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Abstract
The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead,
it is proposed tat the brain continuously employs memory of past experiences to interpret sensory
information and predict the immediately relevant future. This review concentrates on visual
recognition as the model system for developing and testing ideas about the role and mechanisms of
top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects.
These ideas are then extended to other domains. The basic elements of this proposal include
analogical mapping, associative representations and the generation of predictions. Connections to a
host of cognitive processes will be made and implications to several mental disorders will be
proposed.

1. Introduction
1.1 A primary function of the brain is to predict its environment

As military tacticians have known for millennia, surprise and uncertainty are costly in terms
of time and energy expenditures (Tzu, 2006). Sharing a view expressed in the past, we propose
that a fundamental function of the brain is to predict proximate events, which facilitates
interactions with external stimuli, conserves effort, and ultimately increases the chances of
survival. Useful predictions typically do not arise de novo. Even innate abilities of the human
brain, such as vision or language, usually require development, during which experience-based
mapping of sensory inputs to their identities, and to the appropriate responses, takes place. For
example, it is only after years of training that a baseball player is able to effectively anticipate
a particular type of pitch, predict the trajectory of the ball by combining top-down information
about a particular pitch with bottom-up perception of the rotation and speed of the ball, and
correctly decide whether and how to swing at it - all in about half of a second. This ability to
rely on stored knowledge and learned modes of behavior reduces the need to consider a large
number of potential causes or courses of action, which enables quicker interpretation of
endogenous and exogenous events, and faster, more precise, and less effortful responses.

Recent computational and theoretical work demonstrates how predictions can be integrated
with sensory input to reduce the computational demands in perception (Engel et al., 2001;
Grossberg, 1980; Ullman, 1995). However, the neuroanatomical mechanism underlying the
generation and efficient representation of predictions in the brain is not completely understood.
In this review, we will focus on how the brain generates predictions about the visual world and
uses these predictions to allow an efficient and accurate interpretation of the environment.
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Though we largely concentrate on vision, the same general principles can be applied to other
sensory modalities, as well as to more complex cognitive domains.

1.2 The efficiency of vision
Picture an impatient driver attempting to overtake a slow-moving vehicle on a busy two-lane
road. Much information has to be acquired and computed very quickly by the driver's brain to
avoid a collision. The visual system must parse the constantly changing two-dimensional image
at the retinae into a coherent 3D representation of the scene, in which the road, the objects on
and surrounding it, and the position of the driver's car are accurately identified. The velocities
and trajectories of each vehicle in the vicinity must be estimated and changes in these
parameters anticipated. Anticipating the movement of other vehicles on the road also involves
judging the road conditions, the state of the traffic signals ahead, as well as the other drivers'
intentions based on their interpretations of these factors and their internal states. Many of these
judgments are based not only on visual, but also on auditory, proprioceptive, and even olfactory
and social cues (e.g., “will the driver of that junker in front of me emanating noxious smoke
and loud music allow me to pass, or try to keep me in the opposite lane?”). Lastly, the forces
applied to the car's controls must be computed correctly and adjusted instantly based on both
internal (proprioceptive) and external (the vehicle's characteristics and road conditions)
parameters. This multimodal information must be analyzed correctly and updated on a
moment-to-moment basis to avoid an accident.

Even when we leave aside the other sensory and motor aspects of the task and just concentrate
on vision, the complexity of the problem seems immense. The complete understanding of how
the brain solves this problem so efficiently remains in many respects elusive, exemplified by
our inability to implement anything close to human visual abilities in machine vision. Yet such
situations are correctly assessed and successfully navigated every day by millions of drivers
with diverse driving abilities, underscoring the nearly universal truth that we are “geniuses at
vision” (Hoffman, 1998). We propose that this efficiency of vision arises from the integration
of two interacting and cooperating mechanisms – a fast, coarse subsystem that initiates top-
down predictions based on partially processed visual input, and a slower, finer subsystem that
is guided by the rapidly activated predictions and refines them based on slower-arriving
detailed information. Before delving into the details of how predictions may be effected in the
brain to facilitate visual processing, we will briefly review the underlying neuroanatomical
structure through which visual information flows, and consider how the various pathways
process visual information.

1.3 The visual pathways
The primary output from the retina to the lateral geniculate nucleus (LGN) of the thalamus,
and from LGN to the primary visual cortex, comprises several parallel pathways with differing
information processing characteristics and conduction speeds. The magnocellular (M) pathway
has its origin in the large parasol retinal ganglion cells, which collect input from a number of
large (diffuse) bipolar cells (Boycott & Wassle, 1991; Kaplan, 2004). The retinal M cells
project to the deep (1−2) layers of the LGN, which in turn send projections to layer 4Ca of the
primary visual cortex. The M cells have large receptive fields, high luminance contrast gain,
transient and temporally sensitive responses, and fast conduction velocities, but are not color-
selective or able to resolve fine details (Kaplan & Shapley, 1986; Merigan & Maunsell,
1993; Schiller et al., 1979; Wiesel & Hubel, 1966). From V1, M neurons project to the thick-
stripe regions of V2, continuing to the motion-processing region MT/V5, and then to the higher-
order motion and attention regions in the temporal and posterior parietal cortex. The M
projections comprise most of the dorsal, or “where”, visual stream, which subserves spatial
vision, motion detection, attention, and action planning (Goodale & Milner, 1992; Ungerleider
& Mishkin, 1982).
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The second major pathway, the parvocellular (P) pathway, originates with the midget retinal
ganglion cells, which typically receive information from just two (ON/OFF-center) bipolar
midget cells connected to a single cone (Kaplan, 2004). The P ganglion cells project to the
superficial (3−6) layers of the LGN and layers 4A and 4Cb of V1 (Callaway, 2005; Perry et
al., 1984). In part because of their anatomical connections, the P cells have small receptive
fields, are color-sensitive, and have low gain for luminance contrast (Kaplan & Shapley,
1986). The latter property renders the P cells ineffective for achromatic stimuli below ∼8%
contrast (Tootell et al., 1988). The P cells exhibit tonic response properties, low responsiveness
to temporal modulation of stimuli, and have low conduction velocities compared with that of
the M cells (Kaplan, 2004; Wassle & Boycott, 1991). The P projections form much of the
ventral visual (“what”) stream (Goodale & Milner, 1992; Ungerleider & Mishkin, 1982), which
nonetheless includes some magnocellular inputs (Merigan & Maunsell, 1993). The ventral
stream likewise has hierarchical architecture in which visual form information is analyzed in
an increasingly complex fashion as it propagates anteriorly, from V1 to V2, V4, and lastly, to
the complex form analysis regions in the inferior temporal (IT) cortex. While V1 is sensitive
to very basic, local visual properties such as orientation and retinotopic location (Hubel &
Wiesel, 1962), neurons in regions in the mid- and anterior IT respond to increasingly larger
portions of the visual field and become sensitive to more abstract, viewpoint-, location-, and
illumination-invariant properties (Gallant et al., 1996; Qiu & von der Heydt, 2005; Tanaka,
1996, 1997; Vogels et al., 2001). A number of late-stage regions in lateral occipital and inferior
temporal regions specialize in recognition of particular classes of visual stimuli, such objects
(Bar et al., 2006a; Bar et al., 2001; Grill-Spector et al., 2001; Ishai et al., 2000; Logothetis &
Sheinberg, 1996; Malach et al., 1995; Tanaka, 1996), scenes (Aguirre et al., 1998; Epstein &
Kanwisher, 1998), and faces (Allison et al., 1994a; Allison et al., 1994b; Kanwisher et al.,
1997; Puce et al., 1995).

Less is known about the third, recently discovered, koniocellular (K) visual stream, which
originates with the bistratified retinal ganglion cells (Hendry & Yoshioka, 1994). The
retinoganglionic K cells terminate between the major (M and P) layers in the LGN, whence
geniculate K projections are sent to the “CO blobs” (cytochome oxidase-rich areas) in layers
2−3 of V1. The K cells are vastly outnumbered in both the LGN and V1 by the M and P cells
(Callaway, 2005). The K cells appear to have varied spatial resolution, sensitivity to short-
wavelength (blue) light, and perhaps higher luminance contrast gain than P cells (Hendry &
Yoshioka, 1994; Hendry & Reid, 2000; Norton & Casagrande, 1982). Their conduction
velocity appears to be fairly slow, comparable to that of P cells (Hendry & Yoshioka, 1994;
Hendry & Reid, 2000; Livingstone & Hubel, 1988; Merigan & Maunsell, 1993). The diverse
anatomical and functional characteristics of K cells make it difficult to isolate these cells and
to understand their exact role in vision (Kaplan, 2004).

While the M and P projections still remain largely segregated in V1, the dorsal and ventral
streams that they form have cross-connections at virtually every level of their processing
hierarchies (DeYoe & Van Essen, 1988; Merigan & Maunsell, 1993). This sharing of different
types of information presumably allows the integration of the information carried by the
different streams into coherent percepts and recognition of stimuli with impoverished color or
luminance contrast, albeit more slowly. Attention to the stimulus is thought to be required for
this process (Treisman & Gelade, 1980). In addition to the connections between the two cortical
visual streams, the cortical regions in each stream have connections with subcortical nuclei,
such as the projections from posterior IT (monkey area TEO) to the superior colliculus, and
from anterior IT (monkey area TE) to the pulvinar nucleus and the magnocellular division of
the mediodorsal nucleus of the thalamus (Webster et al., 1993, 1995).

