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Introduction
Alterations in the local ECM architecture and composition usu-

ally accompany disease progression such as oncogenic transfor-

mation. One of the most abundant components of the ECM, the 

adhesive glycoprotein fi bronectin (FN), is lost from the surface 

of many transformed cells (Hynes, 1990). FN functions pre-

dominantly within the context of a fi brillar matrix, and changes 

in FN fi bril assembly occur during tumor progression because 

of reduced expression and/or insuffi cient binding to cell surface 

receptors. Reintroduction of FN into tumor cell cultures increases 

their adhesivity, restores a morphology characteristic of non-

transformed cells (Yamada et al., 1976; Ali et al., 1977; Pasqualini 

et al., 1996), and reestablishes a fi brillar matrix (Schwarzbauer, 

1991). These observations illustrate the detrimental effects of 

loss of pericellular matrix and underscore the importance of FN 

expression and deposition into a fi brillar ECM for mainte-

nance of normal tissue organization.

FN matrix assembly is a cell-mediated process, initiated 

as the integrin receptor α5β1 binds to the RGD sequence and 

synergy site on FN (Schwarzbauer and Sechler, 1999; Mao and 

Schwarzbauer, 2005). Clustering of integrin heterodimers 

brings molecules of FN in close proximity and promotes FN 

self-association. Inside the cell, adaptor proteins that interact 

with integrin cytoplasmic domains become juxtaposed and acti-

vate their downstream signaling partners, such as FAK and 

RhoA GTPase (Miranti and Brugge, 2002). Nascent FN fi brils 

are formed between adjacent cells, and as matrix assembly pro-

gresses, these fi brils form a meshwork that is characterized by 

its insolubility in deoxycholate (DOC) detergent (McKeown-

Longo and Mosher, 1983; Chen and Mosher, 1996). Although 

the major steps in matrix assembly have been well established, 

little information is available about the gene expression changes 

that accompany the acquisition of a DOC-insoluble matrix. 

The human fi brosarcoma cell line HT1080 provides a useful 

model for FN matrix assembly because these cells do not assemble 

FN unless stimulated with the transcriptional regulator dexa-

methasone or the Ras pathway inhibitor PD98059 (McKeown-

Longo and Etzler, 1987; Brenner et al., 2000).

We have found that diastrophic dysplasia sulfate trans-

porter (DTDST), a sulfate/choride antiporter (Hastbacka et al., 

1994), is up-regulated upon induction of FN matrix assembly in 

HT1080 cells. Mutations in the human DTDST gene result in a set 

of autosomal recessive chondrodysplasias that range in severity 
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(Superti-Furga et al., 1996; Haila et al., 2001; Karniski, 2001). 

Patients show gross skeletal defects, reduced cellular sulfate 

uptake, and cartilage proteoglycan undersulfation (Rossi et al., 

1998). Proteoglycans are characterized by a core protein modi-

fi ed by a heterogeneous number of sulfated glycosaminoglycan 

(GAG) chains (Esko, 1991). GAG chains are crucial for many 

proteoglycan functions. For example, CHO cells defi cient in 

xylosyltransferase (Esko et al., 1985), the enzyme responsible 

for the fi rst step in heparan and chondroitin sulfate GAG chain 

synthesis, have reduced ability to assemble FN matrix (Chung 

and Erickson, 1997). Posttranslational addition of sulfate to 

GAG chains also has a functional role. Elimination of total sul-

fation using sodium chlorate abolished the coreceptor function 

of syndecan-4 with basic fi broblast growth factor, thereby pre-

venting mitogenic signaling in Swiss 3T3 cells (Rapraeger et al., 

1991). Inhibition of sulfation in C6 glioma cells reduced adhe-

sion to collagen IV, laminin, and FN (Keller et al., 1989; Mendes 

de Aguiar et al., 2002). Here we show that GAG chain sulfation 

in HT1080 cells depends on DTDST and, through its role in 

maintenance of cell surface sulfate levels, DTDST is both nec-

essary and suffi cient to stimulate FN matrix assembly.

Results
Up-regulation of DTDST correlates with 
FN matrix assembly
HT1080 human fi brosarcoma cells assemble FN into a matrix 

only with stimulation by the glucocorticoid dexamethasone 

(Oliver et al., 1983; McKeown-Longo and Etzler, 1987), acti-

vation of cell surface integrins (Brenner et al., 2000), or in-

hibition of MAP/extracellular signal–related kinase signaling 

with PD98059 (Brenner et al., 2000). DTDST showed dramatic 

up-regulation in microarray experiments performed using RNA 

from HT1080 cells treated with dexamethasone or PD98059. 

Quantitative RT-PCR analyses confi rmed the microarray re-

sults and revealed stimulation of DTDST expression in HT1080 

cells by dexamethasone at 6 and 20 h and PD98059 at 20 h of 

treatment (Fig. 1 A). In WI-38(VA13) cells, a transformed lung 

fi broblast cell line that constitutively assembles an extensive 

FN matrix, DTDST expression changed less than 1.5-fold with 

both treatments at both time intervals. Thus, DTDST expres-

sion was increased concomitant with HT1080 cells estab-

lishing competence to assemble FN into a fibrillar matrix. 

Basal levels of DTDST expression differ between these two 

cell lines (Fig. 1 B). Mean relative expression of the transcript is 

�2.5-fold higher in assembly-competent WI-38(VA13) cells, 

implying that stimulation of DTDST expression in assembly-

defi cient HT1080 cells may be necessary for suffi cient levels 

of sulfate import.

DTDST is one of the sulfate transporters that shuttles extra-

cellular sulfate into the cell in exchange for chloride. Five Na+-

independent sulfate/anion transporters have been identifi ed in 

the human genome (Markovich, 2001). Four of the fi ve sulfate 

transporters (h-Sat-1, Pat-1, DTDST, and Pendrin) are expressed 

to varying degrees by HT1080 cells (Fig. 1 C), but only DTDST 

was up-regulated by dexamethasone stimulation (Fig. 1 D).

