupling parameter L restricts the

regions of local instability of the bilayer but does not affect

the critical point.

Let us now calculate the binodal phase behavior, with all

multiphase regions and representative tie-lines included. To

this end, we need to minimize the overall free energy F of the

bilayer, defined in Eq. 3. Because the local free energy f(f,

c) depends on a single compositional degree of freedom in

each of the two monolayers, the membrane can for any

nonvanishing coupling L . 0, at most, separate laterally into

three phases. (Of course, in each individual phase, the

compositions of the upper and lower monolayer need not be

the same.) Allowing for the coexistence of three homoge-

neous phases we may rewrite Eq. 3 as

aF

A
¼ u1 f ðf1;c1Þ1 u2 f ðf2;c2Þ1 u3 f ðf3;c3Þ; (10)

where u1, u2, u3 are the area fractions of the three phases, f1,

f2, f3 are the corresponding compositions of the upper

monolayer, and c1, c2, c3 are the corresponding composi-

tions of the lower monolayer. Area fractions and composi-

tions must fulfill the three conservation conditions u1 1 u2 1

u3¼ 1, u1f1 1 u2f2 1 u3f3¼ f, and u1c1 1 u2c2 1 u3c3¼
c where f and c are the fixed average compositions in the

upper and lower monolayer, respectively, thus specifying a

point ff, cg in the phase diagram (see Fig. 3). (For brevity,

we shall use the same symbols f and c to denote local and

average compositions; everywhere below the concrete mean-

ing of f and c is uniquely determined by its context).

Owing to the three conservation conditions, only six

variables in Eq. 10 are independent. In thermal equilibrium,

the free energy F adopts its global minimum with respect to

these six variables. The minimization can be carried out

numerically; results of phase diagrams as functions of the

fixed average compositions f and c are shown in Fig. 3,

derived for x ¼ 2.2 and various choices of L. Again,

changing x does not affect the qualitative features of the

phase diagrams. Let us discuss the influence of the coupling

parameter L.

In the absence of coupling, L ¼ 0, the two monolayers, if

unstable, phase-separate independently from each other. For

example, if only the upper monolayer is unstable, then a tie-

line parallel to the f-axis of the phase diagram indicates the

two coexisting compositions f1 and f2 ¼ 1 – f1, which

solve the equation ln [f/(1 – f)] ¼ x(2f – 1). This last

equation corresponds to the familiar common tangent

construction. Instability of both monolayers would lead to

a phase coexistence with compositions f1, f2 ¼ 1 – f1 and

c1 ¼ f1, c2 ¼ f2 in the upper and lower monolayer, re-

spectively. Morphological phase structure and dynamic evo-

lution toward the equilibrium structure in one monolayer is

entirely independent from that in the apposed monolayer.

Therefore phase morphologies in both monolayers are spa-

tially uncorrelated in the limit L / 0.

For nonvanishing but still sufficiently small coupling pa-

rameter, L, we find both two-phase and three-phase coex-

istence regions. Let us first discuss two-phase coexistence.

Consider, for example, L ¼ 0.02 which is shown in Fig. 3 A.

If only the upper monolayer is unstable, say at f ¼ 0.5 and

c ¼ 0.1, it will split into two phases. Yet, the corresponding

tie-line is tilted with respect to the f-axis, implying that a

compositional difference is also induced in the lower mono-

layer. (The tilt of the tie-lines grows with the coupling param-

eter L.) Hence, if without coupling one monolayer is unstable

and the other monolayer is stable, the coupling between them

may induce phase-separation in both monolayers. In this sce-

nario, the phases in both monolayers are in complete regis-

tration.

The phase diagrams in Fig. 3 also predict another possi-

bility. A membrane with its two monolayers—one being stable

and the other unstable without coupling—may not phase sep-

arate at all if coupling is present. This is evident from the de-

crease in size of the four symmetric two-phase regions with

increasing L (see Fig. 3 B) for L ¼ 0.2 and, even more pro-

nounced, for L ¼ 0.275 (see Fig. 3 C).