Much of research in vision has justifiably concentrated on information arriving via the primary
visual pathway (i.e., retina-LGN-primary visual cortex) and propagating along the cortical
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visual streams. However, other important visual input and processing routes exist in the brain.
Indeed, projections from the retina to structures other than the LGN are hardly insubstantial,
with at least nine other targets besides the LGN (Weiskrantz, 1996). Among those alternate
input routes, the ones most relevant to facilitating cortical visual analysis may be inputs to the
superior colliculus, which projects to the pulvinar nucleus of the thalamus (Diamond & Hall,
1969), as well as a direct retinal input to the pulvinar (Leh et al., 2006). While the exact
functions of the pulvinar, the largest visual (and auditory) nucleus in the human thalamus
(Grieve et al., 2000), remain poorly understood (Casanova, 2004), it seems to be involved in
the processing and relay of partially analyzed information, visual memory, and perhaps
auxiliary visual function in the absence of cortical vision (Weiskrantz, 1996). Most of the visual
inputs to the pulvinar are from the complex cells in layers 5 and 6 (i.e., feedback) of the primary
visual cortex (Abramson & Chalupa, 1985; Casanova, 1993), indicating that it is a higher-order
relay and association nucleus involved in processing information that has already undergone
an initial analysis in the primary sensory cortex. In addition, the various subdivisions of the
pulvinar also have bidirectional connections with many of the cortical regions in both visual
streams (Webster et al., 1993, 1995), allowing the pulvinar to integrate information coming
from several cortical processing levels and visual field representations (Casanova, 2004). These
cortical connections overlap with inputs from the superior colliculus (Benedek et al., 1983).
The pulvinar projects to most of the visual association and prefrontal cortices (Giguere &
Goldman-Rakic, 1988; Goldman-Rakic & Porrino, 1985; Grieve et al., 2000; Guillery, 1995;
Guillery & Sherman, 2002; Romanski et al., 1997). It has been implicated as potentially being
involved in supporting residual visual abilities in “blindsight” (Cowey & Stoerig, 1995), a
condition in which cortically blind patients have no perception of visual stimuli but retain latent
visual abilities that can be used to guide their actions (Sahraie et al., 2006; Weiskrantz, 1996,
2004). The pathways subserving this residual vision system may overlap with the “fast brain”
proposed by Bullier (2001a, 2001b) and may be part of a key bypass route from the primary
visual cortex to the higher-order regions in the prefrontal cortex (Sherman & Guillery, 2004).
We elaborate on these and other possibilities as they relate to our model of top-down facilitation
in vision in the following sections.

1.4 Feedforward and feedback views of visual recognition
Visual recognition has been traditionally considered a bottom-up, feedforward process.
According to this view, visual information flows from lower-level regions to higher-level
regions until recognition is accomplished, after which semantic analysis and/or object name
information can be activated, depending on situational demands. This unidirectional view of
visual processing has been largely influenced by the ascending hierarchical processing
architecture of the ventral visual stream as discussed above. However, due to the noise and
clutter in natural images, a purely bottom-up architecture has fundamental difficulties in
isolating objects in all but the simplest circumstances (Bullier, 2001a, 2001b), something that
was also learned from efforts in computer vision (Sharon et al., 2006; Ullman et al., 2002).
For example, given the tremendous variation in lighting, shadows, occlusions, reflections and
the like, it is nearly impossible for bottom-up and lateral processes (i.e., those relying only on
short-range, horizontal connections) to “know” which edges should be assigned to one shape
vs. another, which makes it difficult to unify locally-processed information into a global
percept. Moreover, perceptual completion often requires spanning large regions of the visual
field and thereby of the primary visual cortex – too distant for the short reach of local inhibitory
and excitatory connections (Angelucci & Bullier, 2003). Furthermore, imperceptible or
ambiguous properties of a stimulus, such as features that are occluded, cannot be resolved by
simply analyzing sensory input. In this case, the nature of the stimulus can only be resolved
by inferring the imperceptible or ambiguous properties of the input based on information
derived from previous experience (Friston, 2005).
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Consequently, “top-down,” feedback projections from higher-level regions would be necessary
to account for our visual abilities in all but the simplest of circumstances (Angelucci et al.,
2002a; Angelucci et al., 2002b; Shmuel et al., 2005; S.J. Thorpe & Fabre-Thorpe, 2001). The
very nature of the connections between visual regions makes it highly unlikely that only
forward processing would be employed in analyzing visual input. The majority of the
connections between LGN, V1, and V2, as well as V3, V4, IT and other extrastriate cortical
regions are bidirectional (Ergenzinger et al., 1998; Felleman & Van Essen, 1991; Ghashghaei
et al., 2007; Lund et al., 1993; Pandya, 1995; Rockland & Drash, 1996), and the number of
purely feedback connections is estimated to even exceed the number of feedforward inputs
(Salin & Bullier, 1995). This supposition is supported by findings showing that basic analysis
in the early visual areas is influenced by more-global projections from the higher levels (Porrino
et al., 1981). Even at the lowest cortical processing levels, which have small receptive fields,
inactivation of feedback connections to V1 lead to weakened suppression of surrounds in
center-surround cells (Angelucci & Bullier, 2003), and feedback connections from V2 seem
to shape simple sensitivities in V1 (Shmuel et al., 2005). In addition, under certain viewing
conditions, neurons in V1 can react to stimuli outside of what is thought to be their traditional
receptive fields (Kapadia et al., 1995) and select neurons in V2 are sensitive to surround
stimulation when the surround stimulus has an eccentricity as large as ten times the size of
these neurons' classic receptive fields (Zhang et al., 2005), indicating top-down feedback.
Furthermore, varying attentional modulation has been shown to modulate the neural responses
as early as in the primary visual cortex (Somers et al., 1999). It seems clear that a full
understanding of visual processing cannot be achieved until we understand the role and
functional properties of the top-down, feedback processes in the brain.

1.5. Anatomical and functional differences between top-down and bottom-up connections
The differences between the feedforward and feedback connections in the visual processing
hierarchy have helped to shape our thinking about the role of bottom-up and top-down
processes. (For the purposes of this review, we consider feedforward projections to be bottom-
up, and feedback projections to be top-down.) In particular, connections from lower-level
regions tend to project to relatively few regions higher in the processing hierarchy, the
projections within these regions are relatively focused, and these feedforward projections tend
to terminate in the superficial layers of the cortex. In contrast, projections that originate in
higher-level regions tend to target many regions in the processing hierarchy, have wider
connections patterns within these regions, and terminate predominantly in the deep cortical
layers (Angelucci et al., 2002a; Angelucci et al., 2002b). For example, the top-down projection
from V5 to V2 is more widely distributed than the focused bottom-up projection from V2 to
V5 (Shipp & Zeki, 1989). Additionally, V1 receives feedback projections from a greater
number of regions than the number of regions to which it sends ascending projections; e.g.,
V1 receives top-down projections from IT while sending no direct bottom-up projections to
IT (Barone et al., 2000; Boussaoud et al., 1990; Livingstone & Hubel, 1987; Lund et al.,
1975; Perkel et al., 1986; Rockland & Van Hoesen, 1994; Shipp & Zeki, 1989; Suzuki &
Eichenbaum, 2000; Ungerleider & Desimone, 1986a, 1986b). These asymmetries in the
properties of top-down and bottom-up connections suggest an important distinction in the role
of feedforward and feedback projections. Because feedforward projections are more focused
and restricted, bottom-up processing tends to exhibit a structured build-up of information from
simple to complex, with activity from lower regions in the processing hierarchy driving activity
in the higher regions. In contrast, due to the more diffuse and dispersed nature of feedback
projections, top-down processes coordinate and bias local activity across lower-level regions
based on information derived from global, contextual, and gist information.

These differences in the connectivity patterns of top-down and bottom-up projections are
reflected by asymmetries in their function. In particular, while bottom-up projections are
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driving inputs (i.e., they always elicit a response from target regions), top-down inputs are
more often modulatory (i.e., they can exert subtler influence on the response properties in target
areas), although they can also be driving (Buchel & Friston, 1997; Girard & Bullier, 1989;
Sandell & Schiller, 1982; Sherman & Guillery, 2004). Top-down input probably has to be at
least partly modulatory, as purely driving feedback could induce neural activity in lower-lever
regions that would be indistinguishable from that in response to external stimuli (Adams &
Rutkin, 1970; Moriarity et al., 2001; Nashold & Wilson, 1970; Vignal et al., 2007). This could
give rise to hallucinations (Siegel et al., 2000). While it may be beneficial to sensitize one's
neural representations of a stove, sink, and a refrigerator when walking into a kitchen to aid in
the recognition of these objects, it would be counterproductive to “perceive” (i.e., hallucinate)
those objects without any sensory input from the environment. The tendency of feedforward
and feedback projections to terminate in different cortical layers (deep versus superficial)
(Bernardo et al., 1990; Garraghty et al., 1989; Jones, 1986; Schroeder et al., 1995) may help
in segregating top-down and bottom-up inputs to prevent “network hallucinations”.

1.6 Theoretical and computational models
A number of theories have described the computational processes that may be employed by
top-down mechanisms to facilitate sensory processing (Friston, 2005; Grossberg, 1980; Hinton
et al., 1995; Mumford, 1992; Ullman, 1995). These models, taking into account the functional
and structural properties of feedforward and feedback connections described above, generally
posit that predictions based on prior experience are generated in higher-level areas and
projected to lower-level areas to guide the recognition process driven by sensory information.
Guidance is implemented by using these top-down predictions to sensitize bottom-up stimulus-
driven processing. Therefore, top-down predictions facilitate the recognition process by
reducing the number of candidate representations of an object that need to be considered. For
example, when trying to identify a stove in a kitchen, prior experience with kitchens may be
used to predict that the most likely identity of the square object standing on the floor is a stove
or a dishwasher, which eliminates the need to consider a large number of possible object
identities.

