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microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both
with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of
potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we
explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and
Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains
enough information to allow reliable computational prediction of miRNA candidates without requiring conservation
across species. Using this method, we identify ;1,200, ;2,500, and ;2,100 miRNA candidate genes capable of
extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more
than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from
repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery.
Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that
there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated
plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while
others can readily be recruited when organisms diverge and adapt to new niches.
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Introduction

Small RNAs are now accepted as major players in the
control of eukaryotic gene expression. Most well known are
microRNAs (miRNAs) and small interfering RNAs (siRNAs),
both of which are derived from the processing of dsRNA
molecules by members of the Drosha/Dicer family of
endonucleases. In plants, siRNA and miRNA are distin-
guished mainly by their biogenesis, not by their mechanism of
action. MiRNAs arise from stem-loop precursors encoded in
the genome, and their major mechanism of action in plants is
thought to be post-transcriptional regulation through near-
complementary base-pairing to target mRNAs, leading to
specific endonucleolytic cleavage and degradation of the
target [1].

Most of the initially discovered miRNAs were so highly
conserved in evolution that a defining characteristic of a
miRNA was that it had to be conserved [2]. This attribute of those
miRNAs discovered early has been used successfully by a
number of groups to computationally predict new miRNA
genes [3–6]. Basically, these methods scan the genome for
inverted repeats with the potential to form miRNA precur-
sors. Such scans typically find on the order of hundreds of
thousands to millions of hairpins, depending on genome size
and search parameters [4] (plus our own unpublished data).
This high number is then reduced by only keeping hairpins
that are conserved in other species. Another approach is to
search only transcribed sequences in the form of expressed
sequence tags [7,8]. This method works for nonsequenced
genomes and efficiently reduces the search space, probably
leading to a lower number of false positives, but the method

also misses candidates not covered by the expressed sequence
tag libraries.
In miRBase version 8.2, Arabidopsis thaliana (Arabidopsis) has

118 miRNA genes listed, most of which are conserved down to
the monocot Oryza sativa (Oryza). However, studies of non-
coding RNA have shown that lack of conservation does not
necessarily mean lack of function [9]. Potentially, all it takes
to evolve a miRNA is for one of the many inverted repeats in
the genome to be transcribed and have the necessary
structure and sequence features to be recognized and
processed by Drosha/Dicer. Indeed, large numbers of more
narrowly conserved miRNAs also exist [10]. A recent
bioinformatic study in human identified patterns associated
with miRNA precursors and suggested that the number of
miRNA precursors is larger than 25,000 [11]. In plants, a
similar situation could exist. A deep sequencing effort in
Arabidopsis using the massively parallel signature sequence
(MPSS) technique has revealed 75,000 distinct small RNA
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species (not all miRNAs, though) [12] mapping to a large
variety of genomic contexts, including exons, introns,
repetitive DNA, and intergenic regions. This is perhaps not
surprising considering other studies finding that unexpect-
edly large fractions of eukaryotic genomes are transcribed
also outside and antisense to annotated protein-coding genes
[13–15].

A necessary feature of any functional miRNA is that it must
target at least one mRNA. In plants, this means that the
miRNA must be almost complementary to some part of the
spliced mRNA transcript (not just the 39 untranslated region
as is currently thought to be the main target for animal
miRNAs). A set of rules allowing mismatches only in certain
positions has been suggested based on experimental obser-
vations [16]. The requirement for a target has previously been
used to predict plant miRNAs [17–19]: instead of (or in
addition to) relying on phylogenetic conservation (inter-
genomic matches), these methods have successfully used
intragenomic matches with potential target mRNAs to find
the hairpins potentially capable of producing miRNAs that
can regulate the target(s). Such intragenomic matches will
inherently arise from the structure and dynamics of the
genome: retrotransposons, formation of pseudogenes, and
other duplicative events provide sequences almost ready to
regulate the originally copied gene [20]; likewise, the reverse
strand of one gene is complementary to other paralogous
genes. By not relying on conservation between species,
intragenomic matching is capable of more fully charting the
potential for post-transcriptional regulation by miRNAs.

In an effort to reduce spurious predictions, earlier screens
for new miRNAs have removed candidates overlapping
existing annotation, such as repeats and protein-coding
regions. Although such filters probably increase the signal-
to-noise ratio, they also introduce biases assuming that
repeat-derived sequences are not functional and that each
sequence segment can have only one function. However,
transposon-derived conventional miRNAs have been demon-
strated in Arabidopsis [21], and recent work of several groups
show that repeat-associated miRNAs are quite common in
mammals [22–26]. Borchert et al. point to 50 human miRNAs

that are associated with Alu repeats and polymerase III
transcription [22]. Piriyapongsa et al. link 55 experimentally
characterized human miRNAs to different types of trans-
posable elements [26]. Of these, 18 are conserved in other
vertebrate genomes, and the authors predict an additional 85
novel transposable element–derived miRNAs. These observa-
tions, along with the evidence of very complex and wide-
spread transcriptional patterns in eukaryotes, including
nested transcripts and antisense transcription [27], under-
lines the importance of enumerating all possible miRNA/
target interactions in order to explore the full potential of
miRNA-mediated regulation.
In this paper, we develop and apply the miMatcher pipeline

to perform intragenomic matching followed by classification
of miRNA candidates using support vector machines (SVMs).
Using this method in the three plant genomes A. thaliana, O.
sativa, and P. trichocarpa, we find species-specific miRNA-like
hairpins (miRNA candidates) with almost perfect comple-
mentarity to mRNA targets. We present indications that
many of these are active and hypothesize that the remainder
forms a pool of regulators, which can easily be recruited by
natural selection on the adapting organisms.