Three-phase coexistence is equivalent to incomplete phase

registration across the bilayer. Yet, regions of three-phase

FIGURE 2 Spinodal lines for x ¼ 2.2 and L ¼ 0.02 (a), L ¼ 0.2 (b),

L ¼ 0.275 (c), and L ¼ 5 (d). The spinodals represent solutions of Eq. 5.
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coexistence only exist below a certain coupling strength L*.

Above this maximal coupling strength, the membrane no

longer exhibits three-phase coexistence. We can calculate L*

by noting that along the spinodal c(f) two critical points

merge at position f ¼ fm with fm ¼ ð11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � 2Þ=x

p
Þ=2

(see Eq. 7). This can be written as

d

df

d
3
f ðf 1 d;cðfÞ1 dc9ðfÞÞ

dd
3

� �
d¼0

� �
f¼fm

¼ 0; (11)

where the prime in c9(f) denotes the first derivative with

respect to the argument. Solving Eq. 11 leads to the maximal

coupling strength

L
� ¼ 3

2
x

x � 2

2x � 3
; (12)

above which three-phase coexistence does not exist. (It is

interesting to note that L* ¼ 3Lv/2; see Eq. 8.) For x ¼ 2.2,

three-phase coexistence thus ceases to exist for L . 0.47.

The sizes of the three-phase regions shrink with growing

coupling parameter, as is evident from Fig. 3, A–C. In fact, the

three-phase regions are replaced by an additional two-phase

region (absent for L¼ 0) that has all its tie-lines parallel to the

diagonal f ¼ c, implying a constant compositional difference

across the monolayers everywhere in the membrane. This is

the most restrictive effect that the coupling between the

monolayers can have. Hence, the additional two-phase region

represents the strong coupling limit. Indeed, for large coupling

parameter, L $ L*, the phase diagram has all its tie-lines with

slope of 1 in the f,c-diagram. Fig. 3 D displays this limiting

case of large coupling.

FIGURE 3 Phase diagrams for L ¼ 0.02 (top, left), L ¼ 0.2 (top, right), L ¼ 0.275 (bottom, left), and L ¼ 5 (bottom, right). Three-phase regions are

indicated by triangles. Representative tie-lines are displayed in regions of two-phase coexistence. Also shown are the spinodal lines (see also Fig. 2). Note that

x ¼ 2.2 in all four diagrams. The points marked a–f in diagram A indicate systems for which we have carried out simulations of their morphological phase

structure; see below in Fig. 4, A–F.
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Our final comment concerns the phase behavior of a mem-

brane that has one of its two monolayers being a binary mix-

ture whereas the other one contains only a single component.

Assume the mixed monolayer is unstable for L ¼ 0. Our

phase diagrams show that with increasing coupling param-

eter the region of instability of the bilayer decreases until,

eventually, a phase transition is completely absent. The

strength of the coupling parameter beyond which phase

separation ceases is L ¼ x – 2, corresponding to Eq. 9, for

which the spinodal line starts forming a single closed curve

in the phase diagram. With x ¼ 2.2, this happens for L ¼
0.2; shown in Fig. 3 B.

LANDAU EXPANSION

Close to the critical point it is convenient to expand the free

energy into a series up to fourth-order in the order param-

eters. This often provides a means to characterize the phase

behavior in terms of analytical expressions. Here, we shall

also demonstrate the use of such a Landau expansion. The

order parameter of the binary lipid membrane is the compo-

sition, f in the lower monolayer and c in the upper mono-

layer. The critical point is adopted at f ¼ c ¼ 1/2. It will be

convenient to define the two new scaled compositions,

�f ¼ f� 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=8Þðx � 2Þ

p ; �c ¼ c� 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=8Þðx � 2Þ

p : (13)

We then expand the free energy fL ¼ (4/3)f(f, c)/(x – 2)2 up

to fourth-order in �f and �c at position �f ¼ �c ¼ 0: The result

can be written up to an irrelevant constant term as

fLð�f; �cÞ ¼
1

4
ð�f4

1 �c
4Þ � 1

2
ð�f2

1 �c
2Þ1 L9

2
ð�f� �cÞ2; (14)

where we have defined the normalized coupling strength

L9 ¼ L/(x � 2). The reason for introducing scaled com-

positions is now evident: fLð�f; �cÞ depends on L and x only

through the normalized coupling strength L9. Hence, close to

the critical point (where the Landau expansion is valid), the

phase behavior only depends on one single parameter. This

justifies presenting a sequence of phase diagrams in Fig. 3 as

function of L for only one single value x. Different choices

of x do not lead to qualitatively different behavior in the

phase diagrams.