But what happens when a top-down prediction does not fully match the bottom-up
representation? For example, what transpires in the brain when the square object on the floor
of the kitchen is actually a television, when the prediction is that the most likely identity of the
object is a stove or dishwasher? Many models posit that top-down and bottom-up information
might be integrated via an iterative error-minimization mechanism, with information processed
in recursive, interacting loops of activity (Friston, 2005; Grossberg, 1980; Hinton et al.,
1995; Mumford, 1992; Ullman, 1995). Specifically, the prediction sent from higher-level
regions would be matched with stimulus-generated bottom-up activity, and an error signal is
generated reflecting any mismatch between the predicted signal and the actual stimulus-
generated activity. If the error signal is substantial, the mismatch is projected to the higher
neural region where a new prediction, refined by the error signal, is generated. When the
perceptual task is simple, such as identifying clearly presented, commonly encountered stimuli,
the initial prediction or set of predictions is likely to match up well with the sensory input,
rendering multiple iterations of this cycle unnecessary. However, if the identity of the object
has not been resolved in the initial pass, the cycle of matching and refining predictions
continues until the identity of the input stimulus has been determined. While these models
(Friston, 2005; Grossberg, 1980; Hinton et al., 1995; Mumford, 1992; Ullman, 1995) generally
fit into the qualitative framework described above, their underlying mathematical,
computational, and proposed cortical mechanisms differ in their details. Below we concentrate
on elucidating some of the differences between them.
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In the adaptive resonance theory (ART) of Grossberg (1980), the matching between top-down
and bottom-up information is accomplished through a pattern-matching algorithm that leads
to a stable and efficient representation of the input identity. The prediction patterns that match
the sensory-based representations lead to an amplification of the matching neural signal.
Conversely, mismatches lead to an extinction of the signal and alert the system that a new
pattern must be generated. This new prediction pattern is a combination of the parts of the
initial prediction that matched the stimulus features and updated features that improve the fit
with the stimulus-driven information (Grossberg, 1980).

Mumford (1992) proposed a mechanism based on an architecture of multiple local top-down/
bottom-up loops that traverse adjacent levels in the processing hierarchy. These loops carry
both the information that has been successfully predicted by higher-level regions and the
residual that needs to be explained in further iterations of the loop or at other levels of the
processing hierarchy. In this model, the top-down/bottom-up loops are used both for lower-
level visual processes, such as segmentation (e.g. between the level that attempts to segment
the input image based on local-feature properties, and the next-higher level that generates
predictions about how the larger image should be segmented), and for higher-level processing,
such as determining the conjunction between objects. These loops are relatively restricted in
how much of the processing network they transverse, like links on a chain, therefore this model
posits that processing builds up in increasing complexity. However, in contrast to bottom-up
models, the build-up of processing takes into account information based on prior experience
in its top-down/bottom-up loops. These loops demonstrate the type of neural architecture
necessary for the integration of top-down and bottom-up information. Mumford's model has
been extended with statistical methods (e.g., Kalman filtering, 1960) for addressing various
questions such as how receptive fields develop (Rao & Ballard, 1997).

The “counter streams” framework of Ullman (1995) proposes a large-scale bidirectional
information flow in which sensory input triggers parallel bottom-up and top-down processing
streams. These streams simultaneously activate multiple candidate interpretations of the
information coming from the senses, leading to rapid and flexible processing. Recognition is
accomplished when a match is found and the top-down and bottom-up “counter streams” meet.
This model contrasts with Mumford's model (1992) in that the top-down and bottom-up streams
transverse multiple regions and levels of the processing hierarchy. Thus, Ullman's model posits
that different levels of the processing hierarchy are able influence one another.

Recent work by Friston (2005) employs an empirical Bayesian statistical framework to describe
how predictions can guide the recognition process. This framework is largely complementary
to Mumford's work in that it assumes the architecture of top-down/bottom-up loops between
adjacent levels of the processing hierarchy. Friston employs a Bayesian statistical framework
with the explicit underlying assumption that experience-based information is used to minimize
prediction error when processing sensory information. The iterative refining process alters the
parameters in the model through Hebbian-like changes in cortical plasticity. According to
Friston (2005), experience with a stimulus alters the weights of the top-down and bottom-up
connections to reflect the refined representation that results from minimizing prediction error.
This learning scheme is able to account for several cognitive phenomena, such as mismatch
negativity and priming-related neural response reductions.

1.7 The role of neural synchrony in top-down/bottom-up interactions
A common feature of the frameworks that support a critical role for top-down influences is the
need for a mechanism for matching information in top-down and bottom-up processing
streams. Typically, these models, as well as other experimental and theoretical work, suggest
that the mechanism by which this matching is accomplished is the precise synchrony of the
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pattern of neural activity across the processing hierarchy (Bar et al., 2006a; Engel et al.,
2001; Friston, 2005; Grossberg, 1980; Mumford, 1992; Siegel et al., 2000; Ullman, 1995).

Synchrony between neural activity has been hypothesized to be a signature of integration of
neural processing both in local processing, such as for binding local stimulus features, and
across disparate neural regions, such as for integrating across modalities or exchanging
information across the brain (Engel et al., 2001; Hummel & Biederman, 1992; Simoes et al.,
2003; Tononi et al., 1992; Varela et al., 2001)1. In the case of top-down/bottom-up integration,
synchronized activity may represent the match between higher-level and lower-level
representations of the stimulus while the unsynchronized activity would reflect any residual
mismatch, or “error”, in the representations. Therefore, the iterative process of refining the
representation until a sufficient representation of the stimulus has been achieved can be
described as the process by which the neural activity in higher- and lower-level regions is
refined until the patterns of activity between these regions synchronize. For example, in
Ullman's “counter streams” model, when the top-down and bottom-up streams “meet” to
achieve recognition it might be reflected in increased synchrony of the activity in higher and
lower level regions (Ullman, 1995). Recent results support this view, demonstrating that neural
synchrony increases with an improved match between top-down and bottom-up processes
(Bar et al., 2006a; Ghuman et al., 2006; von Stein et al., 2000; von Stein & Satnthein, 2000).

A recent computational model demonstrates a physiologically plausible mechanism describing
how synchronized activity may govern top-down/bottom-up integration, and how this
interaction can facilitate cortical processing (Siegel et al., 2000). In this computational study,
the authors simulated a hierarchical neural network with separate top-down and bottom-up
connections and inputs based on empirical in vivo and in vitro findings. A Poisson spike train
with added noise was used to simulate naturalistic stimulus input. The key result was that top-
down input reduced the noise in the representation of the stimulus compared with bottom-up
processing alone. Furthermore, as the match between higher- and lower-level representations
improved, the synchrony between the activity in them increased. Additionally, increased
synchrony between the activity in higher- and lower-level regions (i.e. when the representations
matched) decreased the noise of the neural representation of the stimulus far more than non-
synchronized (i.e. non-matching) top-down projections. Moreover, increasing the strength of
the top-down signal, particularly if the activity in the higher- and lower-level regions
synchronizes, not only leads to less-noisy representations, but also to faster processing.
Additionally, the authors also demonstrated how, with two bottom-up inputs (representing two
competing stimuli), top-down influences can strengthen processing of one stimulus over
another, e.g. in response to contextual or attentional biases (Desimone & Duncan, 1995). This
model demonstrates how top-down/bottom-up synchrony could lead to facilitated and biased
processing as typically observed with priming and cueing paradigms (Brunia, 1993; Buckner
et al., 1998; Dale, 2000; Desimone, 1996; Grill-Spector et al., 2006; Jennings & van der Molen,
2005; Wiggs & Martin, 1998; Zago et al., 2005). Indeed, a recent study demonstrates increased
synchrony between higher- and lower-level neural regions with facilitated processing in
repetition priming (Ghuman et al., In prep-a).

Finally, in this computational model, due to the physiological differences between the different
inhibitory inputs, synchrony between higher- and lower-level regions occurred specifically in
the lower frequency bands when top-down influences were present. The lower-frequency-band
synchrony for top-down interactions is consistent with differences in the temporal properties
of the receptors in the cortical layers where feedforward and feedback projections terminate.
Specifically, feedforward projections are mediated through fast GABA-A and AMPA

1Although “synchrony”, strictly speaking, applies only to coupled activity with zero phase difference, here it will refer to phase-locked
activity with any phase lag, as a general term indicating coupling between neural signals.
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receptors, while feedback projections are mediated by slower GABA-B and NMDA receptors
(Salin & Bullier, 1995). Removing the top-down influence in this model suppressed the lower-
frequency synchrony and increased higher-frequency synchrony. This result is consistent with
experimental results demonstrating increased cross-cortical synchrony in the lower theta-,
alpha-, and beta-frequency bands when top-down influences are greater (Bar et al., 2006a; von
Stein & Satnthein, 2000) and greater local synchrony in the higher, gamma-frequency bands,
when bottom-up processing predominates (Engel et al., 2001; Tallon-Baudry & Bertrad,
1999; von Stein et al., 2000; von Stein & Satnthein, 2000). Additionally, theoretical
considerations suggest that the slower temporal dynamics of feedback projections are more
appropriate for top-down effects, which tend to be modulatory and prolonged, than for more-
transient sensory evoked responses (Friston, 2005). In particular, top-down information, such
as the global and context information, is useful for facilitation during the entire processing
sequence and can aid multiple processing levels. On the other hand, it is wasteful to maintain
the representation of bottom-up information once a more complete representation has been
formed. For example, once the identity of an object has been found, it would be inefficient to
continue to represent every detail about the object, because many of these details are
insignificant (Wiggs & Martin, 1998; Zago et al., 2005).

In summary, an improved match between higher- and lower-level representations can result in
improved synchrony in lower frequency bands and facilitated processing, demonstrating how
top-down influences can improve processing on a neural level. It is important to note that with
small modifications to the assumptions about the underlying neural architecture of this work
by Siegel et al. (2000), it could be adapted to fit with the various theoretical frameworks of
top-down/bottom-up interactions described above. For example, if the higher-level and lower-
level regions in the model are assumed to be in adjacent regions along the hierarchy, this model
can describe a computational example of how Mumford's (1992) mechanism may be
implemented. On the other hand, this model also fits with Ullman's “counter-streams”
mechanism (1995) in that the top-down and bottom-up signals are mapped onto separate but
interacting neuronal populations. Additionally, if the computations underlying top-down/
bottom-up processing fit the assumptions of prediction error minimization and empirical
Bayesian statistics, this model could be adjusted in accordance with Friston's framework
(2005). Finally, if these computations adapted the complex pattern-matching algorithm in the
ART framework, this computational work could be implemented in Grossberg's framework
(1980).