Results/Discussion

miMatcher Pipeline: Prediction of miRNA Genes and
Targets Using Intragenomic Matching and an SVM
The computational procedure builds on our previously

published method [18] that predicted potential miRNA genes
in Arabidopsis,most of which are not conserved in Oryza. Three
of these previous predictions (all nonconserved) have
subsequently been confirmed as being expressed and cor-
rectly processed into small RNAs (T. Dezulian, personal
communication, unpublished data).
The miMatcher procedure predicts miRNA candidates and

their targets independently in each plant genome. First, we
enumerate all intragenomic matches between any mRNA and
any other part of the genome, where the genomic part of the
match is able to bind complementarily to the mRNA part of
the match (Figure 1). We call such a match a ‘‘micromatch.’’
The assumption is that the genomic part can be a miRNA
gene that targets the mRNA. Looking at micromatches
between known Arabidopsis miRNAs and their targets, we
have derived a set of rules that the match must fulfill: we start
from the observation that targets can be found above noise
without using phylogenetic conservation by requiring no
more than two mismatches [19]. The match length is required
to be between 20 and 25 nucleotides, and we add previously
described filters for low complexity [5] and low-binding free
energy [18]. Furthermore, for a genomic match to be a
potential miRNA gene, it must be part of a sequence that can
fold into a stem-loop precursor recognizable by the bio-
synthetic machinery that makes miRNAs. A necessary (but not
sufficient) requirement for this is that the match (potential
mature miRNA) must form base pairs in one direction only;
i.e., the mature miRNA forms base pairs with bases either
upstream or downstream. Figure 2 (step 1) shows the number
of candidate matches that pass these prefilters for each
organism (see Materials and Methods for a detailed explan-
ation of the filters).
Not all stem-loop structures can work as dicer substrates.

To distinguish those that do work from those that do not, we
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Author Summary

microRNAs (miRNAs) are small RNA molecules that regulate gene
expression by complementary basepairing to mRNAs. In plants, this
base-pairing is almost perfect along the whole length of miRNAs.
This long stretch of complementarity makes it relatively easy to
make computational predictions of the targets for known miRNAs.
To predict novel miRNA genes, we take advantage of this and
reverse the target prediction: instead of predicting targets for
known miRNAs, we predict novel miRNA candidates for all known
mRNAs. Because matching between target and miRNA candidates is
integral to the method, it is possible to achieve good predictions
without having to rely on evolutionary conservation, as most other
current methods do. This means that we can predict new miRNAs
that are specific to an organism. Interestingly, this could help explain
the difference between species that have very similar protein-coding
genes, but highly different phenotypes. Furthermore, it turns out
that many of these new miRNA candidates derive from genomic
repeat regions such as transposons, which points to a possible
active role for repeats/transposons in the regulation of gene
expression.
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analyze a range of structural attributes for each candidate.
Figure 3 illustrates the structural attributes that we inves-
tigated (see Materials and Methods for details).

Next, we build a classifier capable of selecting the stem-
loops (having at least one target) most likely to be true
miRNA genes based on the attributes summarized in Figure 3.
To this end, we construct a positive and a negative control
set. While the positive controls are simply the known miRBase
miRNAs for each plant (regardless of whether we can find a
target for them or not), the negative control set is less obvious
to construct: we rely on the assumption that all miRNAs that
regulate a known target as identified by [28] is already known.
Accepting that this assumption is fairly reasonable means
that that we can generate a negative control set by running
the intragenomic matching (including prefilters as above)
with the ‘‘known targets’’ as queries and then removing those
genomic matches that overlap with already known miRBase
miRNAs. Then, for each place in the genome matching a
query mRNA, the flanks are extracted and the minimum free
energy structure is calculated. The minimum free energy
structure is analyzed, and structural features are calculated.

For most of the measures, there is a clear separation
between the positive and negative control sets (Figure 3; red
and blue traces, respectively), but there are still unnegligible
overlaps. This shows that if we filter by hard threshold values
on each attribute, we will either lose a large portion of the
true positives or be forced to allow a large number of false
positives to pass through the filters. Instead, we use an SVM
[29] to classify based on all the attributes to achieve maximum
separation. SVMs have successfully been used for animal
miRNA precursor structure classification [30], but not yet for
plants. We train an SVM individually on each species, which is
important because some of the input are values for the RNA
folding and hybridization, which is strongly influenced by the
GC composition of the genomes. Figure 4 shows separation of
the miSVM score between positive and negative examples,
and Table 1 lists performance estimates using cross-valida-
tion (see Materials and Methods). In Arabidopsis, according to
the cross-validation, when searching for miRNA candidates
targeting a specific mRNA, 93.7% of all the positively
classified candidates returned (if any) will be true positives.
This specificity, however, comes at a price: 27% of the
Arabidopsis miRBase miRNAs are erroneously classified as

non-miRNAs. This remarkably specific identification of the
known miRNA genes shows that intragenomic matching
according to a strict set of targeting rules followed by
classification on the basis of structural features of the
precursor is sufficient for prediction of novel miRNA
candidates. In the other species, the performance is com-
parable, albeit slightly less specific.
In contrast to other methods, our method does not depend