It is obvious that for L9 ¼ 0 the free energy fLð�f; �cÞ
decouples into two additive contributions. In this case, the

binodal lines (representing solutions of the common tangent

construction) are located at �f ¼ 61 and �c ¼ 61 with

constant �c and constant �f; respectively. The corresponding

spinodal lines are �f ¼ 61=
ffiffiffi
3
p

and �c ¼ 61=
ffiffiffi
3
p

; which

agrees with Eq. 7 for small x – 2.

Let us first investigate the limit of small coupling L9.

Here, the phase diagram contains both three-phase and two-

phase regions. Using the case L9 ¼ 0 as a reference state, we

can perform an expansion of the phase coexistence equations

with respect to small L9. For the three-phase region we then

obtain the triangle, f�f1; �c1g; f�f2; �c2g; f�f3; �c3g; of

coexisting (scaled) compositions in the upper and lower

monolayer. Our calculation yields �f1 ¼ ��c3 ¼ 1 1 L9=2

and �f2 ¼ �c1 ¼ ��f3 ¼ ��c2 ¼ 1� L9=2. This indeed de-

scribes the shift in the lower phase triangle (f . c in Fig. 3)

as a function of L. Analogous expressions are valid for the

upper phase triangle (where f , c).

A similar expansion of the coexistence equations with

respect to the coupling parameter can be performed to obtain

the tie-lines of the two-phase region in the limit of small L9.

More specifically, we calculate the lower set of almost

horizontal tie-lines in the phase diagram (see Fig. 3 A). Here

the resulting two coexisting bilayer compositions f�f1; �c1g
and f�f2; �c2g define an almost horizontal tie-line (�c2 � �c1)

that crosses through the point f�f; �cg of given (scaled)

average compositions of the two monolayers. Our calcula-

tion leads to �f2 ¼ ��f1 ¼ 1� L9=2 and

�c1 ¼ �c� L9
ð1 1 �fÞ
3�c

2 � 1
; �c2 ¼ �c 1 L9

ð1� �fÞ
3�c

2 � 1
: (15)

Analogous expressions can be derived for the other almost

horizontal and two almost vertical sets of tie-lines (see next

paragraph for the remaining set of tie-lines that are parallel to

the f ¼ c-diagonal of the phase diagram).

Let us now investigate the limit of large coupling para-

meter. (This analysis is valid for all tie-lines at L . L*, and

also applies to the set of tie-lines parallel to the f ¼ c-

diagonal of the phase diagram for 0 , L , L*.) As argued

above, no three-phase coexistence region exists in this regime.

Hence, the membrane can only exhibit two-phase coexistence.

Whenever this is the case, the two monolayers have the same

compositional difference between their respective phases.

This fact can be used to solve the coexistence equations for

any point of given (scaled) average compositions f�f; �cgwithin

the two-phase region. The result for the two coexisting bi-

layer compositions f�f1; �c1g and f�f2; �c2g is

�f1 ¼
�f� �c

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
ð�f� �cÞ2

r

�f2 ¼
�f� �c

2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
ð�f� �cÞ2

r

�c1 ¼ �
�f� �c

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
ð�f� �cÞ2

r

�c2 ¼ �
�f� �c

2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
ð�f� �cÞ2

r
: (16)

Again, it can be verified that the corresponding tie-lines cross

the point f�f; �cg: The tie-lines described by Eq. 16 are indeed

parallel to the diagonal c¼ f of the phase diagram. In the f,

c-phase diagram, there are two critical points where the

binodal and spinodal lines merge (see Fig. 3 D). These points

are f�f; �cg ¼ f1;�1g=
ffiffiffi
3
p

; and f�f; �cg ¼ f�1; 1g=
ffiffiffi
3
p

: The
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longest tie-line, extending along the �c ¼ �f-diagonal, connects

the two points f�f; �cg ¼ f1; 1g; and f�f; �cg ¼ f�1;�1g:
We thus see that the binodal region in the regime L . L*

corresponds to an ellipse with ratio
ffiffiffi
3
p

between its long and

short axis (see Fig. 3).