2. Evidence for top-down facilitation in visual recognition
2.1 A model for the triggering of top-down facilitation in object recognition

The theoretical treatments described above provide a framework for the computations that may
be involved in top-down/bottom-up interactions in visual recognition. However, they do not
specify what information may be used to initiate top-down predictions, which neural regions
would be involved, and how information travels through the brain during top-down facilitation
of object recognition. A recent proposal by Bar (2003), building on early top-down/bottom-up
models (Grossberg, 1980; Kosslyn, 1994; Mumford, 1992; Ullman, 1995) and recent findings
(Bar et al., 2001), described a neural and cognitive mechanism of how top-down predictions
might be initiated and employed to facilitate object recognition. According to this top-down
facilitation model, a coarse, partially processed version of visual afferents is rapidly projected
from the early visual regions to the orbitofrontal cortex (OFC), a key multimodal association
region (Barbas, 2000; Kringelbach & Rolls, 2004). The top-down facilitation model proposes
that the rapidly processed information is projected through the magnocellular pathway, based
on the rapid conduction velocities of this pathway (Bullier & Nowak, 1995; Merigan &
Maunsell, 1993; Shapley, 1990). As described in Section 1.3, the M pathway is particularly
well-attuned to low-spatial-frequency (LSF) visual information; therefore the model predicts
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that the partially processed visual information projected to OFC primarily contains LSFs. OFC
selects potential matches based on the global, LSF-based properties of the visual input.
Predictions about the candidate objects from which the particular LSF image might have arisen
are then projected to the object recognition regions in IT. Bar (2003) hypothesized that top-
down predictions bias the output of the bottom-up visual analysis and facilitate the search by
providing global constraints on the possible interpretations of the bottom-up outputs. This
would reduce the number of candidate objects that need to be considered to identify the
stimulus, enhancing the speed and accuracy of recognition (Figure 1).

With respect to the origin of this top-down facilitation, several recent findings point to OFC
as a probable site where it might be initiated. Located on the ventral surface of the prefrontal
cortex, OFC is known to be a multimodal association-processing region (Barbas, 2000; Rolls,
1999a; Rolls, 2004), well suited for integrating high-level information and generating
predictions. OFC is extensively connected with the object recognition regions in IT (Cavada
et al., 2000; Kringelbach & Rolls, 2004), and is also known to have strong bidirectional
connections with the amygdala (Amaral & Price, 1984; Barbas & De Olmos, 1990; Carmichael
& Price, 1995). OFC also has reciprocal connections with two major association nuclei of the
thalamus: the magnocellular division of the mediodorsal nucleus and the pulvinar (Barbas &
De Olmos, 1990; Ongur & Price, 2000; Semendeferi et al., 1997). OFC has been shown to be
involved in regulating emotion, assessing potential rewards, decision-making (Freedman et
al., 2003), and cognitive control (Bechara et al., 1998; Bechara et al., 1997; Bechara et al.,
2000; Tomita et al., 1999). Note that all of these functions involve generating predictions about
some internal or external stimulus or process, and exerting influence on limbic, sensory, or
motor regions to regulate their output. Importantly, OFC also has been shown to receive and
process visual information (Bar et al., 2001; Barbas, 2000; Ongur & Price, 2000; Rolls et al.,
2005; Thorpe et al., 1983; Voytko, 1985; Winston et al., 2007). Thus, OFC seems to be well
situated for integrating and broadcasting information used for rapid visual processing, as well
as for predictions in general (Bar, In press).

2.2 Testing the top-down facilitation model
The top-down facilitation model gives rise to the following testable hypotheses (Bar, 2003):
1) OFC, a key region where predictions are thought to be generated, should be activated early
in the recognition process, before recognition is completed; 2) The gist information used to
trigger the top-down facilitation process should be delivered to OFC by fast magnocellular
pathways; 3) This information should compatible with magnocellular processing (e.g., contain
LSFs); 4) Activity in the OFC should be predictive of recognition success; and 5) This OFC
activity should be modulated by how well the global shape of a stimulus can constrain the
number of alternative interpretations of the input image. In the following section we describe
the studies we performed to test these hypotheses.

2.3 Activity in OFC is initiated early
The initial fMRI study examining the BOLD signal between recognized and unrecognized
objects showed activation differences not only in the object recognition areas in IT, but also
in OFC (Bar et al., 2001). In this paradigm, stimuli were presented very briefly, and forward-
and backward-masked to make them difficult to recognize. The paradigm was structured so
that after multiple repeated exposures, the stimuli that initially could not be recognized became
recognizable (Bar et al., 2001). This activation of OFC for recognized vs. the same, initially
unrecognized stimuli led to the hypothesis that OFC might be responsible for generating
predictions about the possible identity of an object (Bar, 2003). Clearly, to facilitate the bottom-
up recognition processes, top-down predictions from OFC would have to be available before
the bottom-up recognition in IT is completed. Thus, activity in OFC should precede
recognition-related activity in IT.
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A recent study tested this hypothesis using magnetoencepholography (MEG), a method with
superior temporal resolution, with the same paradigm as in Bar et al. (2001). The results
demonstrated that differential OFC activity indicative of successful recognition indeed
precedes the activity in IT by 50 − 85 ms (Figure 2). In other words, OFC activity was diagnostic
of successful recognition earlier than activity in the object recognition regions, supporting the
critical prediction of the model (Bar, 2003). Activity peaked in the left posterior orbital gyrus
at 130 ms from stimulus onset, and was statistically significant from 115−145 ms (Bar et al.,
2006a).

To clarify the cortical chain of events that lead to object recognition, the synchrony between
the activity in the early visual cortex and OFC, and between OFC and IT was examined.
Specifically, phase-locking analysis (Lachaux et al., 1999; Lin et al., 2004) was used to
determine whether the regions demonstrated frequency- and time-locked MEG activity. The
results revealed strong phase-locking between the early visual regions and OFC at a relatively
early stage, and between OFC and IT at a relatively later stage. This temporal synchrony pattern
is consistent with the involvement of OFC in top-down facilitation of object recognition.
Critically, the OFC-IT phase-locking was stronger and of longer duration for recognized vs.
unrecognized stimuli (Figure 3). Moreover, the timing of the increased OFC-IT phase-locking
coincided with increased differential activity in IT for these trials (Bar et al., 2006a). High
phase-locking indicates that the trial-by-trial phase difference varies little, meaning that the
phases of signals from the two areas are highly predictive of one another. This suggests that
the two areas being examined are interacting, as it is unlikely that the signals would be strongly
coupled if they were evoked by independent generators.

Studies examining the processing of emotional stimuli likewise have demonstrated that OFC
is activated early in response to fear stimuli (Carretie et al., 2006), even when subjects were
not conscious of these emotional stimuli (Carretie et al., 2005). These results suggest that the
same processes involved in top-down facilitation of object recognition may also be involved
in rapid threat detection as part of an “early warning” system. The link between the role of the
OFC in top-down facilitation of object recognition and rapid threat detection will be discussed
in detail in section 4.

2.4 OFC responds preferentially to LSFs
A well-established phenomenon in visual psychophysics, in which global information in an
image is processed before the fine details and predominates perception under naturalistic
viewing conditions, is called global precedence (Fink et al., 1996; Fink et al., 2000; Hughes
et al., 1996; Navon, 1977; Sanocki, 1993; Schyns & Oliva, 1994). Our previous findings
showed that object recognition is associated with early activation of OFC, which suggests that
its connections with the early visual regions must have relatively fast conduction velocities
and thus are likely to be magnocellular. Therefore, we hypothesized that the information
initially projected to OFC contains mainly global information, i.e. LSFs. Recent fMRI and
MEG experiments tested this proposal by comparing activity during visual recognition of
images that were low-pass-filtered to include only LSFs, high-pass-filtered to include only
high spatial frequencies (HSF), or were unfiltered and included all spatial frequencies.
Differential BOLD activation was found in OFC for images containing LSFs (unfiltered and
LSF images), when compared with HSF images. A follow-up study using MEG revealed that
this differential activity in OFC peaked between 110−140 ms after stimulus onset,
corresponding to the recognition-related peak in OFC in the previously described MEG
experiment that compared recognized vs. non-recognized objects (Bar et al., 2006a). It is
particularly relevant that this OFC activity was highly similar for the LSF and Intact conditions,
and significantly different from that elicited by the HSF images.
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Recognition in both the LSF and HSF conditions was significantly slower than for the intact
images (by ∼90 ms), which underscores the importance of both types of information for optimal
recognition. The global-shape information carried in LSFs may trigger initial predictions in
OFC; however, the fine-details provided by HSFs are typically required for converging onto
a single identity of a particular object in IT. While neither the LSF nor the HSF stimuli were
recognized as quickly as the intact images, the similarity between the response to intact and
LSF images in OFC suggests that the engagement of OFC in top-down facilitation of
recognition is dependent on the availability of LSF information, whether or not HSF
information is present in the image. To test this hypothesis more thoroughly, phase-locking
analysis was again used to explore the cortical interactions involved in processing the LSF-
only, HSF-only, and intact images during object recognition. Strong phase-locking was found
between OFC and IT at 130 ms for LSF and intact images, but no significant phase-locking
was apparent between these regions for the HSF images (Figure 4). This lack of interaction
between OFC and IT for images containing only HSFs again indicates that early triggering of
top-down predictions from the OFC requires the presence of LSFs (Bar et al., 2006a). Similar
results have been obtained in a recent electroencephelopgraphy (EEG) study, which found an
interaction between spatial frequency content and emotional content for non-face stimuli in
OFC at 135 ms after stimulus onset (Carretie et al., 2007). Combined with the MEG results
described above, these findings suggest that the activation seen in the OFC from around 100
−150 ms may be a result of a shared circuit involved in top-down facilitation of object
recognition and rapid emotional processing. We discuss this possibility in greater detail in
Section 4.

