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Miscoordination of growth and proliferation with the

cellular stress response can lead to tumorigenesis.

Mammalian target of rapamycin (mTOR), a central cell

growth controller, is highly activated in some malignant

neoplasms, and its clinical implications are under exten-

sive investigation. We show that constitutive mTOR

activity amplifies p53 activation, in vitro and in vivo, by

stimulating p53 translation. Thus, loss of TSC1 or TSC2,

the negative regulators of mTOR, results in dramatic

accumulation of p53 and apoptosis in response to stress

conditions. In other words, the inactivation of mTOR

prevents cell death by nutrient stress and genomic damage

via p53. Consistently, we also show that p53 is elevated

in TSC tumors, which rarely become malignant. The

coordinated relationship between mTOR and p53 during

cellular stress provides a possible explanation for the

benign nature of hamartoma syndromes, including TSC.

Clinically, this also suggests that the efficacy of mTOR

inhibitors in anti-neoplastic therapy may also depend on

p53 status, and mTOR inhibitors may antagonize the

effects of genotoxic chemotherapeutics.
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Introduction

Tumorigenesis is a complicated process that involves the loss

of many mechanisms for regulating cell growth and proli-

feration in response to stress and growth factor signaling. The

mammalian target of rapamycin (mTOR) is a highly con-

served serine/threonine kinase, which is central for a diverse

set of cellular processes important for growth and prolifera-

tion. Furthermore, mTOR is also found to be activated in a

variety of malignancies and thus is currently being targeted

for anti-neoplastic therapy. mTOR exists in one of two distinct

functional complexes, TOR complex 1 (TORC1) and TORC2.

TORC1 is potently and specifically inhibited by rapamycin,

and it regulates cell size, autophagy, ribosome biogenesis,

protein translation, transcription, and cellular viability (Lee

et al, 2007). TORC2, which is much less sensitive to rapamy-

cin, is important for cytoskeletal regulation (Loewith et al,

2002; Jacinto et al, 2004; Sarbassov et al, 2004) and AKT

activation (Ali and Sabatini, 2005; Hresko and Mueckler,

2005; Sarbassov et al, 2005). Inhibition of TORC2 by rapa-

mycin occurs in a cell type-specific manner and requires far

greater concentration and duration than TORC1; thus, inhibi-

tion of TORC2 by rapamycin is likely due to an indirect effect

on TORC1 (Sarbassov et al, 2006). For the experiments in this

paper, references to mTOR activation or inhibition corre-

spond to activation or inhibition of TORC1.

It has been established both genetically and biochemically

that the tumor suppressors TSC1 and TSC2 negatively reg-

ulate mTOR (Inoki et al, 2002). Loss of either TSC1 or TSC2

results in the autosomal dominant hamartoma syndrome

tuberous sclerosis complex (TSC), which is characterized

by benign tumor formation in multiple organs, including

the kidney, liver, lung, spleen, heart, and brain (Young and

Povey, 1998). Loss of either tumor suppressor is sufficient to

induce TSC because TSC1 and TSC2 exist as both a physical

and functional complex (van Slegtenhorst et al, 1998).

The TSC1/TSC2 complex inhibits mTOR by acting as the

GAP for the small GTPase Ras-homology enriched in brain

(Rheb), and thus decreases Rheb-GTP and prevents stimula-

tion of mTOR activity (Castro et al, 2003; Garami et al,

2003; Inoki et al, 2003a; Tee et al, 2003; Zhang et al, 2003b;

Li et al, 2004).

In contrast to other tumor suppressors, loss of either TSC1

or TSC2 leads to tumor formation without malignancy. TSC

tumors, which have high mTOR activity, are benign and

highly apoptotic (Wataya-Kaneda et al, 2001), suggesting

that mTOR activation can sensitize cells to death and mTOR

activation alone is insufficient for progression to malignancy.

However, the mechanism by which this occurs is not well

understood.