MORPHOLOGIES

We also simulated the dynamic phase-separation process

using a lattice Boltzmann method (see Appendix for details)

based on the Landau expansion of the free energy, Eq. 14.

We simulated the following equations of motion. For the

total density r we have the continuity equation

@tr 1 =ðruÞ ¼ 0; (17)

where u denotes the mean fluid velocity, and the Navier-

Stokes equation for the total momentum

@tðruÞ1 =ðruuÞ ¼ =P 1 =fh½=u 1 ð=uÞT�g: (18)

Here P is the pressure tensor given by Eq. 24 and h is the

viscosity. For the order parameters �f and �c the drift diffusion

equation reads

@t
�f 1 =ð�fuÞ ¼ =ðM�f

=m
�fÞ; (19)

@t
�c 1 =ð�cuÞ ¼ =ðM�c

=m
�cÞ; (20)

where M
�f and M

�c are Onsager coefficients. The chemical

potentials, m
�f and m

�c; are derived from the Landau free

energy, Eq. 14, with the additional interfacial energy term,

ðk=2Þ½ð=�fÞ2 1 ð=�cÞ2�; given by Eq. 28 and Eq. 29.

Simulations for parameters leading to a two-phase region

give rise to the usual morphologies seen for coarsening of

two-phase systems (28). More interesting are the three-phase

regions on which we focus here. In the following, it is sufficient

to consider the case where the initial value of �f (that is, the

scaled average composition of the upper monolayer) is larger

than the corresponding initial value of �c (the scaled average

composition of the lower monolayer). The three equilibrium

phases are then �f-rich and �c-rich domains (condensed-con-

densed), �f-rich and �c-poor domains (condensed-uncondensed),

and �f-poor and �c-poor domains (uncondensed-uncondensed).

In Fig. 4 these domains are shown as bright, gray, and dark

domains, respectively. We initialized our simulations with

homogeneous compositions �f and �c; modulated with small

spatial disturbances to initiate spinodal decomposition.

Six examples of typical morphologies are shown in Fig. 4

for L9 ¼ 0.1. Note that for x ¼ 2.2 the choice L9 ¼ 0.1

corresponds to L ¼ L9(x – 2) ¼ 0.02. We thus simulate

morphologies in the three-phase region of Fig. 3 A. The

corresponding points are indicated in the phase diagram of

Fig. 3 A. That is, point a in Fig. 3 A corresponds to the system

simulated in Fig. 4 A, and analogously for points b–f. Note

that for values of L9 an order-of-magnitude smaller (L9 #

0.01) the domains begin to decouple dynamically, implying

that domain boundaries start crossing each other. Morpho-

logically, this is reminiscent of recent observations in solid-

supported lipid bilayers where domains are not registered

because domains in the substrate-facing monolayer are

immobilized (14–16). In all simulations displayed in Fig. 4,

the coupling parameter L9 ¼ 0.1 is sufficiently high so that

domains of one monolayer are always fully contained within

domains of the other monolayer. In other words, the domains

in the apposed monolayers are in full registration. All of

the displayed morphologies are time-dependent and they

continue to coarsen through the coalescence of domains

FIGURE 4 Dynamically formed membrane domain morphologies for

different compositions of the upper and lower monolayers for parameters in

the three-phase region of the phase-diagram. The three equilibrium phases

are �f-rich and �c-rich domains (bright, condensed-condensed), �f-rich and
�c-poor domains (gray, condensed-uncondensed) and �f-poor and �c-poor

domains (dark, uncondensed-uncondensed). Generally, domains are in

complete registration. That is, domains in one monolayer are fully contained

in the domains of the other monolayer. Or, equivalently expressed, domain

boundaries never cut each other. Simulations A–F correspond to the points

a–f of the phase diagram shown in Fig. 3 A.
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(viscous hydrodynamic growth) and the occasional evapo-

ration of very small domains (Oswald ripening).