on conservation in other genomes, and is therefore able to
predict species-specific miRNA candidates.
A summary of the results of applying miMatcher followed

by miSVM to three plant genomes is shown in Figure 2. After
classification, the positively classified micromatches are
grouped into candidate loci on the basis of the genomic
positions and families according to miRNA sequence similarity
(see Materials and Methods). We find 1,261, 2,613, and 2,148
candidate miRNA loci in Arabidopsis, Populus, and Oryza,
respectively (Datasets S1–S3). The fact that these different
genomes despite their genome sizes and structures (i.e.,
Oryza’s peculiar repeat genome structure [31]) have around
the same number of candidate miRNAs with targets is striking
and supportive of the method.
When comparing the classification by miSVM with a

recently suggested rule-based classification of Arabidopsis
pre-miRNAs [32], miSVM is much more stringent: the rules-
based method accepts 100 out of 107 in our positive examples
(compared to 82 of 107 for miSVM), but it fails to reject 224
of 1,372 of the negative examples.
A recent review [32] questioned some miRBase-registered

miRNAs (ath-MIR413 to 420 and ath-MIR426) found in a
study relying on miRNA conservation between Arabidopsis and
Oryza [6]. These miRNAs seem to lack conservation in
organisms outside Arabidopsis and Oryza, and when tested,
they gave weak hybridization signals on Northern blots.
Moreover, they have less pairing in the miRNA precursor
stem than many of the other miRBase miRNAs. Interestingly,
these nine miRNAs are not among the predicted miRNAs
coming through the miMatcher pipeline steps, and six of
them (ath-MIR413 and ath-MIR417 to 426) are among the 25
‘‘false negatives’’ we get in the above miSVM evaluation.

Candidates in Repeat Regions
We use two methods to classify candidates as derived from

repetitive regions: (1) RepeatMasker to find known repeats

Figure 1. Conceptual Model of Intragenomic Matching

mRNA sequences are matched against the genome and matches are prefiltered. Matches with miRNA precursor potential are selected for further
processing.
doi:10.1371/journal.pcbi.0030238.g001
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and transposable elements as well as simple low-complexity
sequences; but since this relies on the quality of the available
repeat libraries, we also (2) count the copy number of the
mature candidate miRNA sequence in the whole genome,
regarding candidates with high copy numbers (.100) as
repetitive (see Materials and Methods). Following this
classification, we find that although underrepresented, there

is still a sizeable fraction of the known miRBase miRNA
mapping to repeats (8%–16%).
However, since most miRBase miRNAs are located outside

repeat and coding regions, we investigated the effect of
removing such candidates and found that it reduces the
number of candidate miRNAs significantly (Figure 2). Only
about one-fourth of the candidates remain in Arabidopsis and
Populus, and in Oryza, the number is reduced to around 10%.
While it might be argued that the risk of false positives in the
repeat and coding regions is higher, it is striking that there is
a very large potential for miRNAs in such regions, and we
speculate that the lack of experimental evidence could in part
be due to them being actively excluded in previous studies.
Because candidates encoded in repetitive or protein-

coding segments (CDS) of the genome could be qualitatively
different from those derived from other regions, we have
chosen to focus on the nonrepeat/non-CDS candidates in the
following analyses.

Conservation Analysis
While conservation is not a requirement for our miRNA

candidates, knowing whether a candidate has homologs in

Table 1. Performance of miSVM Estimated from Cross-Validation

Positives Arabidopsis Populus Oryza

Of all the truly positive

candidates, what is the

proportion actually

classified as positive?

Recall 83.18% 70.68% 57.23%

Of the candidates classified

as positives, what is the

proportion that is truly

positive?

Precision 93.68% 81.33% 87.96%

doi:10.1371/journal.pcbi.0030238.t001

Figure 2. Overview of the Number of miRNA Candidates at Successive Steps of the Procedure

A genome assembly and a set of annotated mRNA transcripts are input to the intragenomic matching.
Intragenomic matching. The result of the intragenomic matching generates ‘‘micromatches’’ consisting of pairs of a genome segment and an mRNA
segment. Also shown is the recovery of miRBase 8.2 loci and families.
miSVM. Remaining number of miRNA loci and families after miSVM classification is shown (numbers in green). The number of miRNA candidate loci and
families not overlapping repeat/CDS regions are shown in blue.
miHomology. Conservation filters were applied to detect the subset of miRNA candidates that have at least one homolog in one of the other two
organisms.
miSquare. The conserved miRNA candidates with the additional requirement of targets orthologs.
doi:10.1371/journal.pcbi.0030238.g002
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other species is useful and does strengthen the reliability of
the prediction. To explore the conservation of the miRNA
candidates, we compare the candidates predicted by the
intragenomic matching in each genome. We consider a
candidate to be conserved if there exists a candidate in one
of other genomes following the typical miRNA precursor
conservation patterns [19,33]: (1) the mature miRNA sequen-

ces should be highly similar and should reside on the same
arm of the precursor; (2) the loop region connecting the
miRNA and miRNA* should be less conserved than both the
miRNA and miRNA* (see Materials and Methods for details).
All candidate loci are compared and aggregated into

families. We observe that the conserved miRNAs (including
many miRBase miRNAs) are often members of multilocus
families, while 35% of our predicted putative miRNAs are
singletons. These loci may be of more recent evolutionary
origin, not having undergone as many duplications as the
deeply conserved miRNAs.
Given that a miRNA candidate is conserved between two

species, we investigate whether the conservation extends to a
more functional level, namely if the two candidates have
orthologous targets. When two orthologous miRNAs have at
least one instance of orthologous targets in the two
organisms, we call this a ‘‘miSquare’’ (Figure 5). For the
purpose of identifying miSquares, we use an expanded target
list based on looser matching criteria as detailed in Materials
and Methods and [19].
We note that ;90% of the candidates with a homolog in

another species also share at least one target (putting them
into the miSquare category), consistent with conservation of
the regulatory function. Consistent with this, 60%–75% of
the annotated miRBase miRNAs in each organism partic-
ipates in at least one miSquare.