Through phosphorylation of TSC2, the low energy re-

sponse mediator AMPK inactivates mTOR-dependent growth

and proliferation. This phosphorylation of TSC2 has a pro-

tective role against energy starvation-mediate apoptosis

(Inoki et al, 2003b). In addition to inhibiting mTOR, the

low energy response coordinated by AMPK also leads to

phosphorylation of numerous substrates to inhibit anabolic

processes and activate catabolic processes (Hardie et al, 1998;
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Kahn et al, 2005). To protect the cells from stress, AMPK

arrests the cell cycle through phosphorylation of p53 Ser15

(Jones et al, 2005) and arrests protein synthesis through

activation of TSC2. In the presence of TSC1/2, cells undergo

cell cycle arrest. However, we and others have observed

that energy starvation induces cell death in TSC1�/� and

TSC2�/� cells in a rapamycin-reversible manner (Inoki

et al, 2003b; Shaw et al, 2004), suggesting a role for mTOR

inhibition in low energy survival. However, the exact mole-

cular mechanism for this response is not yet known. Here, we

also show that activation of mTOR can sensitize cells to the

DNA-alkylating agent methyl methanesulfonate (MMS),

which causes both base mispairing and replication blocks

(Beranek, 1990). Both energy starvation and DNA damage

can lead to p53 activation (Duckett et al, 1999; Jones et al,

2005); therefore, we sought to elucidate the mechanism by

which mTOR activation sensitizes cells to death, thus, pro-

viding greater insight into the relationship between mTOR

and viability.

Here we show that increased mTOR activity dramatically

enhances p53 activation in response to both glucose starva-

tion and DNA damage. This occurs through stabilizing phos-

phorylations of p53 by energy starvation or DNA damage and

unabated p53 synthesis by constitutive mTOR activation;

therefore, rapamycin prevents overactivation of mTOR to

protect against both glucose starvation and DNA damage.

Furthermore, immunohistochemical staining of angiomyoli-

pomas illustrate in vivo that when mTOR activity is elevated

by TSC2 loss, tumors have increased levels of p53. These

results may explain why the TSC tumors are highly apoptotic

and benign.

Results

Dysregulation of mTOR activation sensitizes cells

to p53-dependent insults

p53 is known to be activated by both energy starvation and

DNA damage. To determine the effect of mTOR activation on

p53 activation, TSC1�/� and TSC1þ /þ MEFs were chal-

lenged with glucose starvation. TSC1�/� MEFs, which are

unable to downregulate mTOR in response to low starvation,

underwent massive amounts of gross cell death, as seen by

the appearance of rounded floating cells. Furthermore, in-

hibition of mTOR by rapamycin protected the TSC1�/�
MEFs against glucose starvation-induced cell death. In com-

parison, TSC1þ /þ MEFs, which properly downregulate

mTOR in response to low energy, show no evidence of cell

death (Figure 1A left).

To demonstrate that p53 is important for energy starvation-

induced cell death during mTOR activation, p53 was knocked

down in TSC1�/� MEFs by RNAi (TSC1�/� p53 RNAi

MEFs). When TSC1�/� p53 RNAi MEFs are challenged

with glucose starvation, they are more resistant to cell

death than their control RNAi counterparts. Furthermore,

rapamycin treatment of TSC1�/� p53 RNAi MEFs showed

no further protection against cell death. In contrast, TSC1�/�
control RNAi MEFs were acutely sensitive to glucose

starvation, and mTOR inhibition was protective against glu-

cose starvation (Figure 1A right). Together, this suggests that

p53 is important for mediating cell death seen by energy

starvation in TSC1�/� MEFs.

Consistent with the fact that loss of either TSC1 or TSC2 is

sufficient to induce mTOR dysregulation, TSC2�/� LEFs

derived from Eker rat kidney tumors also show increased

sensitivity to glucose starvation, which can be rescued by

rapamycin treatment. Viral infection of TSC2 to restore con-

trol of mTOR also protects the LEFs from glucose starvation

(Figure 1B left). These results demonstrate that downregula-

tion of mTOR during energy starvation is necessary to prevent

cell death.