Inhibition of sulfation ablates FN 
matrix assembly
Cells isolated from diastrophic dysplasia patients show reduced 

sulfate uptake and defective sulfation of GAG chains (Rossi 

et al., 1996; Superti-Furga et al., 1996). To determine whether 

sulfation is required for FN matrix assembly in HT1080 cells, 

we treated cells with sodium chlorate to block sulfate addition. 

Chlorate is a competitive inhibitor of ATP sulfurylase, one of 

the enzymes involved in generation of adenosine 3′-phosphate 

Figure 1. Up-regulation of DTDST correlates with induction of 
FN matrix assembly. (A) RNA was isolated from HT1080 (HT) or 
WI-38(VA13) cells (WI-38), treated with 0.1 μM dexamethasone 
(Dex) or 2.5 μM PD98059 (PD) for 6 or 20 h. cDNA was pre-
pared using random hexamers and DTDST levels were deter-
mined by real-time RT-PCR. Each sample was normalized to a 
housekeeping gene, ubiquitin C, and fold stimulation relative to 
unstimulated cells was determined. (B) RNA from untreated 
HT1080 or WI-38(VA13) cells was used for quantitative RT-PCR 
to assess the relative DTDST expression level in each cell line. 
(C) Quantitative RT-PCR on RNA from untreated HT1080 cells 
was performed using primers for the fi ve human sulfate/anion 
transporters (down-regulated in adenoma [Dra-1], h-Sat, Pat-1, 
Pendrin, and DTDST). (D) RNA from HT1080 cells treated or not 
with dexamethasone for 6 h was used for real time RT-PCR using 
primer pairs for each of the sulfate transporters. Values were nor-
malized and fold stimulation was determined as in A. In all cases, 
the mean of three independent trials was calculated and the value 
is listed on each bar. Error bars represent standard deviation.
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5′-sulfatophosphate, the universal sulfate donor to intracellular 

proteins and carbohydrate moieties (Klaassen and Boles, 1997). 

Moreover, chlorate treatment diminishes heparan sulfate sul-

fation by 92%, and these unsulfated GAG chains have a dra-

matically reduced affi nity for FN (Keller et al., 1989). HT1080 

cells were treated for 48 h with sodium chlorate and matrix 

assembly was then stimulated with dexamethasone for 20 h. 

Chlorate treatment did not affect cell viability and did not alter 

cell morphology or spreading in response to FN. Immunofl uores-

cence imaging of matrix on dexamethasone-stimulated chlorate-

treated cells revealed a decrease in FN fi brils compared with 

buffer-treated cells (Fig. 2, A and B). Consistent with this, 

immunoblot analysis of DOC lysates showed a dramatic de-

crease in DOC-insoluble FN upon chlorate treatment (Fig. 2 C). 

Isolation of DOC-insoluble material from dexamethasone-

stimulated and chlorate-treated WI-38(VA13) cells revealed a simi-

lar, although less dramatic, inhibition of matrix formation 

(Fig. 2 C). Proteins, including FN, can be sulfated on tyrosine resi-

dues through the action of tyrosylprotein sulfotransferase (Lee and 

Huttner, 1983). Inhibition of tyrosylprotein sulfotransferase 

with 2-chloroadenosine, however, had no effect on FN matrix 

formation (unpublished data), indicating that the essential sul-

fation for matrix assembly is on moieties other than tyrosine.

FN has been implicated in the early stages of bone and 

cartilage formation during mesenchymal cell condensation and 

differentiation (Dessau et al., 1980; Mackie et al., 1987; Tavella 

et al., 1997). MRC-5 primary human fi broblasts differentiate into 

osteoblastic cells when treated with dexamethasone or BMP-2 

(Almeida et al., 2001). To determine whether chlorate inhibition 

affected FN matrix assembly by cells that have the potential to 

become osteoblasts, DOC-insoluble material from chlorate-treated 

MRC-5 cells was analyzed and showed dramatic reduction 

compared with that in untreated cells (Fig. 2 C). These data show 

that sulfation plays an important role in FN matrix formation 

in assembly-competent WI-38(VA13) cells, in assembly-defi cient 

HT1080 fi brosarcoma cells, and in nononcogenic cells capable 

of bone differentiation.

FN assembly requires sulfated GAG chains
Cells isolated from DTD patients (Superti-Furga et al., 1996; 

Rossi et al., 1998) or from a DTDST mutant mouse model (Forlino 

et al., 2005) show reduced sulfate uptake, and the primary 

biochemical defect is undersulfation of proteoglycans (Rossi 

et al., 1998). However, characterization of proteoglycans from 

DTD patient fi broblasts has revealed normal synthesis of core 

proteins and normal initiation and elongation of GAG chains 

(Rossi et al., 1996). To determine whether GAG chains or their 

sulfation play a role in FN matrix assembly by HT1080 cells, 

we used 4-methylumbelliferyl-β-D-xyloside, an inhibitor of 

GAG chain initiation (Fritz and Esko, 2001). Increasing con-

centrations of xylosides caused a dosage-dependent and statis-

tically signifi cant decrease in dexamethasone-induced DOC-

insoluble FN matrix (Fig. 3 A). Treatment of BHK cells with 

200 μM xylosides did not reduce matrix assembly (Chung and 

Erickson, 1997). This concentration of xylosides is on the low 

end of our dosage response, so it is possible that treatment of these 

cells with higher concentrations may have an inhibitory effect. 

BHK cell matrix assembly was also less sensitive to inhibition 

by soluble heparin and required treatment with GAG chains 

purifi ed from BHK cells themselves, supporting the idea that 

HT1080 and BHK cells have different sensitivities to inhibitors 

of matrix assembly.

HT1080 FN matrix was also reduced by the addition of 

soluble heparin to the culture medium (Fig. 3 B). GAG chains 

are multiply sulfated by N and O linkages (Esko, 1991). Unlike 

soluble sulfated heparin, addition of soluble N-desulfated or fully 

desulfated heparin did not block FN matrix assembly (Fig. 3 C). 

