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ABSTRACT We present a simple but realistic model for
the internal bend-generating mechanism of cilia, using pa-
rameters obtained from the analysis of data of the beat of a
single cilium, and incorporate it into a recently developed
dynamical model. Comparing the results to experimental data
for two-dimensional beats, we demonstrate that the model
captures the essential features of the motion, including many
properties that are not built in explicitly. The beat pattern and
frequency change in response to increased viscosity and the
presence of neighboring cilia in a realistic fashion. Using the
model, we are able to investigate multicilia configurations
such as rows of cilia and two-dimensional arrays of cilia. When
two adjacent model cilia start beating at different phase, they
synchronize within two cycles, as observed in experiments in
which two flagella beating out of phase are brought close
together. Examination of various multicilia configurations
shows that metachronal patterns (i.e., beats with a constant
phase difference between neighboring cilia) evolve autono-
mously. This provides modeling evidence in support of the
conjecture that metachronism may occur as a self-organized
phenomenon due to hydrodynamical interactions between the
cilia.

Ciliary motion and particularly the metachronism phenome-
non have attracted a great deal of research effort both
experimentally and theoretically. Metachronal coordination
between cilia is a situation where cilia beat together with a
constant phase difference between adjacent neighbors, their
tips forming a moving wave pattern. The reason why arrays of
cilia beat in a metachronal pattern is not fully understood. The
work of Machemer (1), for example, shows that membrane
voltage and calcium levels affect the direction of the meta-
chronal wave and also the directions of the effective and
recovery strokes of the ciliary beats. Some researchers spec-
ulate that the intriguing metachronism phenomenon is possi-
bly the result of hydrodynamical coupling (e.g., see refs. 2–4).
This work provides a theoretical model that supports this
conjecture.

Gueron and Liron (ref. 5; GL hereafter) introduced an
improved technique for describing the hydrodynamics of mov-
ing cilia, based on a refined slender body theory, which offers
an alternative for the simplistic resistive force theory (known
as the Gray and Hancock approximation) that relates drag
forces and velocities. As a result, the accuracy and consistency
of the model for cilia beating is markedly improved. More
important, the GL equations provide a method for dynamical
simulations of multicilia configurations that account for the
effects of neighboring cilia and the effect of the surface from
which the cilia emerge. This model was originally applied to a

two-dimensional setup and later extended to describe three-
dimensional beating (6).

The work of GL was mainly oriented toward developing the
framework for dynamical modeling of multicilia configura-
tions. For the internal mechanism of a cilium (hereafter
referred to as the ‘‘engine’’) they used an ad hoc equation for
the active (normal) shear force generated inside a cilium.
However, the GL model has the engine as a separate building
block which can be replaced (and is replaced here) by any other
engine. For simplicity, the GL engine included a built-in
frequency term that controls the resulting beat frequency and
predetermines the duration of the effective and the recovery
strokes. Therefore, this model does not allow for realistic
changes in the beat frequency in response to external load such
as increased viscosity or external f low generated by neighbor-
ing cilia. The GL engine cannot, therefore, be used for
investigating metachronism. Murase (7) proposed an engine
which is analogous in its form to muscle sliding models.
However, his model is restricted to small-amplitude motion,
which is not the case for real cilia, and is based on the Gray and
Hancock approximation, which does not allow for modeling
multicilia configurations. This engine gives poor results when
incorporated into the GL model.

We present a simple plausible functional form for the engine
that is related to the dyenin arms and the radial spokes system
(see refs. 8 and 9). This engine has a small number of
parameters. To obtain realistic values for the parameters we
use observations of ciliary motion to compute locations and
velocities during the beat cycle, solve the GL equations to
compute the drag forces, and then compute the internal shear
forces. These forces are then used to determine the engine
parameters. The computed engine is tested by incorporating it
into the GL dynamical equations for two-dimensional beats.
The model produces realistic beats, and it reproduces exper-
imental results such as exponential decrease in beat frequency
with increased viscosity, self-synchronization between two
adjacent cilia, and frequency matching with the frequency of
external f lows. Finally, we investigate multicilia configurations
and find that metachronal patterns evolve autonomously due
to the hydrodynamical interaction between the cilia. This
supports the conjecture that metachronism can be explained as
the result of hydrodynamical coupling.