Figure 3. The Structural Feature Space of miSVM

Distribution of structural features in the positive (blue) and negative (red) examples used to train miSVM. Arrows illustrate the feature on an example
miRNA precursor, with the mature miRNA sequence highlighted in red.
doi:10.1371/journal.pcbi.0030238.g003

Figure 4. Performance of miSVM

Density of the miSVM score of positive (blue) and negative examples
(red).
doi:10.1371/journal.pcbi.0030238.g004
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As can be seen in Figure 6, conserved miRNAs tend to have
more targets than the nonconserved. This fact can be
explained by the assertion that compensatory mutations
between a miRNA and its target(s) are less likely to happen if
the miRNA has many targets constraining its sequence.
Studying precursor conservation (miHomology) between

the three species after filtering out candidates overlapping
repeat and coding sequence, we find 226, 410, and 171
species-specific miRNA candidate families in Arabidopsis,
Populus, and Oryza, respectively (Figure 7A). These families
cover 272, 528, and 183 candidate miRNA loci in the three
species. We find 16 miRNA families conserved in all three
organisms. In Arabidopsis, all of these 16 conserved candidates
are already annotated in miRBase, suggesting that most of the
deeply conserved miRNAs are already found.
In an evolutionary perspective, one would expect more

miRNAs to be common between the two dicots (Arabidopsis
and Populus) than between a dicot and the monocot (Oryza).
Our predictions are fully in agreement with this hypothesis:
only a single family is conserved between pairs of Oryza and a
dicot, while five families are conserved only between dicots.
The picture is more ambiguous when we investigate all the
miRNAs in miRBase and use the same family assignment
criteria (Figure 7B). Most conserved miRBase miRNA families

Figure 6. Distribution of Family Sizes and Target Numbers

miRNA candidates outside coding sequences and repeat regions are counted and density plots constructed.
Top row: Distribution of the number of targets per miRNA family.
Bottom row: Distributions of family sizes. The conserved candidates generally have larger family sizes.
doi:10.1371/journal.pcbi.0030238.g006

Figure 5. The Principle of the miSquare Conservation Criteria

When two orthologous miRNAs have at least one instance of
orthologous targets in the two organisms, we call this a miSquare.
doi:10.1371/journal.pcbi.0030238.g005
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(21) are conserved between all three species. Unexpectedly, a
high number of miRBase families (seven) are only conserved
between the dicot Arabidopsis and the monocot Oryza: miR413,
miR414, miR417–420, and miR426 (ath-MIR416 was not part
of the analysis, as no targets could be predicted for this
miRNA). These are miRNAs that do not pass the miMatcher
pipeline and whose validity, as mentioned earlier, has been
questioned in a recent review [32]. There are only one to two
miRBase miRNA families conserved between Populus and one
of the other two species. This could be due to the fact that
only few studies have looked at conservation in Populus, and
no studies have looked at conservation only between Populus
and Oryza.

Novel miSquare miRNA Candidates
Among the predicted miRNA candidates, the conserved

ones classified as miSquare miRNAs are most likely to be
actively used and have a phenotypic impact. The majority of
predictions in this category are identical or overlapping with
the already known miRBase miRNAs, because similar criteria
have been used before to identify new miRNAs [5,19]. We did
a manual assessment of the potential novel miSquare
candidates that do not overlap other miRBase miRNA
precursors or known annotated coding regions or repeats.

In Arabidopsis, the two candidates are the miRNA* sequences
of MIR172 precursors. Interestingly, Wang et al. have found
Northern blot expression evidence of the ath-MIR172b*
sequence [6]. In Oryza and Populus, we find no new miSquare
families, but three new members of known miRBase families
(oza-MIR399, ptc-MIR166, and ptc-MIR395; see Table 2).

Distribution of Candidates in the Genomic Landscape
Both miRBase miRNAs and our predictions are found in

many different genomic contexts. Analyzing the genomic
context of a miRNA can provide hints to its function.
In contrast to animals (with ;40% of miRBase human

miRNA loci in introns), the three plants studied here have the
vast majority of the miRBase miRNAs in intergenic regions
(Figure 8). Oryza has the highest fraction (;8%) of both
miRBase miRNAs and predicted miRNA candidates derived
from introns in sense direction.
miRBase miRNAs contained in protein-coding genes are

clearly underrepresented relative to the fraction of the total
genome. The conserved and miSquare subsets of our
predictions show a similar underrepresentation, whereas
the rest of the candidates have a larger fraction overlapping
already annotated genes, although still underrepresented in
intron and CDS regions compared to the total CDS/intron
fraction of the genomes.
When on the same strand as another gene, the CDS-,

untranslated region–, or intron-mapping candidates are
interesting cases, since they could constitute parallel signals
that are sent when the ‘‘host’’ is expressed. In contrast to
‘‘normal’’ sense–antisense pairs, supposedly forming dsRNA
to trigger the RNAi machinery (reviewed in [34]), miRNAs
encoded on the antisense strand to a protein-coding gene
suggest an alternative and easily evolvable way of regulating
the sense transcript.