The inability of soluble desulfated heparin to signifi cantly in-

hibit assembly indicates that sulfation is a critical modifi cation 

for the function of GAG chains in this process.

Sulfation of cell surface molecules depends 
on DTDST
Metabolic labeling and cell fractionation experiments have 

shown that a signifi cant proportion of total sulfated macro-

molecules is localized to the membrane fraction (Sjoberg and 

Malmstrom, 1982; Wang et al., 1999; Shworak, 2001). We found 

that the matrix assembly defect of chlorate-treated cells was not 

restored by HT1080 cell conditioned medium (unpublished data), 

indicating that cell-associated, rather than secreted, sulfated mole-

cules play a role in FN matrix assembly. To test the requirement for 

Figure 2. Inhibition of sulfation ablates FN matrix assembly. HT1080 
cells plated on coverslips were control treated (A) or treated for 48 h with 
50 mM sodium chlorate (B), and 0.1 μM dexamethasone was added for the 
last 20 h. Cells were fi xed and stained with anti-FN monoclonal antibody 
HFN7.1. Bars, 50 μm. (C) DOC lysates were prepared from HT1080, 
WI-38(VA13) cells, or MRC-5 human embryonic fi broblasts (MRC), either un-
treated (Con) or treated with sodium chlorate (Chl) as in B. DOC-insoluble 
material proportional to either 10 μg (HT and WI) or 0.67 μg (MRC) of 
total protein was electrophoresed on a 5% polyacrylamide-SDS gel. FN was 
detected with HFN7.1 monoclonal antibody.
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DTDST, its expression was knocked down by treatment with a 

DTDST siRNA SMARTpool or with individual oligonucleo tides 

from the pool. A signifi cant reduction in transcript levels, nearly 

13-fold, was detected by quantitative RT-PCR, whereas the ex-

pression of FN and of the other sulfate/anion transporters 

showed only slight variations with DTDST siRNA treatment 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200707150/DC1). To determine the effect of DTDST knock-

down on sulfation of cell-associated molecules, biotinylated cell 

surface proteins from [35S]sulfate-labeled cells were isolated and 

analyzed. Compared with control membranes, the amount of 

sulfated molecules from chlorate-treated cells was reduced a 

dramatic fi vefold and from DTDST siRNA-treated cells, it was 

twofold lower (Fig. 4 A). SDS-PAGE of these proteins confi rmed 

that the label was in a high molecular mass smear, indicative of 

GAG-bearing proteoglycans (Fig. 4 B). These results suggest an 

important role for this transporter in controlling levels of sulfated 

cell surface GAGs on HT1080 cells.

Knockdown of syndecan-2, but not of other 
proteoglycans, blocks FN matrix assembly
HT1080 cells express the cell surface proteoglycans syndecan-1, 

-2, and -4, glypican-1, and betaglycan as determined by quantita-

tive RT-PCR. Knockdown of each transmembrane proteoglycan 

using specifi c siRNAs was effective at reducing both mRNA 

and protein levels (Fig. S2, A and B, avail able at http://www

.jcb.org/cgi/content/full/jcb.200707150/DC1). Knockdown of 

syndecan-2 had a signifi cant impact on matrix formation in both 

HT1080 and WI-38(VA13) cells (Fig. 5, A and B), but syndecan-2 

RNAi did not alter transcript levels of the other transmem-

brane proteoglycans (Fig. S2 C). Knockdown of syndecan-4, 

Figure 3. Sulfated GAG chains contribute to FN matrix assembly. DOC-
insoluble material was isolated from HT1080 cells grown in medium con-
taining 0.1 μM dexamethasone plus the indicated treatments for 20 h. 
DOC-insoluble material proportional to 10 μg of total protein was resolved 
and FN was detected in immunoblots using HFN7.1 antibody (A–C, insets). 
Treatments included increasing amounts of 4-methyl-umbelliferyl-β-D-
xyloside (A), increasing concentrations of soluble heparin (B), or 250 μg/ml 
fully sulfated heparin (Hep), heparin that was N-desulfated ((-)N), or hepa-
rin that was entirely devoid of sulfate groups ((-)N, O). Con, cells treated 
with vehicle only. In all cases, values are percentages as compared with 
the respective controls and are normalized to GAPDH expression. *, P < 
0.04; **, P < 0.02. All error bars represent standard deviations based on 
the mean of three independent trials. 

Figure 4. Cell surface–sulfated molecules are decreased in the absence of 
DTDST. (A) Cultures were stimulated with dexamethasone for 20 h and la-
beled for the fi nal 12 h with 50 μCi/ml [35S]sulfate, cell surface proteins 
were biotinylated, and biotin-labeled molecules were isolated from whole 
cell lysates with streptavidin-agarose beads. Equal amounts of protein 
were counted, the means were calculated, and data are presented as per-
centages relative to control cells. Error bars are standard deviation based 
on the mean of three trials. *, P < 0.02. (B) Material eluted from strepta-
vidin beads was separated on a 4–20% gradient SDS gel and the dried gel 
was exposed to fi lm for 35 d. Molecular mass standards in kilodaltons 
are indicated on the left. Con, control; Chl, chlorate-treated; RNAi, DTDST 
siRNA-treated.
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betaglycan, or glypican-1 consistently showed a modest increase 

in DOC-insoluble FN (Fig. 5, A and C), but this difference 

was not statistically signifi cant (Fig. 5 B). Down-regulation of 

syndecan-1 induces a fi broblastic phenotype (Kato et al., 1995), 

which fi ts with the slight increase in FN matrix we observed with 

syndecan-1 siRNA treatment (unpublished data). Syndecan-2 

has been previously suggested to be an FN-binding proteoglycan 

(Itano et al., 1993, 1996), primarily via its three heparan sulfate 

GAG chains, and has been implicated in matrix assembly (Klass 

et al., 2000). Our results single out syndecan-2 as an important 

component of the FN assembly machinery in HT1080 cells.