The Model Equations

The drag–velocity relation, combined with the two-
dimensional curve geometry, yields the following three integro
partial differential equations, written in nondimensional form
(see ref. 5):
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We use boundary conditions that correspond to a cilium that
is pinned at its basal end and free at its distal end, and initial
conditions that correspond to an erect cilium:

as~0, t! 5 0, asss~0, t! 5 2
S0L2

Eb
Ss~0, t!,

as~1, t! 5 0, ass~1, t! 5 2
S0L2

Eb
S~1, t!,

FTs
~0, t! 5 FNs

~0, t! 5 0, FN~1, t! 5 FT~1, t! 5 0,

a~s, 0! 5
p

2
. [4]

In Eqs. 1–4 s is the arclength variable of the centerline of the
cilium, measured from the basal end, t is time, and the
functions depend on s and t (we omit writing this dependence
explicitly when it is clear from the context). The subscripts s
and t denote the space and time derivatives, respectively. The
function a 5 a(s, t) measures the angle between the tangent
to the cilium and the horizontal axis. a is related to k 5 k(s,
t), the curvature of the cilium’s centerline, by the equation k
5 as. FN and FT are the normal and tangential components of
the shear force generated inside the cilium, respectively. S 5
S(s, t) is the active shear force due to the internal sliding
filaments mechanism and the radial spokes system. The model
equation representing S is derived below. S0 is a typical fixed
magnitude of the internal shear force (used for scaling), L is
the length of the cilium, and Eb is its elastic bending resistance.
The expressions gT, gN involve integrals of the appropriate
singular solutions of Stokes flow, CN and CT are the related GL
coefficients, CTN 5 CTyCN, and CNT 5 CNyCT. These equa-
tions, derived in detail by GL, are outlined in the Appendix.\

Because we deal here with a two-dimensional problem, the
angle (a) determines the centerline curve if the position and
the orientation at s 5 0 (i.e., the anchor of the cilium) are
given.

The normal shear force FN in Eq. 1 includes the contribution
due to the elastic resistance of the cilium and the active shear
force S(s, t). Clearly, S(s, t) determines the dynamics of the
cilium in the following way: If the position of the cilium (a) is
given at time t, one can calculate FN from Eq. 1. FT can then
be obtained from Eq. 2, which relates the normal and the
tangential components of the shear force (due to the inexten-
sibility of the cilium). a is propagated in time by means of Eq.
3.

A Load-Dependent Internal Engine

In this section we briefly describe our method for modeling the
internal mechanism of cilia. As data, we use the observed
(two-dimensional) beat pattern of the cilium of Paramecium
(diagrams and discussion in refs. 10 and 11). We measure the
coordinates of equally spaced points along the cilium at

different times during the beat cycle. The velocity of the cilium
is calculated from these data (after proper smoothing). Using
the calculated velocity, we solve the integral Eqs. 1–3 for the
drag forces as unknowns, and then compute the active shear
force S(s, t).

According to Sleigh and Barlow (9), the radial spokes system
contributes to the total shear force at the bent region but not
at the straight region. A reasonable intrinsic (and local)
indicator of the place of the bend is the curvature k(s, t) 5
as(s, t). Therefore, we fit the measured function S(s, t) to a
simple combination of functions of the curvature, the arc-
length s and the deviation from the resting position:

S~s, t! 5 ~61!

zHCNv
~s2 2 1!

2
zF1 1 SA1 1 A2Sa~0, t! 2

p

2D
2DG

1 Bzk~s, t!J . [5]

Here, v (a typical angular velocity), C# N 5 CNL2yS0, and A1,
A2 are parameters used for scaling. v, A1, A2 have different
values during the effective and the recovery strokes. To
simulate the fast initiation of the bend at the beginning of the
recovery stroke, we take A1 in the region 0 # s , 0.1 to be
twice as large as its value in the region 0.1 # s # 1. Altogether,
the effective stroke is determined by four parameters (C# Nv,
A1, A2, B) and the recovery stroke by five (A1 has two values).
Note that C# N and v appear only as the product C# Nv but are
artificially separated to introduce a realistic frequency term
(v) and for consistency with the model equations developed by
GL.