Function of Candidates
While the first reports of miRNA targets in plants found

that a large proportion of the targets were transcription
factors (TFs) [28], subsequent research has suggested that
plant miRNA targets are more diverse although still enriched
in TFs [6,17,18]. To test whether the targets for our miRNA
candidates are enriched in TFs, we use the Arabidopsis TF
database AtTFDB [35]. The enrichment is found as the
fraction of predicted targets that are TFs divided by the
fraction of all annotated genes that are TFs (5.8%). The
results are shown in Figure 9 for different sets of miRNAs
with and without repeat/CDS overlapping miRNAs: miRBase,
miSVM, miHomology, and miSquare miRNAs.
All sets show a high enrichment of TF targets (miRBase,

Figure 7. Conservation of miRNA Candidates and miRBase miRNAs

(A) Species conservation (miHomology) of all candidate miRNA families
predicted with miSVM and not overlapping repeat or coding sequence.
The Venn diagram shows the number of families that are species specific
and those that are conserved within another species (see Materials and
Methods).
(B) Species conservation (miHomology) of only miRBase (version 8.2)
miRNA families (repeat/CDS overlapping families). We only include
miRBase miRNAs that can be mapped exactly to the genome according
to the reported precursor sequence and where we can predict at least
one target.
doi:10.1371/journal.pcbi.0030238.g007

Table 2. Novel miSquare Conserved miRNA Candidates

Family ID Locus ID Mature Sequence Conserved In Number of Targets

Populus MIR395 1351 TGAAGTGTTTGGGGGAACTC Arabidopsis 4

MIR166 1068 CGGACCAGGCTTCATTCCCC Arabidopsis, Oryza 7

Oryza MIR399 19864 CTGCCAAAGGAGAATTGCCC Arabidopsis 8

Predicted miRNA candidates that are miSquare conserved (have conserved target(s)) in at least one other genome. This is a short list of manual inspected candidates without overlap to
miRBase miRNAs or overlap with annotated CDS or repeat regions. Locus ID can be used to look up details about the candidate in Datasets S1–S4.
doi:10.1371/journal.pcbi.0030238.t002
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miHomology, and miSquare of almost identical magnitudes).
When we filter out miRNAs that overlap repeat/CDS regions,
the TF target enrichment rises notably for all sets, indicating
a different functional profile of CDS/repeat-derived miRNA
candidates. The enrichment tops for non-repeat/CDS miS-
quare miRNAs, with 40.8% (2.8-fold enrichment) of the
targets being TFs. This high TF target enrichment of
conserved miRNAs suggests that miRNA interaction with
the core gene regulatory machinery is an important evolu-
tionary feature.

Our candidates (miSVM) show a lesser but still considerable
enrichment compared to miRBase and conserved miRNAs
(both with and without repeat/CDS-overlapping miRNAs).
This implies that a larger proportion of the nonconserved
miRNA candidates have targets outside the core gene
regulatory machinery. These observations suggest that a
notable fraction of our nonconserved miRNA candidates
are functionally different than the conserved miRNA
candidates and already known miRNAs. This can be
interpreted in at least two ways. It could be that the fraction

of estimated false positives has targets spread uniformly
throughout the genome and thereby lower the total enrich-
ment of TF targets in our candidate set. On the other hand, it
makes biological sense that newly evolved (or evolving)
miRNAs arise uniformly around the genome with targets
uniformly spread on all mRNAs, and only the functionally
important ones then being maintained through evolution.

Experimental Evidence for Nonconserved Candidates in
Arabidopsis
Recently, deep sequencing of small RNAs in Arabidopsis

using the 454 technology has revealed novel nonconserved
miRNAs [36,37]. In one study [36], small RNAs (16–28 nt) were
sequenced from libraries made from whole seedlings, rosette
leaves, whole flowers, and siliques, resulting in approximately
340,000 unique sequences with a perfect match to the
genome. Applying very strict filters including a requirement
for expression of both the mature miRNA and miRNA*, the
authors identified 38 high-confidence novel nonconserved
miRNAs among the sequences.

Figure 8. Distribution of miRNAs in the Genomic Landscape

A histogram for each of the three organisms showing the genomic origin of the miRNAs. The first histogram group in each plot shows the relative
abundance of coding (CDS), untranslated (UTR), intron, repeat, and intergenic (IGR) regions in the genome. The second histogram group shows the
relative abundance of miRBase miRNAs among these regions, with different colors for sense and antisense overlap. The last three histogram groups
capture the same measurements for predicted miSVM, miHomology, and miSquare miRNAs. Novel predicted miRNAs (not found in miRBase) in these
groups are illustrated with darker colors, whereas miRBase miRNAs found among our candidates have lighter colors (see legend).
doi:10.1371/journal.pcbi.0030238.g008
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The full database of genome-mapped small RNAs from this
sequencing study covers 5% of the Arabidopsis genome. A total
of 31% (104) of our 334 candidates overlap with an observed
small RNA with 20–23nt. Comparing this overlap frequency
to (1) 22mers randomly chosen from the genome (1.8%
overlap with 454 reads), and (2) miRNA candidates found by
intragenomic matching but removed with miSVM (4.2%
overlap) (both sets filtered for CDS/repeat overlap), it can be
seen that both the intragenomic matching and miSVM step
improves the frequency of miRNA candidates expressed by
small RNAs (Figure 10).