Understanding the patterns of information flow in the brain is critical for clarifying the
mechanism underlying a particular neural process. Causality analyses (Ghuman et al., 2006;
Granger, 1969) of MEG data (Ghuman et al., In prep-b) can be used to infer the direction of
information flow between two cortical regions by examining whether signal from one region
can be predicted from past values of signal from another region. Granger causality is a well-
established method in econometrics that uses an autoregressive function to determine whether
the first signal can predict a second signal (Granger, 1969). Additionally, the recently
developed method of directional phase-locking determines whether past phases of one signal
can predict a second signal by determining the trial-by-trial variance in the phase relationship
between these signals. To determine the direction of information flow between OFC and IT,
both Granger causality (1969) and directional phase-locking (Ghuman et al., 2006) were used
with MEG data from the studies describe above (Bar et al., 2006a). These analyses showed
that there is a reciprocal exchange of information between OFC and IT, again only when LSFs
are present in the image. Therefore, the bidirectional interaction between the OFC and IT
probably reflects continual refinement of top-down and bottom-up information, rather than a
unidirectional projection from OFC. The early top-down projection of information from OFC
may focus the bottom-up processing on the likely object candidates, and the bottom-up
projection from IT to OFC may be used to refine the prediction or to the representation of the
image (Ghuman et al., In prep-b).

2.5 Magnocellular projections trigger top-down facilitation
In a recent study (Kveraga et al., Submitted), the hypothesis that the projection from the early
visual areas to the OFC relies on magnocellular pathways, either via subcortical projections or
via the dorsal visual pathway, was tested explicitly by using a direct M vs. P manipulation.
The paradigm used in this study exploited the fact that the M cells have high luminance contrast
gain (therefore can resolve low-luminance stimuli), but are blind to color, whereas the P cells
detect chromatic borders, but require higher luminance contrast (>8%; Tootell et al., 1988) to
be activated by achromatic stimuli. Line drawings of objects were used to create stimuli that
were either M-biased (achromatic, low luminance contrast) or P-biased (isoluminant, high
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chromatic contrast), with the proper stimulus values for the M and P conditions determined
individually. Similar (M vs. P) paradigms have been used to demonstrate the role of the M
pathway in directing spatial attention (Steinman et al., 1997; Steinman et al., 1998) and visual
search (Cheng et al., 2004), as well as to detect the M-pathway impairments in schizophrenia
(Butler et al., 2007; Schechter et al., 2005).

Although the participants reported the P-biased stimuli to be more visible than the luminance-
defined stimuli (because of the high chromatic contrast and higher mean brightness of the
former), it took participants much longer to recognize the chromatic (P-biased) images than
the low-luminance-contrast drawings. The M-biased stimuli activated OFC significantly more,
while the P-biased stimuli activated the inferotemporal object recognition regions to a greater
extent. The results showed that for the M-biased, but not for the P-biased, stimuli, larger BOLD
signal in OFC was correlated with a reduction in recognition RT. Conversely, larger BOLD
signal in IT was associated with an increase in recognition RT for the P-biased stimuli. These
findings provide further support for a key prediction of the top-down facilitation model (Bar,
2003): namely, that fast magnocellular pathways connecting the early visual regions with OFC
are critical for triggering top-down facilitation of object recognition. When this projection is
employed, as was the case for the M-biased stimuli, recognition speed and accuracy improves
along with positive signal changes in OFC. When its use is impaired, as was the case with the
P-biased stimuli, OFC is unable to trigger top-down facilitation early, resulting in greater
engagement of the bottom-up object recognition regions in IT and an overall slower recognition
performance (Kveraga et al., Submitted).

2.6 Orbitofrontal activity correlates with predictive power of LSF stimuli
Another hypothesis stemming from the top-down facilitation model (Bar, 2003) is that the
activation in OFC ought to reflect the predictive value of the input image. In other words, if
the gist (LSF) image of an object has many, rather than few, possible interpretations, is this
reflected in OFC activity? To test this hypothesis, the experiment was designed to compare
cortical activations evoked by LSF stimuli with varying degrees of ambiguity (Schmid & Bar,
In prep). The level of ambiguity was determined in a pilot study using only LSF images, in
which subjects had to name 500 low-pass filtered everyday objects. The degree of ambiguity
in these LSF stimuli was determined from the subjects' consistency in naming those stimuli
and categorized into three levels, ranging from unambiguous (e.g., a giraffe) to highly
ambiguous (e.g., a ball). A new group of subjects viewing the intact (i.e., unfiltered) version
of each object in the subsequent fMRI experiment, showed greater OFC activity with higher
levels of object ambiguity. This OFC activity was correlated with the behaviorally determined
ambiguity level of the visual stimuli, suggesting that it is indeed associated with the number
of possible interpretations of an input image (Schmid & Bar, In prep). These results
demonstrate that OFC activity is modulated by how specifically an object can be identified
based on its LSF representation and further supports the hypothesis that predictions generated
in OFC are based on LSF information in an image (Bar, 2003).

2.7 Summary of supporting studies for the top-down facilitation model
In sections 2.3−2.6 we described the studies conducted to test the specific hypotheses of the
top-down facilitation model (Bar, 2003). The first prediction, that OFC should be activated
early in the recognition process, was supported by two MEG studies in which activity for
successfully recognized and LSF stimuli activated OFC ∼50 ms before the object recognition
regions in IT (Bar et al., 2006a). Moreover, in both studies the activity in OFC showed
significantly greater synchrony for successfully recognized and LSF-containing stimuli than
for unrecognized or HSF-only stimuli (Bar et al., 2006a), indicating enhanced communication
between the two regions for these types of stimuli. The hypothesis that the information used
to trigger the top-down facilitation process should employ fast magnocellular projections was
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supported in an fMRI study by Kveraga, Boshyan and Bar (Submitted), which showed that M-
biased stimuli activate OFC more than the P-biased stimuli, and that this OFC activity predicts
the behavioral advantage for the M-biased stimuli. Another prediction of the model (Bar,
2003), that OFC activity is modulated by the interpretability of “gist” stimuli, was supported
by an fMRI study by Schmidt and Bar (In prep), which showed that greater ambiguity of LSF
stimuli evoked greater activation in OFC.

3. Links to priming, synchrony, and contextual facilitation
3.1 Top-down facilitation of object recognition is modulated by experience

The studies described above demonstrate that top-down facilitation is a critical part of object
recognition (Bar et al., 2006a; Bar et al., 2001). This facilitation typically depends on
accumulated experience with the visual world, as the perceiver has to have learned that a
particular blurred shape could be attributed to, for example, a desk lamp or an umbrella (Figure
1). It is possible, of course, that for certain classes of natural stimuli, mostly those signifying
threat (e.g., spiders or snakes), humans may have evolved innate responses. We will discuss
this possibility in Section 4. However, recognition of most other visual stimuli is clearly
affected by short- and long-term experience with the stimulus. Part of this experience concerns
the duration for which we are exposed to a particular object, which modulates the development
of expectations regarding this object. To address the question of how short-term visual
experience with an object influences the nature and content of its cortical representation, we
performed a study in which the duration of initial exposure to visual objects was varied and
fMRI signal and behavioral performance was measured during a subsequent repeated
presentation of these objects (Zago et al., 2005). The key finding in this study was a novel rise-
and-fall pattern relating exposure duration and the corresponding magnitude of fMRI cortical
signal. Compared with novel objects, repeated objects elicited maximal cortical response
reduction when initially presented for 250 ms. However, being initially exposed to an object
for a longer duration significantly reduced the magnitude of this effect. This rise-and-fall
pattern was also evident for the corresponding behavioral priming. This pattern of results
suggests that the earlier interval of an exposure to a visual stimulus results in a fine-tuning of
the cortical response, while additional exposure promotes selection of a subset of key features
for continued representation. We propose that the fine-tuning process is guided by the arrival
of gradually increasing details about the visual stimulus, and is therefore an inherently bottom-
up process completed in the occipito-temporal regions relatively early. The selection process,
on the other hand, depends on high-level information and semantic knowledge, and is therefore
guided by top-down signals originating in OFC.

3.2 Priming enhances cortical communication
With a few physiologically plausible assumptions regarding neural plasticity, the top-down/
bottom-up matching processes described above can be adapted to explain how the visual system
learns the causes of a particular sensory input. The top-down/bottom-up matching framework
proposes that the identity of a sensory input is resolved through an iterative process where
higher-level predictions as to the nature of the input are matched with lower-level
representations of the stimulus. The higher-level representation is then refined based on any
residual error between the higher- and lower-level representation, the updated higher-level
representation is matched with lower-level representations, and this process continues until the
cause of the input has been resolved. This process itself may be considered a learning process
whereby an optimal representation of an input is “learned” through a trial-and-error, iterative
refinement, process that takes place via top-down/bottom-up integration (Friston, 2005;
Grossberg, 1999). To implement these refined representations, a mechanism for neural
plasticity is required. The role of synchrony in top-down/bottom-up integration suggests an
intriguing possibility of how this iterative processing may result in permanent changes in neural
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connections. Specifically, this framework proposes that increased cross-cortical synchrony
reflects a better match between higher- and lower-level representations and asynchronous
activity in part represents any residual error between these higher and lower level
representations. If the physiological assumptions of modified Hebbian plasticity are assumed
(Ackley et al., 1985; Hebb, 1949), synchronous activity should lead to strengthened
connectivity between regions and asynchronous activity should lead to weakened connectivity.
This can be described as strengthening the processes that lead to successful matches between
higher- and lower-level regions, as reflected in increased synchrony, and weakening the
processes that lead to greater error in the match between higher- and lower-level regions, as
reflected in asynchronous activity. This hypothesis is compatible with a “tuning” framework
of repetition (Desimone, 1996; Grill-Spector et al., 2006; Wiggs & Martin, 1998), which
suggests that non-critical stimulus features fall away with repetition. The asynchronous activity
that falls away represents the features that are not present in the refined representation that
results form the iterative top-down/bottom-up process. The features represented by the
asynchronous activity may be analogous to the non-critical stimulus features in the “tuning”
framework. With learning and repetition, the refined representation that results from the
iterative top-down/bottom-up integration process becomes permanent. By making the refined
representation permanent, when processing a learned stimulus again, the match between the
higher and lower level representations will be greater and occur earlier. Therefore, with
repetition the residual error in the match between higher and lower level representations should
decrease. According to this framework, learning can be considered to occur not strictly at the
local neural level, but rather in both the higher- and lower-level regions through refining the
representations of a stimulus that emerges through the iterative top-down/bottom-up
integration process.