Integrin α5β1 is the primary receptor for FN matrix as-

sembly by fi broblasts (Wu et al., 1993). Activation of α5β1 is 

suffi cient to stimulate matrix assembly by HT1080 cells (Brenner 

et al., 2000). We assessed the contributions of proteoglycans 

and integrins in this process by combining an anti-α5β1 function-

blocking antibody, BIIG2, with soluble fully sulfated heparin. 

DOC-insoluble matrix was reduced with either BIIG2 or solu-

ble heparin alone, but simultaneous inhibition of both integrin 

and GAG binding eliminated dexamethasone-induced matrix 

formation (Fig. 5 D). These results show that integrins work in 

cooperation with sulfated proteoglycans at the cell surface to 

mediate FN matrix assembly.

DTDST function is necessary and suffi cient 
to stimulate FN matrix assembly
The requirement for DTDST in FN assembly was demonstrated 

using siRNA knockdown of DTDST in dexamethasone-treated 

HT1080 cells. Reduced DTDST levels led to an obvious reduc-

tion in mature FN fi brils by immunofl uorescence (Fig. 6, A and B) 

and a quantitative decrease in the amount of DOC-insoluble 

FN in both HT1080 and WI-38(VA13) cells (Fig. 6, C–E). 

Therefore, DTDST expression is necessary to enhance FN fi bril 

assembly by HT1080 cells and also contributes to matrix for-

mation by assembly-competent WI-38(VA13) cells.

Dexamethasone-induced DTDST expression in HT1080 

cells increases concomitantly with competence for FN matrix 

assembly. To determine whether DTDST overexpression was 

suffi cient to induce assembly in the absence of dexametha-

sone treatment, we generated HT1080 cells expressing a trans-

lational fusion of DTDST cDNA with GFP under control of 

the cytomegalovirus promoter (HT/DTDST-GFP) or express-

ing the GFP vector alone (HT/GFP). DTDST-GFP localized 

to membrane ruffl es (Fig. 7, C and D). This distribution differed 

from that of GFP alone (Fig. 7 B) and was signifi cantly above 

background HT1080 autofl uorescence (Fig. 7 A). No differ-

ences in cell morphol ogy (Fig. 7, E and F) or endogenous FN 

secretion (not depicted) were observed between HT/GFP and 

HT/DTDST-GFP cells. Overexpression of DTDST-GFP in-

creased accumulation of DOC-insoluble matrix in the absence 

of dexamethasone treatment (Fig. 8 A). In three independent 

experiments, we observed at least 15-fold more DOC-insoluble 

FN with DTDST overexpression than in control HT/GFP cells. 

These results demonstrate that up-regulation of this sulfate 

transporter is suffi cient to induce FN assembly by HT1080 

cells. Dexamethasone stimulation increased the amount of FN 

matrix in all cells but the effect was much more pronounced in 

Figure 5. Syndecan-2 knockdown diminishes FN matrix assembly. 
(A) HT1080 or WI-38(VA13) cells transfected with control, syndecan-2 
(SDC2), or syndecan-4 (SDC4) siRNAs were dexamethasone stimulated, 
and FN levels in DOC-insoluble lysates proportional to 5 μg of total protein 
were analyzed with HFN7.1 antibody. (B) Immunoblots developed with 
ECL Plus reagent were used to quantify FN levels in samples that were nor-
malized to GAPDH. Control transfected samples were set at 100% and 
percentages of DOC-insoluble FN with syndecan-2 or -4 siRNA treatments 
are expressed relative to the control. Error bars represent standard devia-
tion from three independent experiments. *, P < 0.03. (C) DOC-insoluble 
lysates from HT1080 cells transfected with control, glypican-1 (GPN), or 
betaglycan (BGN) siRNAs were immunoblotted with HFN7.1 antibody. 
(D) Cells were pretreated with an integrin α5 function-blocking antibody, 
BIIG2, at 1:250 dilution, 100 μg/ml of soluble heparin, or both. FN levels 
in DOC-insoluble fractions from three independent trials were analyzed 
and quantifi ed as in B. *, P < 0.007 compared with control; **, P < 0.009 
compared with single treatments.
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HT/DTDST-GFP cells compared with HT/GFP cells (Fig. 8 A). 

Furthermore, sulfated cell surface proteins were increased with 

DTDST-GFP overexpression (Fig. S3 A, available at http://

www.jcb.org/cgi/content/full/jcb.200707150/DC1) but up- or 

down-regulation of DTDST did not affect the level of syndecan-2 

protein (Fig. S3 B). Similar results were obtained with two 

different HT/DTDST-GFP cell clones.

To rescue the effects of DTDST siRNA, we exploited the 

fact that the DTDST-GFP construct lacks DTDST 3′ untranslated 

region (UTR) sequences and designed siRNA oligonucleo-

tides that target this region of the transcript. Treatment with these 

oligonucleotides should knock down endogenous DTDST ex-

pression, whereas the DTDST-GFP transcript would be resis-

tant to this inhibition. Three 3′ UTR siRNA oligonucleotides were 

transfected individually into HT/GFP and HT/DTDST-GFP 

cell lines and DOC-insoluble lysates were analyzed. All 3′ 
UTR oligonucleotides reduced FN matrix levels in HT/GFP 

cells to varying degrees (Fig. 8, B and C). In contrast, the HT/

DTDST-GFP cell line assembled FN matrix even in the presence 

of these oligonucleotides (Fig. 8, B and C). Therefore, expression of 

DTDST-GFP compensates for the RNAi-mediated knockdown 

of endogenous DTDST transcripts and rescues the defect in FN 

matrix assembly. Collectively, our results demonstrate that DTDST 

expression is both necessary and sufficient to enhance FN 

Figure 6. DTDST expression is necessary to stimulate FN matrix assembly. 
HT1080 cells were transfected with control siRNA oligonucleotides (A) or 
DTDST siRNAs (RNAi; B) and stimulated with 0.1 μM dexamethasone. 
After 48 h, cells were fi xed and stained with anti-FN HFN7.1 monoclonal anti-
body. Scale bars represent 20 μm. DOC-insoluble material from HT1080 
(C) or WI-38(VA13) (D) cells transfected with siCONTROL or DTDST siRNA 
was immunoblotted with HFN7.1 antibody. (E) DOC-insoluble material 
from three independent trials was immunoblotted and developed with ECL 
Plus. Values represent percent of FN signal relative to the control condition 
for each cell line. Error bars represent standard deviation. *, P < 0.04.