Of the 104 miRNA candidates with read overlap, 74 are
already in the new miRBase 9.1 (comprising 184 miRNA
precursors, including the findings from Rajagopalan et al. [36]
and Fahlgren et al. [37]). This leaves us with a short list of 28
novel nonconserved miRNA precursor candidates where the
predicted mature miRNA has been observed experimentally
(see Dataset S4).

Conclusion
By using intragenomic matching in a single genome

followed by hairpin classification, this work demonstrates
that miRNA candidates can be found via their targets with
high specificity and reasonable sensitivity. Using this ap-
proach, we have found surprisingly large numbers of miRNA
candidates in the three plants studied.

While most of the miRBase miRNAs are conserved along
with their targets in other plant species (although some newly
discovered are more species specific, e.g., [38,39]), the
majority of the candidates found by our approach seem to
be specific for each genome. Many of our candidates have a
different genomic origin than the known miRNAs: many are
encoded in regions annotated as repeats or protein CDS
(both sense and antisense).

Recently, it has been shown that repeat associated miRNAs
are common in animals [22,26]. Similarily, in plants we find

that a large fraction of the new miRNA candidates derive
from repeat regions. This suggests an active role for repeats
in the regulation of gene expression.
Their functional profile also differs from already known

miRNAs in the sense that there is less target overrepresenta-
tion among TFs.
Recently, deep sequencing of small RNAs in Arabidopsis

using the 454 technology has revealed many novel non-
conserved miRNAs in Arabidopsis [36–38]. Of our 334
predicted Arabidopsis miRNA candidates outside repeat and
protein annotation, we identify 28 novel candidates with
experimental support from a small-RNA sequencing project
(see Dataset S4).
Together, these observations raise some important ques-

tions: how many of the candidates are actually functional? Do
these nonconversed miRNAs play a role in speciation?
Conversely, if they are not functional, we must ask why: does
something prevent their transcription or maturation? For
example, in Arabidopsis, we know that many intergenic regions
and regions antisense to annotated genes are transcribed [14].
If they are transcribed, what prevents a candidate miRNA
from being functional? We know that their structure looks
like that of known miRNAs and that they match at least one
target with maximum two mismatches—just like the exper-
imentally confirmed miRNAs. What other unknown features
of sequence and structure, if any, are required for a miRNA-
like hairpin to be functional? We hypothesize that the
candidates that are not (yet) functional form a pool from
which functional miRNAs can evolve in relatively few steps,
thus facilitating adaptation towards new niches by improving
the organisms’ evolveability.

Materials and Methods

Input data. Known miRNAs. Sequences were downloaded from
miRBase release 8.2 [40]. A total of one Populus (ptc-MIR481a) and
eight Oryza miRBase (osa-MIR444, osa-MIR445b/c/e/f/g/h/i) genes were
discarded because their reported precursor sequences could not be
mapped to the genome. This leaves us with 118 (Arabidopsis), 212
(Populus), and 174 (Oryza) genome-mapped miRNA genes. Requiring

Figure 9. miRNA Candidates Targeting TFs in Arabidopsis

Enrichment of Arabidopsis TF targets in different sets of miRNAs,
comparing the relative abundance of TFs among the miRNA targets with
the relative abundance of TFs in the Arabidopsis genome (;5.9%). For
the nonfiltered miRNA sets (red), the relative abundance of TF targets are
miRBase, 59 of 440; miSVM, 87 of 782; miHomology, 60 of 429; and
miSquare, 59 of 408. For the repeat/CDS filtered miRNA sets (green), the
numbers are miRBase, 42 of 133; miSVM, 73 of 442; miHomology, 43 of
116; and miSquare, 42 of 103.
doi:10.1371/journal.pcbi.0030238.g009

Figure 10. miRNA Overlap with Sequenced Small RNAs

Percentage of Arabidopsis miRNAs with 20–23 nt coordinate overlap with
sequenced and genome-mapped small RNAs from [36]. Three different
sets are shown (all filtered for CDS/repeat overlap).
(A) Random 22mers, 21.549 loci sampled randomly from the genome.
(B) A set of 1,886 miRNA loci classified as non-miRNAs with miSVM.
(C) A set of 334 miRNA loci classified as miRNAs by miSVM.
doi:10.1371/journal.pcbi.0030238.g010
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nonoverlapping genome loci and at least one predicted target, these
numbers are further reduced to 117 (Arabidopsis), 199 (Populus), and
166 (Oryza) unique miRNA genes (see miMatcher procedure and
grouping into loci explained below).

Arabidopsis thaliana genome and annotation TAIR assembly version
6 were downloaded from http://www.arabidopsis.org. We only use
RefSeq protein-coding mRNAs as possible miRNA targets.

Populus trichocarpa genome assembly and annotation used was
kindly provided by Eric Bonnét and is available upon request. The
official release of the genome is now available at http://genome.jgi-psf.
org/Poptr1_1.

Oryza sativa. TIGR assembly version 4.0 and annotation was
downloaded from ftp://ftp.tigr.org.

The miMatcher procedure. This is an improved version of the
procedure described in [18].