If both average (scaled) compositions are larger than zero

(�f . 0 and �c . 0) the membrane will form predominantly

the condensed phase in both monolayers. This is the case in

Fig. 4 A, derived for �f ¼ 0:7; �c ¼ 0:05 where we indeed ob-

serve a large and continuous bright domain, enclosing gray

domains that themselves each enclose one or more small dark

domains. Recall that the upper monolayer, present with large

composition, forms the uncondensed phase only within the

dark domains. Decreasing both �f and �c (see Fig. 4 B) de-

rived for �f ¼ 0:6; �c ¼ �0:05; favors formation of the gray

phase; this phase then becomes the majority phase and con-

tains distinct sets of bright and dark domains.

Symmetric systems, �f ¼ ��c; are displayed in Fig. 4, C
and D. For small absolute values of �f ¼ ��c; the system

resembles a familiar two-phase fluid where the gray phase

decorates the interface of the dark and bright domains (see

Fig. 4 C). For larger absolute values, the area fraction of the

gray domains increases until there is a mixture of dark and

bright domains suspended in a gray matrix (see Fig. 4 D).

If both �f , 0 and �c , 0 the membrane tends to form mostly

the uncondensed phase in both monolayers (of course, more

of it in the lower monolayer because we have assumed
�f . �c). This is seen in Fig. 4, E and F, where we indeed

observe mostly the dark phase. Because of the �f/� �f and
�c/� �c symmetries this is roughly the complementary

morphology to Fig. 4 A. Note for Fig. 4 E that we find only

one single white domain enclosed in each gray one. The

coarsening dynamics provides the reason for this observa-

tion: if the gray domains coarsen more slowly than the

domains dispersed in them we will always end up with only

one single domain suspended. If the gray domains coarsen

faster than the domains dispersed in them we will end up

with gray domains that contain an increasing number of

smaller domains. Examples of the latter are shown in Fig. 4,

A and F.

To discuss the dynamics of this simple model in relation to

that observed in experiments it is important to compare

several timescales. The first timescale refers to the phase-

separation process which is roughly given by the time it takes

to de-mix an initially homogeneous lipid layer and form small

domains. The next two timescales are related to the coars-

ening of the domains. There are two coarsening mechanisms

present: a diffusive coarsening mechanism dominating at small

length scales and a hydrodynamic coarsening mechanism

dominating for large domains. This is the case for all fluid

mixtures.

In our special case there is an additional timescale involved.

This timescale specifies the coupling of the hydrodynamics

between the domains in both leafs of the membrane. If this

coupling is small, or if one monolayer is prevented from hy-

drodynamic motion by being immobilized on a solid substrate,

the domains may become spatially decoupled and registra-

tion of the domains can be lost. This is seen in experiments

(14,15) using supported membranes where the hydrody-

namic motion of the support-facing monolayer is inhibited or

recovered by an additional polymer cushion (16,17).

CONCLUSIONS

This study investigates how the coupling between the two

monolayers of a lipid membrane affects the phase behavior

in each of the two membrane leaflets. Our model employs

only one order parameter. In this respect it is simpler than

previous theoretical studies (20,21). Still, it makes a number

of nontrivial and experimentally verifiable predictions. First,

if one monolayer leaflet is unstable it may induce phase

separation in the apposed monolayer, even if this monolayer

would be stable otherwise. A stable monolayer may also

suppress phase separation in the apposed intrinsically

unstable monolayer. If phase separation occurs, it always

occurs in both monolayers, but is generally weaker in the

more stable monolayer. This might be of relevance for the

plasma membrane for which the extracellular leaflet typically

contains a raft-forming lipid mixture whereas the cytoplas-

matic one does not. Somewhat surprisingly, our simple

model predicts that for low coupling strength the domains in

the two monolayers are not always in registration. This is

manifested by the presence of three-phase coexistence in the

phase diagram. Here, each monolayer contains three phases

of different compositions. The compositions of the two

monolayers can be different but the three phases in each

monolayer must be in perfect registration for thermodynamic

reasons. Morphologically, the three-phase coexistence ap-

pears as two sets of domains, one contained in the other.