Since RNAi of p53 in the TSC1�/� MEFs incompletely

knocked down p53, we wanted to test the effects of mTOR

activation in a p53-null background. To test whether p53 is

important for regulating cellular viability in the presence

of constitutive mTOR activation, TSC2�/� p53�/� and

TSC2þ /þ p53�/� MEFs were challenged with energy

starvation. Loss of either TSC1 or TSC2 impairs the ability

to downregulate mTOR in response to glucose starvation.

However, when p53 is also missing, TSC2�/� p53�/� MEFs

and TSC2þ /þ p53�/� MEFs showed equal sensitivity to

glucose starvation (Figure 1B right). Furthermore, rapamycin

had no effect on either cell type. Therefore, loss of p53

eliminated the increased sensitivity to energy starvation

induced by aberrant mTOR activation, which implies that

p53 is important for mediating cell death, and mTOR may be

an upstream regulator of p53.

To test whether mTOR activation also sensitized cells to

other activators of p53, various cell types were used to

examine the sensitivity to DNA damage. p53 is potently

activated by DNA damage induced by alkylating agents

such as MMS and topoisomerase inhibitors such as etoposide.

Like energy starvation, MMS treatment also induced cell

death in TSC1�/� MEFs but not in WT counterparts.

Furthermore, inhibition of mTOR by rapamycin pretreatment

also protected against MMS-induced DNA damage (Figure 1C

left, D). Interestingly, MMS treatment inhibits mTOR activa-

tion, as determined by S6K phosphorylation in TSC1þ /þ
and TSC2þ /þ p53�/� MEFs, but not in TSC1�/� and

TSC2þ /þ p53�/�MEFs (Supplementary Figure 1). The

role of the TSC complex in mediating mTOR inhibition by

MMS was further established by TSC2 RNAi in HEK293 cells.

Knockdown of TSC2 significantly compromised MMS-in-

duced mTOR inactivation (Supplementary Figure 2).

Consistently, in HEK293 cells, the activation of mTOR by

infection of an active mutant of Rheb (Rheb L64Q) also

sensitized the cells to MMS, which was also inhibited by

pretreatment with rapamycin (Figure 1C right, D). Thus,

aberrant mTOR activation sensitizes cells to DNA damage.

mTOR activation enhances p53 phosphorylation and

accumulation

The observations that loss of p53-reduced sensitivity to

energy starvation in TSC cells (Figure 1A versus B) and

activation of mTOR increased sensitivity to DNA damage

(Figure 1C) suggested that p53 activation could be important

for mediating mTOR’s proapoptotic role. To test this possibi-

lity, p53 activation was determined by phosphorylation and

accumulation. In the TSC1�/� MEFs, glucose starvation

induced phosphorylation of p53 on Ser15 (mouse p53

Ser18) and accumulation of p53 protein (Figure 2A).

However, the phosphorylation and accumulation of p53

could be prevented by inhibition of mTOR or AMPK with

rapamycin or compound C, respectively. Rapamycin lowered
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p53 levels below basal levels, while compound C maintained

p53 levels similar to basal levels. In comparison, p53 showed

little activation by glucose starvation in the TSC1þ /þ
MEFs. However, DNA damage by etoposide activated p53 in

both TSC1þ /þ and TSC1�/� MEFs; therefore, it is unlikely

that the TSC1þ /þ MEFs are defective in p53 activation

(Figure 2A). Inhibition of p53 accumulation by rapamycin

suggests that constitutive activation of mTOR was responsi-

ble for the difference in p53 response between the TSC1�/�
and TSC1þ /þ MEFs.

To verify that the p53 response was not limited to just

the TSC1�/� MEFs, the TSC2�/� LEFs were also tested.

Similarly, in the TSC2�/� LEFs, glucose starvation induced

activation of p53 as seen by phosphorylation and accumula-

tion of p53, which was eliminated by mTOR inhibition.

Consistently, the add back of TSC2 also prevented p53

activation by glucose starvation and restores repression of

total p53 protein level by glucose starvation (Figure 2B).

To determine whether p53 was fully activated, other p53

phosphorylation sites were also analyzed by immunoblot.