Finding initial micromatches. For each annotated spliced mRNA, we
search the genome for matches of length at least 20 with a maximum
of two mismatches (no gaps or wobbles allowed) using the suffix
array–based program vmatch (http://www.vmatch.de). This is an
exhaustive search guaranteed to find all matches.

Prefiltering the intragenomic matches. The initial micromatches are
filtered by discarding all matches not fulfilling the following criteria.

Attributes of the putative mature sequence. Shannon index entropy of
the genomic part of the match (putative mature miRNA sequence)
must be larger than 1.7 bits. In addition, the following must hold: (1)
all four bases had to be present at least once; and (2) at most, 11 of the
three most frequent dinucleotides in the sequence were allowed.
Length of the genomic part of the match must be 20–25 nt (both
inclusive).

Attributes of the intragenomic match. Using the program RNAcofold
(Vienna RNA package [41]), the free energy change when a miRNA
candidate binds to a target site was calculated. The free energy of
binding per base must be less than�1.4 kcal/mol.

Attributes of the precursor structure. In order to predict a possible
precursor molecule, two genomic sequences around each micro-
match are extracted: one starting 10 bases 59 of the micromatch and
extending 240 bases 39 of the micromatch, and one with the extension
lengths reversed. Each of these is treated independently in the
following analysis. First, the potential precursor sequence is folded
with RNAfold [41] to find the minimum free energy structure. The
complementary part of the miRNA in this stem is denoted miRNA*,
and is found as the sequence of nucleotides delimited by the pairing
partners of the most 39 and 59 bases in the mature sequence. We
define the attribute pretty stem to be true if all base pairs involving the
mature microRNA and miRNA* are pairing to bases in the same
direction opposite to each other.

Trimming the precursor. Since all pre-miRNA are not of the same
length, we trim down the initially found constant length pre-miRNA
structure. We count how far inward toward the loop or outward
toward the ends of the RNA sequence the stem extends using the
following algorithm: moving out from the terminal base pair between
the miRNA and miRNA*, a score of 1 is assigned for each base pair
encountered and a score of�1 for each unpaired base. The extension
is stopped when the current score is less than 5 lower than the
maximum score so far. The last base pair is considered the terminus
of the trimmed precursor.

Given the predicted minimum free energy secondary structure of
the putative miRNA precursor, we calculate the following attributes:
pairs to mature miRNA—the number of paired bases in part of the
precursor predicted to become the mature miRNA; outer and inner
extension—found during the trimming procedure described above;
distance between miRNA and miRNA*—the number of nucleotides
between the bases participating in the innermost base pair of the
mature miRNA; stability of precursor: this is simply calculated by
using RNAfold on the trimmed precursor and dividing by the number
of bases. This is based on the observation that miRNA precursors are
unusually stable [42]; asymmetrically unpaired bases in stem—we
count unpaired bases in either the miRNA or miRNA* where there
are no corresponding unpaired base on the other side; and 59 and 39
stem hybridization—the energy gain calculated by RNAcofold
(Vienna RNA package) from hybridizing the ten first or last bases
of the mature miRNA to miRNA*.

It should be noted that the structural attributes are not necessarily
strictly independent from each other (e.g., a long ‘‘inner extension’’
correlates with the ‘‘distance between the miRNA and miRNA*’’).

miSVM: SVM training. We used SVM software implemented in the
SVMlight package (downloadable from http://svmlight.joachims.org)
using a radial kernel and double penalization of errors on the
(smaller) set of positive examples. The input to the SVM is the
structural features detailed above.

Cross-validation. To avoid overtraining and to get a realistic
evaluation of the ability of the SVM to generalize, it is important to
reduce redundancy between training and test sets. Because precur-
sors in the same family often have similar structures, we performed
‘‘leave-one-family-out’’ cross-validation to assess generalization
across families. The positive examples (miRBase miRNAs) were
divided into families according to homology (we used the families
provided by miRBase). For each family, a training set was constructed
from the remaining positive examples, and all but 100 of the negative
examples were chosen by random. The SVM was trained on this
training set and subsequently tested on the withheld family and
negative examples. The final SVM was retrained on the entire dataset
and is called miSVM.

Grouping of candidates into genomic loci. Given the location
(coordinates and strand) of the mature part of a miRNA precursor,
we assign miRNA candidates into genomic loci by grouping
precursors with up to 4 nt overlap of the mature sequence together.
In Populus, the 212 miRBase 8.2 genome-mapped genes correspond to
200 unique genomic loci; in Oryza, the 174 miRBase genes are reduced
to 167 loci. All 118 Arabidopsis miRNAs are correctly mapped to
unique loci.

Position in the genome relative to existing annotation. Gene
models provided by the genome sequencing and annotation groups
were downloaded (see above for sources), parsed, and read into
database tables indexed by the absolute genomic coordinates.
RepeatMasker (http://www.repeatmasker.org) was run to identify
repeats whose locations were also stored in the database. In addition,
we consider a candidate a repeat if it has a copy number (number of
exact genome matches with length 20 allowing two mismatches or
indels—corresponding to our miRNA family definition) greater than
100. In Arabidopsis, this copy number constraint annotates three
miRBase miRNAs (ath-MIR415, ath-MIR401, and ath-MIR414) as
repeats, two of which were already assigned as repeats by Repeat-
Masker. Similarly for Oryza, 16 miRBase miRNAs are annotated as
repeats (15 were already assigned by RepeatMasker), and for Populus,
20 miRBase miRNAs are annotated as repeats (17 were already
assigned by RepeatMasker).