Recent experimental results support important predictions derived from this extension of top-
down/bottom-up matching to describe learning. In particular, if the mismatch between higher-
and lower-level regions decreases with learning, as this framework predicts, the magnitude of
neural activity should also decrease with learning reflecting decreased error signal (Friston,
2005; Grossberg, 1999). Numerous priming results have demonstrated that, as experience with
a particular stimulus increases, neural activity decreases in both lower-level, visual processing
regions of the temporal cortex, and higher-level regions of the prefrontal cortex involved in
selection and control (Buckner et al., 1998; Dale, 2000; Desimone, 1996; Grill-Spector et al.,
2006; Zago et al., 2005). Additionally, mismatch negativity demonstrates a similar reduction
in activity for repeated stimuli in the auditory domain (Baldeweg et al., 2004; Jaaskelainen et
al., 2004; Naatanen et al., 2004).

A second prediction is that because learning occurs by refining the representation of a stimulus
through top-down/bottom-up interactions, disrupting higher-level processes should disrupt the
neural manifestations of learning at lower-levels as well. A pair of recent studies demonstrate
that if higher-level processing in the prefrontal cortex is disrupted using transcranial magnetic
stimulation (Wig et al., 2005) or by shifting the decision rules in an object classification task
(Dobbins et al., 2004) the behavioral and neural manifestations of repetition learning are
negatively affected both in the prefrontal cortex and in lower-level regions in the temporal
cortex. Virtually all models of learning predict the disruption of learning in the opposite
direction: lower- to higher-level processing. However, only the models that posit learning as
refinement through top-down/bottom-up matching predict that disrupting higher-level
processing will also disrupt learning at the lower levels of the processing hierarchy.

An additional prediction from this framework is that though neural activity decreases with
learning, reflecting the reduced error signal, the synchrony between top-down and bottom-up
regions should increase, reflecting the improved match between higher- and lower-level
representations. A recent repetition priming study using MEG demonstrated that indeed,
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though neural activity in the prefrontal and temporal cortex decreased with repetition,
synchrony between these regions increased from 190−270 ms from stimulus onset, peaking at
215 ms (Ghuman et al., In prep-a). Furthermore, these results demonstrated that the earlier that
this synchronization between the PFC and temporal regions happens, the greater the learning-
related benefit to task performance across subjects. This result supports another prediction of
the top-down/bottom-up matching mechanism: that not only should learning increase the match
between higher and lower level representations, but that the more learning has taken place, the
earlier this match occurs.

3.3 Top-down Facilitation by Contextual Information
Objects in our environment usually are not distributed randomly, but tend to co-occur in
particular situations. For example, computer mice are usually found near computers, whereas
real mice are more likely to be encountered near mousetraps. Conversely, it would be unusual
to find a computer mouse near a mousetrap. Recognition efficiency can be improved by using
this learned information regarding the spatial, temporal, and semantic relationships between
stimuli in our environment. Indeed, studies have shown that object recognition is facilitated
when objects appear in their proper context (Bar & Ullman, 1996; Biederman, 1972, 1981;
Biederman et al., 1982; Davenport & Potter, 2004; Palmer, 1975). Knowing that you are
entering a barber shop can rapidly sensitize the representations of objects that typically are
found in barbershops, such as a razors, combs, and scissors, facilitating their recognition. In
fact, context can modulate recognition of a target stimulus even when contextual information
is presented simultaneously with the target. Several studies have demonstrated that scene
identification can occur very rapidly based on the “gist” of the scene (Biederman et al.,
1974; Oliva & Torralba, 2001; Sanocki, 1993; Schyns & Oliva, 1994). These results suggest
that contextual information may be extracted rapidly, perhaps based on coarse, global
information, which would then be available to facilitate object recognition. Indeed,
experimental results have shown that individual objects in a scene are easier to identify when
they are visually and semantically consistent with their context (Biederman et al., 1982;
Davenport & Potter, 2004; Palmer, 1975). For example, Biederman et al. (1982) demonstrated
that objects were more difficult to recognize when they violated appropriate contextual
relations in a given scene, such as being located in an invalid position, or being of an
inappropriate size for that scene. In another experiment, Palmer (1975) showed that accuracy
of naming objects increased when they were associated with an appropriate context, rather than
an inappropriate one. The ability of contextual information to improve or decrease recognition
speed suggests that rapidly extracted contextual information, perhaps from the gist of a scene,
interacts with object information to modulate the object recognition process.

These results demonstrate that we use contextual information to facilitate recognition of
objects, but how is this information represented in the brain? In a series of fMRI experiments,
Bar and Aminoff (2003) compared neural activity for objects that are strongly associated with
a context (for example, a bowling ball which is strongly associated with bowling alleys) to the
neural activity for objects with weak contextual associations (for example, a pen, which may
be found in many contexts and therefore is only weakly associated with any one context).
Results from these experiments demonstrated that objects with strong contextual associations
elicited greater activation than those with weak contextual associations in specific cortical
regions: the parahippocampal cortex (PHC) the retrosplenial complex (RSC), and under certain
task demands also the medial prefrontal cortex (mPFC). These results were consistent in all
the experiments and were replicated in a recent study (Aminoff et al., In press), strongly
supporting the idea that PHC, RSC and mPFC form a “context network.”

While demonstrating the importance of the PHC and RSC in contextual processing, these
studies left unanswered the question of how exactly PHC and RSC interact with the object
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recognition regions in the occipitotemporal cortex and mPFC/OFC to enable contextual
facilitation of object recognition. This question was explored in an event-related contextual
priming study in which subjects' response times and fMRI signal were measured during the
recognition of individual objects that were strongly associated with a particular context (Fenske
et al, 2006). Each object either represented the first instance of a particular context, or had been
preceded by another object from the same (repeated) context. Facilitation of object recognition
by previously seen contextually related objects was reflected by faster response times and
changes in the BOLD signal for repeated-context, relative to novel-context, objects.
Importantly, the BOLD signal in the OFC regions activated in prior studies of top-down
facilitation of object recognition was correlated with behavioral facilitation of recognition
judgments, such that the extent of priming by prior contextually related objects was associated
with OFC activity. Furthermore, the activity observed in recognition-related temporal cortex
regions and contextual processing regions of PHC was highly correlated with behavioral
facilitation of object recognition (Fenske et al, 2006). These results support our hypothesis that
contextual activation facilitates the recognition of other objects that are likely to co-appear
with a target object.

These results led us to consider that objects most often do not appear in isolation; rather, we
typically see them as part of scenes. These scenes usually represent a unique context that is
associated with a specific set of typical objects. For example, a kitchen context would be
associated with a refrigerator, a stove, a toaster, a blender, and so on. To the extent that context-
based expectations may benefit the recognition of objects associated with the same setting, we
extended our model of top-down influences during object recognition and proposed a
mechanism for a rapid top-down influence of contextual information on object recognition
(Bar, 2004). According to this mechanism, a blurred, LSF representation of the input is
projected rapidly from the early visual regions and/or subcortical structures to OFC and PHC.
In PHC, such image activates an experience-based guess about the present context (e.g.,
‘street’, ‘conference room’). This information is then projected to IT, where it triggers the
activation of the set of object representations associated with the specific context. In parallel,
the same blurred image activates information in OFC that subsequently sensitizes the most
likely candidate interpretations of the target object in IT (Fig 5). The intersection, in IT, between
the representations of the objects associated with the particular context and the candidate
interpretations of the target object typically results in a reliable selection of a single object
identity. This representation is then filled with detail with the gradual arrival of high spatial
frequencies.

4. Links to emotion and action preparation
4.1 Cooperation of OFC and the amygdala in processing of emotional stimuli

Stimuli with emotional cues tend to signify biologically important events, which require rapid
evaluation and response. For this reason it is perhaps unsurprising that emotional stimuli are
processed differently from neutral stimuli (Adolphs et al., 2005; Carretie et al., 2006; de Gelder
et al., 2003; LeDoux, 2000; Morris et al., 1999; Morris et al., 2001; Morris et al., 1998; Nomura
et al., 2004; Pourtois et al., 2006; Vuilleumier et al., 2003; Winston et al., 2003). Emotional
stimuli tend to have “priority processing”, evoking earlier and stronger responses both in the
limbic areas, such as the amygdala and OFC, in the traditional visual recognition regions
(Vuilleumier & Pourtois, 2007), as well as in subcortical structures associated with gating
attention and eye movements, such as the pulvinar and the superior colliculus (Liddell et al.,
2005; Morris et al., 1998; Whalen et al., 1998). This prioritization of emotional stimuli is seen
even when stimuli are presented subconsciously (e.g., masked) (Morris et al., 1998; Whalen
et al., 1998), in unattended locations (Vuilleumier et al., 2001), or to patients who are occipitally
blind (Morris et al., 2001), have parietal neglect (Vuilleumier et al., 2002), or prosopagnosia
(de Gelder et al., 2003). In the studies in which stimuli were filtered into different spatial
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frequency bands (Carretie et al., 2007; Vuilleumier et al., 2003; Whalen et al., 2004; Winston
et al., 2003), emotional, particularly threat, cues, were processed preferentially only when the
stimuli included LSFs.

Recently, Bar and Neta (2006a) explored whether object stimuli can evoke danger perception
based purely on low-level properties, specifically, their spatial frequency characteristics.
Subjects were presented with matched, unfiltered object pictures, which were divided into two
groups based on how sharp or smooth their contours were (e.g., an angular wristwatch vs. a
round wristwatch). The sharp objects overall had more spectral power in HSF and less power
in LSF, compared with the smooth objects (unpublished analysis). The objects were presented
one by one, and subjects had to report how much they liked the objects. The sharp objects,
despite being semantically identical to their smooth counterparts, were liked significantly less
than the smooth objects (Bar & Neta, 2006a), and also evoked greater amygdala activity (Bar
& Neta, 2007). These findings suggest that even very similar objects can be perceived as more
threatening than their semantically and functionally matched counterparts, based simply on the
low-level, spatial frequency, characteristics (e.g., sharp edges) of the stimuli.