Figure 7. A DTDST-GFP fusion protein localizes to the plasma membrane. 
HT1080 cells were mock transfected (A) or stably transfected with either 
pEGFP-N1 vector (B) or pEGFP-N1/DTDST (C and D). Live cells were 
stained with DRAQ5 and plated onto glass-bottom culture dishes for confo-
cal imaging. Images in A–C were captured with a zoom factor of three. 
(D) Image of live HT/DTDST-GFP cells (as in C) was collected with a zoom 
factor of 1. Bars, 20 μm. HT/GFP (E) and HT/DTDST-GFP (F) cells on FN-
coated coverslips were fi xed, permeabilized, and stained with rhodamine-
phalloidin and DAPI to visualize cell shapes.
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matrix assembly through a process that depends on production 

of sulfated HT1080 cell surface proteins.

Discussion
We have identifi ed an important regulatory role for the sulfate/

chloride antiporter DTDST in FN matrix assembly. DTDST gene 

expression increases signifi cantly under conditions that promote 

matrix formation. RNAi knockdown and enforced expression of 

DTDST had opposite effects on FN matrix levels, indicating that 

this transporter is both necessary and suffi cient to enhance 

HT1080 matrix assembly. GAG chains are known to participate 

in cell–FN interactions, but our results show that GAG chain sul-

fation also affects these interactions. Furthermore, knockdown of 

DTDST reduced cell surface sulfate levels, reinforcing the notion 

that DTDST functions to provide suffi cient intracellular sulfate 

to maintain sulfated GAGs at the cell surface. Of the known 

membrane-associated proteoglycans on HT1080 cells, syndecan-2 

is the only one involved in the stimulation of FN assembly. 

Therefore, regulation of DTDST expression and sulfate transport 

provides a novel mechanism to modulate levels of matrix assem-

bly through sulfation of cell surface molecules.

Although there are several ways to obtain intracellular 

sulfate, cells rely primarily on active transport mechanisms for 

intracellular sulfate homeostasis (Markovich, 2001). Of the fi ve 

known sulfate/anion transporters in humans, DTDST is the 

most ubiquitous and was the only one up-regulated in condi-

tions that induced FN matrix assembly in HT1080 cells. DTDST 

is integral for the maintenance of physiological sulfate levels. 

Cartilage from human DTD patients or a mouse knockin mutant 

model has low staining with alcian blue and toluidine blue (Rossi 

et al., 1996, 1998; Forlino et al., 2005), which are both cationic 

dyes with an affinity for negatively charged sulfate groups 

(Karlsson and Bjornsson, 2001). Undersulfation was confi rmed 

by analyses of isolated cartilage proteoglycans. The extent of this 

undersulfation varied with the clinical severity of the disorder 

(Karniski, 2001), indicating a direct connection between DTDST 

function and sulfation of proteoglycans.

DTDST is expressed in a wide range of tissues including 

colon, various glands, pancreas, and kidney, among others (Haila 

et al., 2001). The most notable defects in DTD patients, however, 

are in cartilage architecture because of the high sulfate demand 

of this tissue. Fibroblasts isolated from these patients also show 

reduced activity in sulfate uptake assays and a high resistance to 

chromate, which is lethal to cells only when it is imported via 

functional sulfate transporters (Rossi et al., 1996). Although there 

are several different mutations so far identifi ed in the human 

DTDST gene (Superti-Furga et al., 1996; Karniski, 2001), 

changes in activity of this transporter have not previously been 

linked to altered behaviors of tumor cells. There is precedent for 

down-regulation of other sulfate transporters in cancer. Down-

regulated in adenoma, a mammalian sulfate/chloride antiporter 

expressed exclusively in the colon, was isolated by subtractive 

hybridization comparing normal colon with colon carcinoma cells 

(Schweinfest et al., 1993), and reduced levels of pendrin have been 

reported in thyroid carcinoma (Bidart et al., 2000). Furthermore, 

reduced amounts and sulfation of heparan sulfate proteoglycans 

have been observed in SV40-transformed cells (Winterbourne 

and Mora, 1981), HT1080 fi brosarcoma cells (Timar and Paterson, 

1990), E1A immortalized rat intestinal cells (Levy et al., 1990), 

and transformed rat kidney cells (Romaris et al., 1994). There-

fore, sulfate import may be necessary for maintenance of a nor-

mal, nontransformed phenotype, possibly through regulation of 

cell surface proteoglycans and FN matrix.

In chondrodysplasia patients as well as in the mouse model 

of DTD, proteoglycan sulfation was signifi cantly reduced by mu-

tations in DTDST. In general, of the total intracellular sulfate con-

tent, more than two thirds is consumed by the sulfation of GAG 

chains (Shworak, 2001). These molecules would therefore be most 

dramatically affected by a defi ciency in sulfate import. It has been 

shown that some cells localize 70% of total 35SO4-labeled hepa-

ran sulfate chains to the plasma membrane (Wang et al., 1999). 

Figure 8. Overexpression of DTDST is suffi cient to stimulate FN matrix 
assembly in the absence of dexamethasone. (A) HT/DTDST-GFP (DTDST) or 
HT-GFP (GFP) cells were stimulated, or not, with 0.1 μM dexamethasone 
as indicated. FN was detected in DOC-insoluble fractions using HFN7.1 
antibody. Blot is representative of three independent experiments on a 
single transfectant and similar results were obtained with two other cell 
clones. (B) HT/GFP (top) or HT/DTDST-GFP (bottom) cells stimulated with 
dexamethasone were treated with siRNAs directed against three remote 
locations within the 3′ UTR of endogenous DTDST (3128, 6158, and 3548). 
DOC-insoluble material was analyzed and the immunoblots are represen-
tative of three independent trials. (C) DOC-insoluble FN amounts were 
normalized to siCONTROL-transfected amounts (set at 100) from either HT/GFP 
or HT/DTDST-GFP cells. Error bars represent standard deviation. *, P < 0.02 
for comparison of two cell lines treated with the same oligonucleotide.
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Defi ciencies in sulfate import would therefore primarily affect 

sulfated GAGs at the cell surface and this, in fact, fi ts with 

what we observed with chlorate or DTDST RNAi treatment. 