All candidates where checked against this database to locate
overlaps with annotation. When we consider the nonrepeat/CDS
overlapping miRNAs, we remove miRNAs overlapping repeat or CDS
regions (regardless of strand).

Grouping of candidates into families. All candidate miRNAs were
grouped into families on the basis of mature sequence similarity: two
candidates were grouped together if they shared at least 20
nucleotides allowing two mismatches or indels. Larger family clusters
were constructed using single linkage clustering. In addition, it is
required that all members of a family must have the mature miRNA
on the same arm of the precursor. These criteria gave us near-perfect
recovery of the miRBase-assigned families (miRBase version 8.2). In
Arabidopsis, only the miR171 family is divided in two families, and the
following miRBase families are pairwise grouped together: MIR319–
MIR159, MIR156–MIR157, MIR165–MIR166, and MIR170–MIR171.

Determination of homology between miRNAs in different spe-
cies—miHomology. To determine if two miRNA precursors from
different species are homologous, we require fulfillment of two
criteria: (1) the mature miRNAs must align over a region of minimum
20 bases with a maximum of two mismatches (gaps count as
mismatches), and be on the same arm of the precursor; and (2) no
20mer in the loop region (connecting the miRNA and miRNA*) may
align better than the miRNA or miRNA* region. We explored the
effect of these criteria on a few expected positive and negative
miRNA test cases. As a positive case, we classify the three miR172a
miRNAs from Arabidopsis, Oryza, and Populus as homologs (the same is
true for miR156a—no other similar cases were explored). Testing the
Arabidopsis ath-MIR169 family (14 members), approximately two-
thirds could be grouped as homologs: this is as expected, as
precursors originating from recent duplications have highly similar
loop regions [33]. As a negative test case, we took 21 Arabidopsis ‘‘a’’
precursors (ath-MIR156a, ath-MIR157a, etc.) and found only two
homologous pairs based on our test: ath-MIR156a–157a and ath-
MIR165a–166a. These two pairs are often considered to be from the
same miRNA families.

We consider two miRNA families from different species as
conserved if there exists a precursor in each family with homology
(miHomology) to a precursor in the other family. Because miRNA
families are computationally determined in a genome-dependent
manner (relying on single linkage clustering), there can be a minor
asymmetry in miRNA family conservation: looking from Arabidopsis,
there can be X families conserved in Populus, while looking from
Populus, there can be Y families conserved in Arabidopsis. In this paper,
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we report the larger of these two numbers as the family conservation
count.

Finding and scoring conserved miRNA targets—miSquare. To
identify conserved regulatory interactions between a miRNA and
target in different species—miSquares—we have two tasks: (1)
determine protein orthology between the species, and (2) determine
the targets of the conserved miRNAs.

Protein orthology in the three organisms was determined using the
INPARANOID program [43]. The program uses bidirectional best
BLAST hits to determine orthologs between two species. In addition,
it BLASTs each proteome against itself to determine ‘‘inparalogs’’—
presumed gene duplications after speciation. The program was run
using Caenorhabditis elegans (wormpep157 from Wormbase) as out-
group, and otherwise default parameters.

The intragenomic matching procedure simultaneously finds
miRNAs and corresponding targets with up to two mismatches (no
wobbles or gaps allowed). According to Jones-Rhoades and Bartel
[19], we can find targets above noise with a weaker matching criterion
if we add target homology as a constraint. With the exception that we
count wobbles as mismatches, we use the same matching and scoring
rules as presented in this paper. Given a miRNA, we find target
sequences that align over 20 nucleotides with a score �3 according to
the scoring scheme: mismatch scores as 1, gap (open and extension)
scores as 2. The original article argues for a cutoff score of 3.5
because they score wobbles less restrictively (score .5). In other words,
our scoring scheme allows for targets with up to three mismatches or
a combination of one gap and one mismatch. Based on these target
requirements, we cannot find any targets for three miRBase 8.2
miRNA genes: ath-MIR416, ptc-MIR482, and osa-MIR438.

It should be noted that the miSquare criterion does not require the
miRNAs in the two species to target homologous regions in the
orthologous target mRNAs. We note, however, that in reality, this is
most often the case.

Experimental evidence for miRNA candidates. We used the full
database of sequenced genome-mapped small RNAs from the
supplementary data of [36]. Our miRNA candidates were analyzed

for overlap with these sequenced small RNAs by requiring a 20–23 nt
coordinate overlap with the mature sequence of a candidate.

Supporting Information

Dataset S1. Predicted miRNA Candidates in Arabidopsis

Found at doi:10.1371/journal.pcbi.0030238.sd001 (606 KB TDS).

Dataset S2. Predicted miRNA Candidates in Oryza

Found at doi:10.1371/journal.pcbi.0030238.sd002 (2.0 MB TDS).

Dataset S3. Predicted miRNA Candidates in Populus

Found at doi:10.1371/journal.pcbi.0030238.sd003 (981 KB TDS).

Dataset S4. Predicted miRNA Candidates in Arabidopsis with
Experimental Evidence

Found at doi:10.1371/journal.pcbi.0030238.sd004 (1 KB TDS).

Table S1. Description of Datasets S1–S4

Found at doi:10.1371/journal.pcbi.0030238.st001 (33 KB DOC).
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