These findings indicate the existence of a network that is activated by coarse information with
emotional significance and may include pathways parallel to the primary visual projection,
perhaps overlapping with the auxiliary vision network employed in “blindsight” patients
(Cowey & Stoerig, 1995; Weiskrantz, 1996). An important role in this network is played by
the amygdala, which is involved in evaluating the emotional significance of stimuli and
detecting threats in the environment (Adolphs et al., 1995). The amygdala comprises a group
of nuclei interconnected with the sensory, as well as the prefrontal, cortices (Barbas & De
Olmos, 1990; Ghashghaei & Barbas, 2002). In particular, the amygdala has massive
bidirectional connections with OFC (Amaral & Price, 1984; Barbas & De Olmos, 1990; Porrino
et al., 1981), with distinct input/output zones (Ghashghaei & Barbas, 2002; Ghashghaei et al.,
2007). A recent study by Ghashghaei, Hilgetag and Barbas (2007) investigating the laminar
specificity of OFC connections with the amygdala showed that projections to the amygdala
originate in Layer 5 of OFC, consistent with feedback, and that the densest projections from
the amygdala terminate in the middle layers of OFC, consistent with feedforward input. Given
the existence of the reciprocal loops, it is unsurprising that the amygdala seems to share some
of its functions with OFC. For example, fearful faces activate both OFC and the amygdala
(Eimer & Holmes, 2002; Vuilleumier et al., 2002), and this activation is driven by LSFs
(Winston et al., 2003).

Both the amygdala and OFC also have reciprocal connections with the object and face
recognition regions in the anterior temporal lobe (Ghashghaei & Barbas, 2002; Ghashghaei et
al., 2007). It is not established whether OFC receives emotion-related information first through
its robust bidirectional connections with the amygdala (Barbas & De Olmos, 1990) and then
feeds its interpretation of the initial feedforward projection back to the amygdala (as well as
to IT), or whether it initially gets this information through a projection from another cortical
(e.g., IT) or subcortical structure, e.g., the pulvinar or mediodorsal nuclei of the thalamus
(Weiskrantz, 1996). In addition to the direct connections, the amygdala also projects to OFC
indirectly, via the magnocellular division of the mediodorsal nucleus of the thalamus (Barbas
et al., 1991; Porrino et al., 1981; Russchen et al., 1987). The function of this indirect projection
is not completely clear, though lesions of the mediodorsal nucleus have been shown to disrupt
long-term memory (Isseroff et al., 1982; Zola-Morgan & Squire, 1985), perhaps affecting
memory with emotional coloring in particular. It is also quite likely that OFC, given its major
function of integrating information from a wide array of sources (Barbas, 2000; Kringelbach
& Rolls, 2004) receives several subcortical projections concurrently. There is evidence for both
inhibitory and excitatory projections from OFC to the amygdala, strongly implying top-down
modulation of the amygdala output by OFC (Ghashghaei & Barbas, 2002).
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4.2 Potential role of OFC and the amygdala in action preparation
Both OFC and the amygdala also have connections with autonomic effector structures, which
allow both regions to effect increases in cardiac and respiration rates based on the emotional
content of the stimulus (Barbas, 2000; Bechara et al., 1996). Both regions also have connections
to motor structures such as the basal ganglia and the superior colliculus, which may be
employed in fast evaluation of input with survival implications and triggering of reflexive or
learned action in response. A recent pair of studies by Thorpe and colleagues (Guyonneau et
al., 2006; Kirchner & Thorpe, 2006) reported ultra-fast detection of objects with saccadic eye
movements. The saccadic RTs were as fast as 120 ms, with the mean of less than 240 ms
(Guyonneau et al., 2006; Kirchner & Thorpe, 2006), comparable to those in a spatial pop-out
task (Kveraga et al., 2002). The stimuli employed in these studies included animals embedded
in natural scenes, and the latencies of the reported saccades make it highly unlikely that the
saccades were initiated after visual analysis in the ventral visual pathway was completed.
Rather, it is likely that most responses were made without the benefit of detailed ventral stream
processing, but relied heavily on coarse subcortical (the superior colliculus-pulvinar-
amygdala) and/or cortical processing in OFC. Guyonneau, Kirchner and Thorpe (2006) also
investigated how well the subjects could identify peripheral targets at different orientations.
The saccadic RTs to all 16 of the tested orientations were surprisingly orientation-invariant.
This finding additionally suggests that the M-based early action system discussed in the
previous section may be largely viewpoint-invariant.

The results of the studies reviewed above lead us to propose that the network employed in top-
down facilitation of object perception may be part of an older system that evolved to quickly
detect environmental stimuli with emotional significance. This primarily may involve scanning
the environment for threat and danger cues, but also could include the detection of other
survival-related stimuli, mating- or food-related cues. Once the coarse information is extracted
and rapidly processed for emotional content, its output then may be shared with “typical” visual
recognition processes to facilitate the bottom-up analysis. This hypothesis certainly needs
further exploration in future studies.

5. Links to schizophrenia and dyslexia
5.1 The pathways involved in top-down facilitation are affected in schizophrenia

In recent years, important links have been identified between visual processing deficits in
schizophrenia and impaired magnocellular function, while parvocellular processing seems to
be mostly preserved in schizophrenia patients. Studies using Diffusion Tensor Imaging (DTI)
(Butler et al., 2007), and evoked response potentials (ERPs) in electroencephalography (Butler
et al., 2007; Doniger et al., 2002; Schechter et al., 2005) have demonstrated anatomical and
functional deficits in the early visual pathway. Deficits in the M-pathway function were
demonstrated by psychophysical tasks in non-medicated schizophrenia patients (Keri et al.,
2006) and by significantly reduced BOLD signal in the M/dorsal-stream regions in first-degree
relatives of schizophrenics (Bedwell et al., 2004). Butler et al. (2007) found decreased
fractional anisotropy (FA), a measure of the white matter integrity related to dysmyelination
of axons, in the optic radiations of schizophrenia patients compared with normal controls.
While this finding does not specifically implicate the magnocellular fibers, as both
magnocellular and parvocellular neurons project from the LGN to the visual cortex,
dysmyelination affects magnocellular neurons to a greater extent due to their thicker
myelination. Furthermore, work by the same group employing psychophysical manipulations
and evoked potentials has shown that schizophrenia patients exhibit significantly reduced
responses in scalp potentials (P1) associated with the M pathway (Butler et al., 2007; Schechter
et al., 2005). The size of the M-related P1 potential was correlated with scores on a clinical
measure (ILS-PS; Loeb, 1996) used to assess how well schizophrenia patients should be able
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to function on their own. Low-functioning patients showed a reduction in the P1 component,
compared with the high-functioning patients and controls (Schechter et al., 2005). The authors
have used the findings of dysfunction in the M pathway to argue that the visual processing
deficits observed in schizophrenia are due to impaired bottom-up (rather than top-down)
processing (Butler et al., 2007). However, it is important to note that there is no disagreement
between this view and our top-down facilitation model, as well as the findings that motivated
and support it. The apparent incongruity is due solely to a difference in terminology and scope.
Butler et al. (2007) use the term ‘top-down’ to describe processes guided by attention, pre-
cued predictions and the like. However, the model the authors proposed to account for the
effects of the M pathway impairment in schizophrenia proposes the same critical role for fast,
M-based predictions as the top-down facilitation model (Bar, 2003).

5.2 The M pathway abnormalities in dyslexia
Reading deficits observed in dyslexia have been associated with degraded dorsal stream
activity and attentional deficits (e.g., Casco, 1993; Cornelissen et al., 1998; Pammer &
Wheatley, 2001; Rayner et al., 1995; Steinman et al., 1998). This has led to the proposal that
the M pathway dysfunction is responsible for the deficits observed in dyslexia (Vidyasagar,
1999, 2004; Vidyasagar, 2005; Vidyasagar et al., 2002) although this view may be still tentative
(Skoyles & Skottun, 2004). Pammer (2006), using MEG, showed that the right posterior
parietal cortex, a region along the dorsal visual stream receiving M projections, is activated
more with higher spatial encoding requirements. Another study compared dyslexic children,
who wore yellow or neutral-density filters for three months while reading (Ray et al., 2005).
Yellow-light filters enhance M pathway activity by blocking out the M activity-inhibiting blue
light. Indeed, the children who wore yellow-light filters gained significantly in their reading
ability, compared to the control group (Ray et al., 2005), supporting the observations of lower
luminance contrast sensitivity (i.e., M pathway impairment) in dyslexic children (e.g.,
Lovegrove, 1993). However, another group (Bednarek & Grabowska, 2002; Bednarek et al.,
2006) found higher luminance contrast sensitivity in dyslexic children, which the authors
interpreted as the possible cause of increased saccade frequency in dyslexic readers (Zangwill
& Blakemore, 1972). While the exact nature of M pathway impairment in dyslexia is far from
being resolved, there seems to be enough evidence (see Vidyasagar, 2004) to suggest that the
M pathway abnormalities may lead to disrupted top-down guidance of visuo-spatial attention
in reading.

6. Discussion
The primary principle that emerges from our proposal and the reviewed findings is that the
brain extracts coarse, gist information rapidly, and uses it to generate predictions that help
interpret that input. The focus here has been on the specific problem of visual object
recognition. However, it seems reasonable to generalize that the same principle applies in many
domains and modalities. To make this generalization, we will start by introducing a more global
framework and terminology.

In this framework, the brain is perceived as proactive in nature: rather than waiting to be
activated by sensations, it is constantly generating predictions that help interpret the sensory
environment in the most efficient manner. Building on previous work, this expanded proposal
posits that rudimentary information is first extracted rapidly from a perceptual input, and then
used to derive analogies linking the input with the most similar representations in memory
(Bar, In press). The linked stored representations in turn selectively activate the associations
that are relevant in the specific context (Bar et al., 2007), which provides focused, testable
predictions. These predictions facilitate perception and cognition by pre-sensitizing
representations all the way downstream to primary cortices. In other words, this framework
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relies on three main components: associations of related representations, analogies between
the input and memory, and the subsequent generation of predictions. We will elaborate on each
below.