An important role for DTDST in GAG sulfation is further 

supported by the enhanced cell surface sulfate content in overex-

pressing cells.

Our fi nding that syndecan-2 is important for matrix as-

sembly by HT1080 cells supports previous work that showed 

that a truncated form of this proteoglycan had a dominant- negative 

effect on deposition of FN and laminin during ECM assembly 

by CHO cell transfectants (Klass et al., 2000). Syndecans bind 

to the HepII domain of FN via electrostatic interactions me-

diated by heparan sulfate chains (Itano et al., 1993; Busby et al., 

1995). Syndecan-4 has been shown to work with integrins for 

full cell spreading and focal adhesion formation (Woods and 

Couchman, 1994; Saoncella et al., 1999; Midwood et al., 2004). 

Thus, it was somewhat surprising that syndecan-4 RNAi did not 

inhibit matrix assembly and, in fact, seemed to promote a mod-

est increase in matrix levels. One possible explanation for this 

difference is that syndecan-2 and -4 cytoplasmic tails interact 

with different effectors that potentially have distinct roles in cell 

adhesion and FN assembly. In that case, knockdown of expres-

sion of syndecan-4 would reduce competition between these 

proteoglycans for binding to the HepII site, allowing increased 

syndecan-2 engagement by FN and enhancing its associated 

intracellular signaling and matrix assembly. This explanation 

would also suggest that the relative proportions of proteo-

glycans, rather than their absolute levels, affect cell phenotypes. 

Glypican-1 reportedly also interacts with the HepII domain on 

FN (Tumova et al., 2000). Therefore, it is conceivable that in-

creased FN matrix in the absence of glypican-1, and possibly 

also betaglycan, could result from a similar loss of a competi-

tive inhibitor that can bind to a common site on FN.

Because FN matrix assembly is induced by up-regulation 

of DTDST and the downstream effects on proteoglycan sulfation 

and function, is it possible that perturbation of this process is 

an underlying cause of the skeletal defects in patients with DTD-

related chondrodysplasias? FN is a major component of the 

chondrocyte microenvironment during cartilage development 

(Hedman et al., 1982; Poole et al., 1992) and, in adult tissue, 

colocalizes with some forms of collagen (Chang et al., 1997). 

Pericellular FN likely promotes chondrocyte adhesion and inter-

acts with cell surface sulfated proteoglycans, which may be es-

sential for initial deposition of ECM. Collagen fi bril formation is 

dependent on the presence of FN matrix in some cell types (Velling 

et al., 2002), and FN is replaced by a more collagen-rich matrix 

during cartilage differentiation (Dessau et al., 1978; Dessau 

et al., 1980, 1981), raising the possibility that FN matrix may 

present a framework for collagen deposition during mesenchyme 

condensation and cartilage development. β1 integrin receptors 

for collagen and FN are expressed in chondrocytes, and β1-null 

chondrocytes are defective in skeletal development with reduced 

adhesion on collagen II and FN and development of chondro-

dysplasias (Aszodi et al., 2003). Clearly, there is interdepen-

dence between assembly of FN and collagen matrices and 

integrin–ECM interactions in cartilage formation. FN has also 

been detected in the ossifi cation centers and growth plates of 

developing and mature bones (Nordahl et al., 1995; unpublished 

data) and has been implicated in early events in osteogenesis, 

where it is thought to promote osteoblast adhesion (Mackie 

et al., 1987; Moursi et al., 1996). Evidence supporting a role for 

FN matrix in differentiation of cartilage and bone, along with 

our data on the reduction of FN matrix in the absence of DTDST 

expression, provides an intriguing explanation for the skeletal 

defects observed in the diastrophic dysplasias.

Materials and methods
Cell culture
HT1080, WI-38(VA13), and MRC-5 cells (from T. Shenk, Princeton Uni-
versity, Princeton, NJ) were grown in DME with 10% FBS (Thermo Fisher 
Scientifi c) and antibiotic–antimycotic cocktail (Invitrogen). For experiments 
in low sulfate conditions, cells were grown in Ham’s F12 (Invitrogen) with 
10% PBS-dialyzed FBS and no sulfate salt–containing antibiotics.

Construction of a DTDST-overexpressing cell line (HT/DTDST-GFP)
PCR was performed to generate XhoI and XmaI sites fl anking DTDST cDNA 
from the pGEMHE-DTD plasmid (from L. Karniski, University of Iowa, Iowa 
City, IA) using the primers 5′-A T T C C T C T C G A G C T G T C G G C G C C G C G -3′ 
and 5′-C C A G T T C C C G G G T T C C -G C T T C C G C T T C C A T C A C T A C T A A G A C T-
C A G A C C A T T G G C -3′ and Elongase DNA polymerase (Invitrogen) under 
the following conditions for 25 cycles: 94°C for 1.5 min, 52°C for 1 min, 
and 68°C for 3 min. pEGFP-N1 (BD Biosciences; Clontech Laboratories, Inc.) 
was digested and ligated to the XhoI–XmaI PCR product to generate 
pEGFPN1/DTDST with GFP cDNA fused at the 3′ end of DTDST cDNA. 4 μg 
pEGFPN1/DTDST DNA or the corresponding empty vector was transfected 
into HT1080 cells using Lipofectamine 2000 (Invitrogen). Individual clones 
were selected with 1 mg/ml geneticin sulfate (Invitrogen) and serially ex-
panded until stable cell lines expressing the construct or carrying the empty 
vector were established. Five clones were expanded with DTDST expres-
sion levels that ranged between 4.8- and 16-fold above HT1080 cells car-
rying the empty vector (HT/GFP), as determined by quantitative RT-PCR. 
The three highest expressors with levels at 9.8-, 10.5-, and 16-fold above 
control clones were analyzed for matrix assembly.