The first term in Eq. 5 represents the contribution of the
dynein arms, and the second curvature-dependent term rep-
resents the contribution of shear-resistant elements such as the
radial spokes and nexins. Note that during the effective stroke
the cilium is almost straight (k ; 0), and thus only the dynein
arms contribute to the motion.

Our engine has a similar functional form during the effective
and the recovery stroke but with opposite signs (1 during the
effective stroke and 2 during the recovery stroke). This is
based on the evidence (10) that different groups of filaments
are active at different stages of the beat cycle. To complete the
definition of the model we must specify when the switching
between the two phases of the motion occurs.

We speculate that the effective stroke continues as long as
the filaments can slide in this direction, that is, until the
effective shear s between filaments reaches a certain maximal
value (note that the effective shear is a geometric quantity, not
to be confused with the active shear force. For details see ref.
8. Since the cilium is inextensible, we have ­sy­s 5 ­ay­s,
which implies s(s, t) 5 a(s, t) 1 [s(0, t) 2 a(0, t)]. It follows
that during the effective stroke s corresponds directly to the
inclination angle of the cilium. Therefore, the criterion we
choose for the switching between the effective and the recov-
ery strokes is reaching a maximal inclination angle (denoted
aright) at the basal region.

During the recovery stroke, the maximal effective shear is
attained when the cilium completes its straightening process.
The criterion we choose for the switching between the recov-
ery and the effective strokes is, therefore, returning to an erect
position.

It is important to note that Eq. 5 represents a load (geom-
etry)-dependent engine, since the beat pattern and the fre-
quency depend on the environment. External f low (e.g., due to
neighboring cilia) and external load (e.g., changes in the
viscosity of the surrounding fluid) affect a(s, t). Because the
engine depends on the geometry and the switching depends on

\The values used in the model are S0 5 10212 N, L 5 12 mm, Eb 5
25z10224 Nzm2, CN 5 0.0035 kgymzs, and CT 5 0.0025 kgymzs.
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reaching some ‘‘final position,’’ changes in a(s, t) affect the
beat frequency as well.

The parameter values used in our model are veff 5
11,000°ys, vrec 5 2,290°ys, aleft 5 130° and aright 5 20°. These
are measured directly from data (beat cycles from ref. 10).
During the effective stroke A1 5 0.26 and A2 5 20.17, and
during the recovery stroke A1 5 2 for 0 # s # 0.1L and A1 5
1 for 0.1L # s # L, A2 5 22, and Beff 5 0 and Brec 5 2. These
parameters were obtained by fitting the measured data.

Results

Fig. 1a displays snapshots of the beat cycle of a single cilium,
having an engine described by Eq. 5 and dynamics computed
by Eqs. 1–3. Clearly, the model produces a realistic beat
pattern: during the effective stroke (dashed lines), the cilium
moves almost as a straight rod, and during the recovery stroke
(solid lines) a bend is generated at the basal end and propa-
gates toward the distal end. Table 1 compares the model results
to experimental data, demonstrating that the model cilium
captures all essential features of the motion.

Machemer (1) observed that the beat frequency of the cilia
of Paramecium decreases approximately linearly when plotted
against the logarithm of viscosity. Brokaw (12) investigated
this dependence with various types of flagella and found the
same behavior. In the present model, both beat pattern and
frequency change with increasing viscous load. In Fig. 2 we
plot the calculated beat frequency as a function of the viscosity
in the range mwater # m # 5mwater, reproducing a linear
dependence. Since this dependence is not explicitly assumed in
the model, this suggests that the fundamental characteristics of
the ciliary motility are captured by the present model. The
ciliary beat frequencies (shown in Fig. 2) measured by Ma-
chemer in the range mwater # m # 5mwater for a multicilia
configuration in Paramecium are higher than what we obtain
for the single isolated model cilium, but the slopes of the
resulting lines are roughly similar. This difference is consistent

FIG. 1. Beat cycles of cilia. All positions are equally separated in time by 3 ms. The effective stroke positions are plotted by dashed lines, and
the recovery stroke positions by solid lines. The units of the axes are nondimensional length. (a) A single cilium. The viscosity of the surrounding
fluid is that of water, m 5 mwater. The resulting beat frequency is '29 Hz. (b) m 5 2mwater. The resulting beat frequency is '17 Hz and the beat
pattern is changed. (c) m 5 3mwater. The resulting beat frequency is '12 Hz and the beat pattern is changed. (d) Side view of an infinite line of
synchronized cilia, spaced by 0.3 ciliary length, beating in water. The resulting beat frequency is '29 Hz.