Associations provide the “glue” that binds related concepts in memory. These relations and
associations are inferred from knowledge accumulated with experience of recurring co-
occurrences. There are many statistical regularities in our environment (e.g., traffic lights tend
to be present in street contexts), and the brain uses them to short-cut processing in similar future
situations. The term analogy refers to the mapping of a novel input to existing representations
in memory. With our accumulated experience, nothing is absolutely unfamiliar to us, in that
we have encountered at least some aspects of that input in the past. For example, we can
recognize a train station in a foreign city, we know how to behave in a museum even if we
have not been to this specific one before, and so on. The analogical operation maps the specific
input to the closest representation (or collection of constituent representations) in memory.
Creating this analogical link then allows us to apply our ever-evolving memories to the novel
situation. Specifically, once there is an analogy between input and memory, we can make use
of all the relevant information associated with this analogy. For example, imagine you see a
zebra for the first time in your life. It will seem to you almost like a horse, with which you are
familiar. Therefore, you can make good guesses about other properties of this new animal: how
it runs, what it likes to eat, and so on. By activating the associated information, the brain
generates specific predictions that can later be tested. Of course, these associations-based
predictions are only an approximation. Experience with this new animal will update your
representation of a zebra and its own set of associations. In many levels, repetitive experience
will make these operations of analogies, associative activation and the generation of prediction
automatic and require less conscious effort.

One important question for future research is how exactly can gist information be sufficient
for activating predictions that are specific enough to be helpful? Given that such analogical
mapping is based on coarse information, the analogy is not expected to typically be one-to-
one, in that it might suggest multiple alternatives, as the model for top-down object recognition
described above implies. In conjunction with other sources of information, these multiple
alternatives may be further narrowed even before the thorough analysis of the input takes place.
Indeed, coarse information seems sufficient for most processes to make an informed and,
somewhat surprisingly, successful initial guess. When it is insufficient, contextual information,
which can also be extracted rapidly (Torralba, 2003), helps resolve many remaining
ambiguities (Bar, 2004). The conjunction of low spatial frequencies and context might
therefore be sufficient in most situations (Fig. 5). Details seem necessary only for specific tasks
(e.g., finding your keys on a cluttered counter), and otherwise many of them are filled-in by
predictions rather than by perception. The framework elaborated here can help realize the role
of associations, analogies and predictions in domains far beyond this of visual recognition, a
few of which we will discuss here.

One example is a phenomenon termed representational momentum (Freyd, 1983), whereby a
sequence of static photographs that implies a certain type of motion affects subjects'
performance on the target image, as a function of its difference from the previous image in the
sequence. A related fMRI study (Kourtzi & Kanwisher, 2000) suggests that even static images
with implied motion can activate areas MT/MST, which are believed to analyze actual motion
signals. Similarly, fMRI showed that different premotor sub-regions are activated depending
on the properties (e.g., speed and location) of the display that had to be attended and anticipated
(Schubotz & von Cramon, 2001). These results demonstrate how predictions regarding the
anticipated motion of a stimulus modify the perception of and neural activity in response to
seeing that stimulus.
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Such expectations-based preparatory activation has been observed in numerous domains. For
example, threat of tickling activates somatosensory cortex (Carlsson et al., 2000); visual
imagery, which may be a critical vehicle for the generation of predictions, activates visual
cortex, and has even been shown to activate early visual cortex in a retinotopically organized
manner (Slotnick et al., 2005), and similarly, visual imagery of higher-level objects and faces
activates the same regions that are activated with the perception of the same stimuli (Ishai et
al., 2002; Ishai & Sagi, 1995); and gustatory cortices can be activated by pictures of food
(Simmons et al., 2005). Demonstrations of contextual priming (Bar & Ullman, 1996;
Biederman, 1972; Davenport & Potter, 2004; Palmer, 1975) provide a further example of the
generation of visual predictions, where seeing a certain object activates the representation of
other objects that are likely to appear in the same context. Finally, predictions not only facilitate
perception and cognition, they ultimate play a critical role in action, which is best manifested
by the sequential representation and execution of action sequences (Keele et al., 2003; Lisman,
1999).

In higher cognitive levels, predictions have a critical role in language comprehension and
sentence integration (DeLong et al., 2005; Duffy, 1986). Furthermore, being able to predict
the intentions and actions of others is beneficial (e.g., ‘theory-of-mind’) (Frith & Frith, 2006;
Mitchell et al., 2005), and has recently been demonstrated to support sensory processing (Neri
et al., 2006). Predictions also play a prominent role in how we enjoy art, and music in particular
(Huron, 2006).

The generation of predictions is manifested widely also in social interactions. Here the process
of analogy might be especially pronounced, as we compare current occurrences with similar
previous experiences. Consider first impressions, for example. People tend to make rapid
evaluations of other people, based on the information that is available first, sometimes in less
than 100 ms (Bar & Neta, 2006; Willis & Todorov, 2006). We propose that this process is
based on information that is extracted quickly, such as low spatial frequencies (Bar et al.,
2006b), whereby we use these global properties to link the new person with a familiar person
in memory (e.g., “who does this person look like”), even if not explicitly. Once a link is found
we automatically project information such as personality attributes to the new person based
simply on this analogy. Although this analogy is an approximated set of attributes, it can still
be helpful when starting an interaction with a person about whom we have no other prior
information. Therefore, first-impressions, too, are learned associations that are subsequently
used to derive predictions based on scant information. In other words, in the realm of object
recognition low spatial frequencies help us recognize a target object and predict what else might
we encounter within the same context, and in social interactions cursory information might be
sufficient for generating an initial guess about what to expect in a social interaction, using the
same principle of activating predictions based on associations in memory. This might be a
central principle that makes our cognitive brain so efficient: we take advantage of the past by
informed advanced activation of memory in the service of the future. These types of analogy-
based mappings of properties have been demonstrated to manifest themselves in processes
ranging from perception and memory (DiGirolamo, 1997; Song & Jiang, 2005) to stereotypic
judgments and prejudice (Devine, 1989), and can be guided by perceptual and conceptual
similarity, as well as by goals (Hummel & Holyoak, 2003).

Predictions are not only used for facilitating perception and behavior by pre-sensitization; they
are more generally used to help us construct a coherent and stable representation of the world
around us. The information that reaches our cortex is degraded in many respects (e.g.,
compression done by the retina, as well as noise in the input and our neural pathways). In
addition, it is only rarely that we need to attend every detail in the environment, but we need
to know what is located where on a gross level. In both cases, using information stored in
memory, predictions can fill-in what we cannot or do not invest the energy to process in detail.
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When considering the representation of predictive information, and the specific way by which
their contribution is exerted, we can expand on some of the principles we mentioned earlier in
the context of visual recognition. Specifically, the concept of low spatial frequency information
and its potential to conserve neural resources and generate an “initial guess” can be applied at
multiple levels. For example, when we want to predict how would someone we know react to
something, we would predict from previous incidents that bear some similarity to the same
content. It is never identical, but it may be close enough and therefore useful in guiding our
actions to produce the most advantageous outcome. The concept of “gist” and its cortical
representation becomes highly challenging when one considers such high levels of abstraction.
By defining and testing gist representations and processing more explicitly, future research
will reveal information crucial for our understanding of how general the principle of gist
extraction for predictions is throughout the cognitive brain.
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Figure 1.
Schematic of the proposed model for top-down facilitation of object recognition. According
to this model, a coarse, low spatial frequency representation of the input image is rapidly
extracted and projected to OFC from early visual or subcortical regions. OFC uses this low
spatial frequency gist information to generate a set of predictions regarding the possible identity
of the object. In parallel, detailed, systematic processing proceeds along the ventral visual
stream culminating in IT. The initial guesses produced by OFC facilitate recognition by
sensitizing IT to the most likely candidate objects, thereby reducing the search space that the
visual system needs to consider to identify the object.
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Figure 2.
MEG results demonstrate that recognition-related activity in OFC precedes IT. The left
hemisphere OFC was diagnostic of recognition at 130 ms after stimulus onset, 50 ms earlier
than right hemisphere IT and 85 ms earlier than left hemisphere IT. These results demonstrate
that the visual response in OFC is triggered earlier than in IT, supporting the proposal that OFC
generates predictions used for top-down facilitation of object recognition (Bar, 2003).
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Figure 3.
Synchrony analysis demonstrating that OFC and IT form a network of interacting cortical areas
involved in top-down facilitation of object recognition. A) Phase-locking demonstrates a
significant interaction between OFC and IT from 130−205 ms after stimulus onset in the alpha
(8.5−12 Hz) frequency band for unrecognized stimuli. B) OFC-IT phase-locking lasted 40 ms
longer for recognized stimuli than for unrecognized images. C) The onset of increased phase-
locking for recognized versus unrecognized stimuli approximately corresponds to the onset of
recognition-related MEG activity in IT.
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Figure 4.
Results of a phase-locking analysis comparing synchrony between the orbitofrontal and
inferotemporal cortices for original, low-pass-filtered (LSF), and high-pass-filtered (HSF)
pictures of objects (Bar et al. 2006). Significant cortical synchrony was found for the stimuli
containing LSFs (intact and low-pass-filtered pictures), but not for HSF-only stimuli.
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Figure 5.
Schematic of proposal of how LSF information may also trigger contextual information used
in object recognition. The low spatial frequencies of the target object are projected to OFC
where predictions as to the possible candidate identities are determined. In parallel, an LSF
representation of the image is also projected to the parahippocampal cortex where the most
likely context of the image is determined. The identity of the input image is narrowed down
through the conjunction of the contextual scene, and the rapidly extracted object gist,
information. Detailed information arrives later through the ventral visual stream and uses these
context- and gist- based predictions to complete the recognition process.
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