Real time RT-PCR
RNA from subconfl uent cells was isolated using the Trizol reagent (Invitro-
gen) according to the manufacturer’s instructions. cDNA was made from 
the isolated RNA template using Superscript II Reverse transcriptase, 2.5 mM 
of random hexamer mix, and 1 μg of total RNA. The reverse transcription 
reaction was performed with the following conditions: 37°C for 60 min, 
99°C for 5 min, and 5°C for 5 min. The SYBR Green PCR Master Mix 
(Applied Biosystems) was used with 800 nM of each primer. The real-time 
reaction was done in triplicate in an ABI Prism 7900 HT detection system 
(Applied Biosystems) using the following reaction profi le: 2 min at 50°C 
and 10 min at 95°C for one cycle, followed by 15 s at 95°C and 1 min at 
60°C for 40 cycles. SDS 2.1 software (Applied Biosystems) was used to 
plot the standard curve and to determine the relative expression levels of 
each mRNA. Values for each experimental condition were normalized to 
the level of ubiquitin C in a parallel RNA sample.

Metabolic labeling and cell surface biotinylation
Cells were lifted in versene (Invitrogen) and 6 × 105 cells per well were 
plated in 6-well plates. After attachment, the medium was replaced with 
Ham’s F12 low sulfate medium plus any treatments as indicated. Na2-[

35S]-
SO4 (MP Biomedicals) was reconstituted in water. 50 μCi/ml was added 
to each well and cells were labeled for 12 h.

Cultures were washed thoroughly with cold PBS and incubated for 
30 min at 4°C with 1mg/ml Sulfo-NHS-LC-Biotin (Thermo Fisher Scientifi c). 
Biotinylation reactions were quenched with fi ve washes of 50 mM NH4Cl 
in PBS. Cells were lysed using radioimmunoprecipitation assay buffer (50 mM 
Hepes, pH 7.5, 150 mM NaCl, 1.5 mM MgCl2, 1% Triton X-100, 1% sodium 
deoxycholate, 0.1% SDS, 1 mM EGTA, 100 U/ml aprotinin, 10 μg/ml 
leupeptin, and 1 mM PMSF). Streptavidin immobilized on 6% agarose beads 
was washed and resuspended in binding buffer (0.1% SDS in PBS). 100 μl of 
the 50% slurry was added to 200 μl of whole cell lysate. Samples were incu-
bated for 2 h with rotation at 4°C. Streptavidin beads were washed fi ve 
times with binding buffer and boiled for 5 min in SDS sample buffer (2% SDS, 
62.5 mM Tris-HCl, pH 6.8, 10% glycerol, and 2.5% 2-mercaptoethanol). 
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Aliquots were removed before the addition of 2-mercaptoethanol to deter-
mine total protein concentration by bicinchoninic acid assay (Thermo 
Fisher Scientifi c). Equivalent amounts of total protein were counted in a 
liquid scintillation counter (TriCarb 2800TR; PerkinElmer), and mean counts 
per minute were obtained over 20-min periods. Material eluted from strepta-
vidin beads was separated on a 4–20% gradient SDS gel. The dried gel was 
exposed to fi lm for 35 d.

Pretreatments
Cells were pretreated with various agents in normal growth media and 25 mM 
Hepes, pH 7.2, for 30 min with tumbling at 37°C. Treatments included 50 mM 
sodium chlorate (Sigma-Aldrich), 4-methylumbelliferyl-β-D-xyloside (Sigma-
Aldrich), and soluble heparin or chondroitin sulfate-A (Sigma-Aldrich). 
Concentrations are indicated in the fi gure legends. For sulfation pattern 
experiments, cells were incubated with 250 μg/ml N-acetyl-de-O-sulfated 
heparin or de-N-sulfated heparin (Sigma-Aldrich). For α5β1 integrin block-
ing experiments, cells were allowed to adhere to tissue culture plates for 2 h. 
The medium was then replaced with anti-α5 integrin monoclonal antibody 
BIIG2 at a 1:250 dilution (obtained from C.H. Damsky, University of Cali-
fornia, San Francisco, San Francisco, CA). After the 30-min preincubation, 
cells were stimulated with 0.1 μM dexamethasone and plated onto tissue 
culture plates. In all cases, after 20 h of dexamethasone stimulation, DOC 
lysates were harvested.

Immunofl uorescence
For matrix assembly experiments, 6 × 105 cells per well were seeded onto 
6-well tissue culture plates and allowed to attach and spread on glass cover-
slips with dexamethasone for 20 h. Cells were fi xed in 3.7% formaldehyde 
in PBS plus 0.5 mM MgCl2 for 15 min. Samples were incubated with anti–
human FN monoclonal antibody HFN7.1 (Developmental Studies Hybrid-
oma Bank) at a 1:100 dilution in 2% ovalbumin (Sigma-Aldrich) in PBS for 
30 min at 37°C, followed by a 1:600 dilution of fl uorescein-conjugated 
goat anti–mouse secondary antibody (Invitrogen). Images were acquired 
on a microscope (Eclipse TE2000-U; Nikon) with 2,000-ms exposure times. 
Brightness was adjusted to +8 and contrast to +48 in Photoshop (Adobe). 
To analyze cell shapes, cells were allowed to attach and spread on FN-
coated coverslips for 20 h, and then were fi xed, permeabilized with 0.5% 
NP-40 (EMD), and stained with DAPI (Invitrogen) at a 1:1,000 dilution to 
visualize nuclei and a 1:1,000 dilution of rhodamine-phalloidin (Invitro-
gen) for actin fi laments. Images were acquired with a 20×/0.45 objective. 
Image brightness/contrast was adjusted in Photoshop to +2/+54 and 
+31/+24 for HT/GFP and HT/DTDST-GFP, respectively. For live confocal 
image acquisition, cells were stained with DRAQ5 (Qbiogene) at a fi nal 
concentration of 5 μM for 30 min at 37°C, and then plated onto glass-
bottom culture dishes (MatTek) for confocal analysis. All confocal images 
were captured on a confocal system (LSM 510; Carl Zeiss, Inc.) using a 
water immersion objective (C-Apochromat 40× 1.2 NA; Nikon) and 
LSM 510 software (version 3.2). Brightness and contrast for images col-
lected at zoom factor 3 were identically modifi ed in Photoshop to +22. 
Images collected at zoom factor 1 were adjusted in Photoshop to +22 
brightness and +18 contrast.