Above a critical coupling strength (which we have calculated

analytically; see Eq. 12) three-phase coexistence is no longer

possible, and the membrane can only split into two phases in

each monolayer that are always in perfect registration.

As our model is based on one single order parameter it

should be the simplest model to investigate intermonolayer

coupling. The simplicity of the model implies a considerable

number of approximations. In particular, all effects related to

other degrees of freedom beyond compositional changes are

neglected. This includes curvature degrees of freedom (20),

thickness changes of the membrane (21), and flip-flop

(which could be particularly relevant for cholesterol (29).) In

addition, we have considered a two-component system, thus

neglecting the three components that are commonly used to

produce fluid-phase coexistence (cholesterol and two lipid

species with one of which cholesterol interacts more favor-

ably). Note also that the coupling parameter between the two

monolayers, L (see Eq. 2), was introduced phenomenolog-

ically; hence, it does not reveal the molecular origin of the

coupling. At this point, further modeling studies might be

useful to extract the source(s) of the coupling and to estimate

the actual magnitude of L. Finally, we have assigned the

same nonideality parameter, x, to both leaflets of the mem-

brane. A more general approach would allow for different
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free energy functions (and thus two different x) in both

monolayers. Still, the surprising variety of predicted phe-

nomena makes us confident that our model captures some

essential features of the coupling between the apposed mono-

layers and its thermodynamic implications.

APPENDIX: LATTICE BOLTZMANN

The application of the lattice Boltzmann method to the coupled leaflets of

a lipid bilayer is presented here for the first time. It is based on a free energy

in the spirit of the original Swift model (30,31) and consists of evolution

equations for the densities f c
i for component c associated with a lattice

velocity vi

f
c

i ðx 1 vi; t 1 DtÞ ¼ f
c

i ðx; tÞ1
Dt

t
c ðf c0

i ðn
cðx; tÞ; uðx; tÞÞ

� f
c

i ðx; tÞÞ;
(21)

where the density is nc ¼ +
i
f c
i and u denotes the mean fluid velocity. The

equilibrium distribution is given by

f
c0

i ¼ wiðnc
di;0 1 3u:vi 1

9

2
P

c
: vivi �

3

2
trP

cÞ: (22)

We will use a standard D2Q9 velocity set of

fvig ¼
�

0

0

�
;

�
1

0

�
;

��1

0

�
;

�
0

1

�
;

�
0

�1

�
;

�
1

1

�
;

��1

1

�
;

��1

�1

�
;

�
1

�1

�� �
: (23)

For this velocity set the weights are w0 ¼ 1, w1–4 ¼ 1/9, and w5–8 ¼ 1/36.

We use three lattice Boltzmann equations to represent the total density

r and the two order parameters �f and �c: The first density can then be used

to define the mean fluid velocity through ru ¼ +
i
f 1
i vi: The pressure tensor

is given by

Pab ¼
�
� 1

2
ð�f2

1 �c
2Þ1 3

4
ð�f4

1 �c
4Þ1 L9

2
ð�f� �cÞ2

1
k

2
½�f=

2 �f 1 �c=
2 �c� ð=�fÞ2 1 ð=�cÞ2�

�
dab

1 kð=a
�f=b

�f 1 =a
�c=b

�cÞ; (24)

and we choose

P
r ¼ ruu 1 P: (25)

For the other two P we choose

P
�f ¼ �fuu 1 m

�f1; (26)

P
�c ¼ �cuu 1 m

�c1; (27)

where the chemical potentials are given by

m
�f ¼ ��f 1 �f

3 � k=
2 �f 1 L9ð�f� �cÞ; (28)

m
�c ¼ ��c 1 �c

3 � k=
2�c 1 L9ð�c� �fÞ: (29)

A Taylor expansion method can then be used to derive the hydrodynamic equa-

tions simulated by this lattice Boltzmann method (28). The resulting equations

are Eqs. 17–20 with h¼ n0(tr – 1/2)/3, M
�f ¼ t

�f � 1=2; and M
�c ¼ t

�c � 1=2:

We performed our simulations on a 2502 lattice. The simulation parameters

were k ¼ 0.5, tr ¼ t
�f ¼ t

�c ¼ 1; Dt ¼ 0.1, and L9 ¼ 0.1.
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