FIG. 2. Dependence of the beat frequency on the viscosity, for a
single cilium, in the range mwater # m # 5mwater. The vertical error bars
represent model results with the estimated measurement errors, and
the dashed line is a minimal least-squares fit. The linear decrease in
beat frequency with exponentially increasing viscosity for the cilia of
Paramecium, shown in the figure, is reproduced from ref. 1. Note that
the abscissa is on a logarithmic scale.

Table 1. Comparison between the properties of the model cilia
and experimental data

Parameter Dimensions Data* Model

Beat duration ms 35.7 '34
Beat frequency cyclesys 28 '29.4
Angular range of the effective

stroke ° 110 110–115
Duration of the effective

stroke ms '9 '7–8
Duration of the recovery

stroke ms '26 '26
Ratio of durations

(recoveryyeffective) 2.9 3.25
Duration of basal swing

during the recovery stroke ms 6 '7

*See ref. 10.
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with our results for multicilia configurations. As reported
below, the beat frequency of the model cilia indeed increases
in the presence of neighboring cilia. Note that since the cilia of
Paramecium change the plane of beating when the viscosity is
increased by more than about 5-fold that of water (see ref. 1)
and the present model does not include this possibility, we do
not study the behavior of the model cilia outside this range.

To check the sensitivity of our model engine to external load,
we subjected the model cilia to an external periodic flow,
parallel to the cell’s surface and satisfying the no-slip boundary
condition. In the range from 29 to 55 Hz the cilium tends to
match its beat frequency to the frequency of the external f low
(data not shown).

Cilia interactions is another important aspect we study.
When neighboring cilia beat close enough to each other, each
one is subjected to the flow generated by the others. This
influences their beat pattern and beat frequency. The model
results indicate that the influence is negligible if the distance
between the cilia exceeds two cilium lengths.

The simplestysmallest multicilia configuration consists of
two cilia. Gray (13) reported on experiments with two flagella,
beating initially at different frequencies and having different
wavelengths. When these are put close enough to each other,
they tend to quickly synchronize, and beat with the same
frequency and in phase. An analogous phenomenon of self-
synchronization and phase locking between rings and lines of
coupled oscillators is well known. It was investigated experi-
mentally and theoretically (e.g., for one-dimensional weakly
coupled chains and rings of oscillators, see refs. 14 and 15), but
here we have a complex realistic biological system. Fig. 3
displays snapshots of the beat cycles of two cilia separated by
one cilium length, beginning their beat at opposite phases. As
shown in the figure, they synchronize completely within two
cycles. The final mutual beat frequency increases slightly from
29.5 Hz (for a single cilium) to 31 Hz. This is an indication of
the ‘‘advantage’’ of some multicilia configurations. The pres-
ence of neighboring cilia (one in this case) ‘‘helps’’ them beat
faster.

FIG. 3. Autonomous synchronization between two cilia starting at opposite phases (the left cilium starts at the recovery stroke and the right
cilium starts at the effective stroke). Synchronization is achieved after two cycles. Cilia spacing is 1. The snapshots, labeled successively from a to
h, are separated in time by 9 ms. The resulting beat frequency is '31 Hz. The units of the axes are nondimensional length.
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Metachronal coordination is characteristic of ciliary arrays.
The cilia on same line (perpendicular to the direction of the
effective stroke) are synchronized, and adjacent rows of cilia
(parallel to the direction of the effective stroke) beat with a
phase difference. Antiplectic metachronism is a situation in
which the metachronal wave (defined by the tips of the beating
cilia) propagates in a direction opposite to the direction of the
effective stroke (e.g., in Paramecium, see refs. 1 and 10). In
such configurations, each individual cilium is influenced by
cilia located on the same line as well as by cilia located on
neighboring rows. To ascertain whether the model would
generate self-organized metachronism, we used multicilia
configurations where the cilia start simultaneously with the
same initial conditions. Fig. 4 displays snapshots of 10 cilia and
a 100 cilia configurations. Both cases develop antiplectic
metachronal waves, which is typical for the cilia of Parame-
cium. The beat frequency does not change significantly when
the number of cilia exceeds 10 (42 Hz). This is because, as
mentioned above, the spatial range of the interaction is limited.