DOC insolubility assay and immunoblotting
Cells were plated onto 6-well dishes, pretreated as indicated, and stimu-
lated with dexamethasone for 20 h. After this period, DOC-soluble and 
-insoluble fractions were prepared as described previously (Sechler et al., 
1996). Volumes were scaled up accordingly based on the surface area of 
the dish. Protein concentrations of DOC-soluble fractions were determined 
using the bicinchoninic acid assay, and amounts of DOC-insoluble material 
proportional to 5 or 10 μg of DOC-soluble material were run on a 5% 
polyacrylamide-SDS gel, transferred to a nitrocellulose membrane (GE 
Healthcare), and blocked in 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 
0.1% Tween-20. Human FN was detected using HFN7.1 antibody at 
1:300 dilution in the blocking buffer, and anti-GAPDH (ab9484; Abcam) 
was used at 1:10,000 dilution. Goat anti–mouse conjugated to HRP (Thermo 
Fisher Scientifi c) was used as a secondary antibody at 1:10,000. Blots from 
three independent trials were developed using the ECL reagent (Thermo 
Fisher Scientifi c). When quantifi cation was necessary, blots were devel-
oped using ECL Plus Western Detection System GE Healthcare), a scanner 
(STORM 860; GE Healthcare), and ImageQuant TL v2005.04 software 
(GE Healthcare). Values were normalized to GAPDH levels.

Normalization and statistics
Quantitative RT-PCR was performed in triplicate for each RNA preparation. 
Raw values were averaged and normalized to the mean value for ubiquitin C. 

Experimental values were then divided by control values to give a fold 
change. To express values as a percent, the control value was set at 100%. 
All error bars represent standard deviations based on the mean of three in-
dependent trials. Probability of a signifi cant difference between two values 
was determined by a paired, two-tailed Student’s t test. Values were con-
sidered to be statistically signifi cant when P < 0.05.

siRNA treatment
Cells were trypsinized and 1.8 × 105 cells were plated in 6-well tissue cul-
ture dishes in DME and 10% FBS without antibiotics. After 24 h, 100 nM 
SMARTPOOL siRNAs (Dharmacon, Inc.) for DTDST or individual proteogly-
cans were transfected as described in the Lipofectamine RNAiMAX protocol 
(Invitrogen). This procedure was also used with each individual siRNA 
oligonucleotide at 100 nM (coding region siRNAs: 800, 1263, 1824, 
2124; 3′ UTR siRNAs: 3128, 6158, 3548 [all are named for the fi rst base 
position in the DTDST cDNA]). The siCONTROL nontargeting siRNA pool 
composed of four oligonucleotides experimentally shown not to target mam-
malian RNAs was transfected in parallel. 24 h after transfection, cells were 
trypsinized and replated at 6 × 105 cells with 0.1 μM dexamethasone.

Detection of proteoglycans by immunoblotting
A procedure provided by A. Rapraeger (University of Wisconsin Medical 
School, Madison, WI) was used. Whole cell lysates were prepared using 
radioimmunoprecipitation assay buffer (50 mM Hepes, pH 7.5, 150 mM 
NaCl, 1.5 mM MgCl2, 1% Triton X-100, 1% sodium deoxycholate, 0.1% 
SDS, and a protease inhibitor cocktail). Lysates were methanol precipitated 
overnight at −20°C. Samples were spun at 14,000 rpm for 5 min at 4°C 
and 1 vol of 100% chilled acetone was added. Lyophilized GAGase en-
zymes were reconstituted in PBS containing 10−5 M CaCl2 and MgCl2, 
1 g/liter glucose, and 1 mg/ml BSA. For GAGase treatment, pellets were 
resuspended in heparitinase I buffer (50 mM Hepes, pH 6.5, 50 mM sodium 
acetate, 150 mM NaCl, and 5 mM CaCl2). Heparitinase I (Seikagaku Inc.) 
at a fi nal concentration of 2.4 × 10−3 IU/ml and chondroitinase ABC 
(Sigma-Aldrich) at a fi nal concentration of 0.1 U/ml were added to each 
sample. Samples were incubated at 37°C for 2 h, and then 1 μl of fresh 
enzyme was added and the 2-h incubation was repeated. Reactions were 
stopped with the addition of electrophoresis sample buffer. Proteins were 
transferred to a methanol prewetted Immobilon-P polyvinylidene fl uoride 
membrane (Millipore). Blots were fi xed in 0.25% glutaraldehyde for 30 min, 
rinsed several times in distilled H2O, rinsed in TBS (50 mM Tris-HCl, pH 
7.5, and 200 mM NaCl), and blocked in TBS with 3% BSA. Blots were 
hybridized with 3G10 anti–heparan sulfate delta antibody (Seikagaku 
Inc.) at a dilution of 1:3,000, washed with TBS + 0.1% Tween-20 (Sigma-
Aldrich), and treated with a 1:10,000 dilution of goat anti–mouse HRP 
secondary antibody.

Online supplemental material
Fig. S1 shows the effects of DTDST siRNA treatment on mRNA expression 
levels of the other sulfate transporters. Fig. S2 (A and B) shows knockdown 
of individual proteoglycan mRNAs and reduced protein levels with specifi c 
siRNA treatments, and Fig. S2 C shows that syndecan-2 mRNA levels, but 
not levels of other proteoglycan mRNAs, are affected by syndecan-2 siRNA 
treatment. Fig. S3 shows increased cell surface sulfate levels with DTDST 
overexpression and no effect of DTDST knockdown or overexpression on 
syndecan-2 protein levels. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200707150/DC1.
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