The cilia reach their steady-state beat patterns after a few
cycles, and the results shown in Fig. 4 are already at steady
state.

Liron (16) developed an efficient method for calculating the
velocity induced at a point by an infinite line of Stokeslets,
located at a fixed height above a flat surface (see also ref. 17).
Changing the expression for gN and gT in Eqs. 1–3 to include
the appropriate kernels (16) enables us to model the dynamics
of an infinite line of synchronized cilia (the beat remains
planar) and two-dimensional arrays consisting of several rows
each representing an infinite line of synchronized cilia. Fig. 1d
shows the side view of an infinite line of synchronized cilia. It
is interesting to observe that, although the beat pattern is
changed compared with a single cilium (compare Fig. 1d with
a), the resulting frequency ('29 Hz) remains almost un-
changed, unlike the case for a row of cilia. As for the single-row
configuration, metachronal phase differences emerge from the
dynamics due to the hydrodynamical interactions.

This paper describes a framework for modeling the internal
mechanism of cilia, which can be used for various cases based

FIG. 4. (a–d) Self-organized metachronism in a row of 10 cilia. (e–f ) Metachronism in the 100-cilia configuration. Metachronal wave pattern
is generated by hydrodynamical coupling. In both configurations the cilia spacing is 0.3, the snapshots are separated in time by 2 ms, the resulting
beat frequency is '42 Hz, and the units of the axes are nondimensional length.
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on experimental data. We used this approach successfully with
data for Paramecium. Our results demonstrate that for closely
packed ciliary arrays such as those found on ciliates, hydro-
dynamic interactions between neighboring cilia are sufficient
to account for antiplectic metachrony. In principle, it is also
possible to use our approach with appropriate data to inves-
tigate the formation of symplectic metachrony. Whether hy-
drodynamic effects alone are sufficient to cause diaplectic
metachronal waves requires extension of the present model to
include an ‘‘engine’’ that generates a realistic three-
dimensional beat. Such studies have been initiated. It should
also be pointed out and that in airways, where the tips of the
cilia penetrate into the lower surface of a thin layer of mucus
during the effective stroke, hydrodynamic interactions be-
tween neighboring cilia may be insufficient by themselves to
generate metachronal wave propagation. The properties of the
mucus would need to be included in a suitable theoretical
model.

Appendix

The integral expressions for gN and gT, as derived by G.L. (5),
are:

gN 5 CNGN, gT 5 CTGT , [6]

where GN and GT are the normal and tangential components
of the vector G.

G~s0 , t! 5 E
us2s0u.q

Us~r~s0 , t!, r~s, t!, 2f~s, t!!ds 1

E
0#s#L

$Vsi~r~s0 , t!, r~s, t!, 2f~s, t!! 1

E
0#s#L

$Vsi~r~s0, t!, r~s, t!, 2 f~s, t!! 1

Vdi~r~s0, t!, r~s, t!, 2 ~a2y4m!f~s, t!!% 1

E
0#s#L

neighboring cilia

Us~r~s0 , t!, r~s, t!,2f~s, t!!ds [7]

and

CT 5
8pm

22 1 4ln~2q/a!
, CN 5

8pm

1 1 2ln~2q/a!
. [8]

We use q 5 1 mm (the parameter that determines the
integration limits) and a 5 0.1 mm (the radius of the cilium)
as in ref. 5.

Here, Us(r, r0, f) is the velocity induced at r by a Stokeslet
with intensity f, located at r0. Usi(r, r0, f) is the velocity
induced at r by a Stokeslet located at r0, with intensity f, and
by its image system. Ud(r, r0, f) is the velocity induced at r by
a doublet with intensity f, located at r0. Udi(r, r0, f) is the
velocity induced at r by a doublet located at r0, with intensity
f, and by its image system. Vsi(r, r0, f) 5 Usi(r, r0, f) 2 Us(r,
r0, f). Vdi(r, r0, f) 5 Udi(r, r0, f) 2 Ud(r, r0, f). Eq. 7 with
the coefficients in 8 is an approximation up to the order
O(=«), where « 5 a/L measures the cilium’s slenderness
(1/120 in our case). Details are given by G.L. (5).
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