Figure 1 Dysregulation of mTOR activation sensitizes cells to p53-dependent insults. (A) TSC1�/� MEFs challenged with glucose starvation
(15 h) were more prone to death, which was protected against by rapamycin treatment. RNAi knockdown of p53 decreases sensitivity
to glucose starvation (15 h) in TSC1�/� MEFs. (B) LEF TSC2�/� cells were sensitized to glucose starvation (36 h), and both rapamycin
and adding back of TSC2 eliminated sensitivity. TSC2�/� p53�/� and TSC2þ /þ p53�/� MEFs are resistant to glucose starvation (15 h).
(C) TSC1�/� MEFs are more sensitive to MMS treatment (50 mg/ml, 8 h), and rapamycin pretreatment is protective (24 h). Infection of HEK293
cells with Rheb L64Q increases sensitivity to MMS treatment (25 mg/ml, 8 h). Pretreatment of HEK293 Rheb L64Q cells with rapamycin (24 h)
protects cells against cell death. (D) Living cells were counted after treatment with MMS (25mg/ml in 293 Rheb L64Q and 293 cells, 50mg/ml in
TSC1�/� and TSC1þ /þ MEFs, 8 h) or rapamycin (R).
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Ser15 phosphorylation induces dissociation between p53 and

its ubiquitin E3 ligase Mdm2; however, it is insufficient to

induce p53 DNA binding, which is induced by phosphoryla-

tion on p53 Ser392 (Kapoor et al, 2000). Therefore, multiple

phosphorylations are necessary to fully activate p53. We

show that glucose starvation induced phosphorylation on

several sites, including Ser6, Ser9, Ser20, and Ser392

(Figure 2C). Furthermore, phosphorylation on those sites

was eliminated by the addition of rapamycin. However, the

p53 protein level was also inhibited by rapamycin, therefore,

it is possible that p53 phosphorylation decreased indirectly

by decreasing total p53 protein.

To determine whether DNA damage also induced rapamy-

cin reversible p53 accumulation, TSC1�/� MEFs were trea-

ted with etoposide. Etoposide induced phosphorylation and

accumulation of p53, and similar to glucose starvation-de-

pendent p53 activation, rapamycin decreases the p53 protein

level and the detected phosphorylation on Ser15. Moreover,

the treatment of TSC1�/� MEFs with rapamycin alone also

decreases p53 protein levels (Figure 2D). Taken together, this

suggests that mTOR is a positive regulator of p53, and

inhibition of mTOR attenuates p53 accumulation irrespective

of the stimulus used to stabilize p53.

p53 is stabilized by energy starvation

As seen earlier, the activation of p53 by energy starvation

requires both AMPK activation and dysregulation of mTOR

(Figure 2A). The accumulation of p53 by energy starvation

could be due to either stabilization or increased synthesis of

p53. To better understand the role of energy starvation on p53

activation, both p53 synthesis and degradation were exam-

ined in the TSC1�/� MEFs. To test the effect of energy

starvation on p53 stability, p53 was accumulated by glucose

starvation in TSC1�/� MEFs, and translation was then

Figure 2 mTOR activation enhances p53 phosphorylation and accumulation. (A) Glucose starvation time course showed both p53 Ser15
phosphorylation and p53 accumulation in TSC1�/� MEFs, which was reversed by rapamycin (R) and compound C (C, 10mM); however, this
was not seen in TSC1þ /þ MEFs. Etoposide treatment (6mg/ml, 6 h) induced p53 in both TSC1�/� and TSC1þ /þ MEFs. Tubulin was used
as loading control. TSC1þ /þ immunoblots were exposed longer than TSC1�/� immunoblots to help normalize the signals because p53
levels are low in TSC1þ /þ MEFs. (B) Glucose starvation induced p53 Ser15 phosphorylation and p53 accumulation in TSC2�/� LEFs, which
was reversed by rapamycin treatment; however, TSC2þ LEFs did not show induction of p53. Actin was used as loading control. Exposure of
TSC2þ LEF p53 immunoblot was increased due to low basal p53 levels. (C) Glucose starvation of TSC1�/� MEFs also increased
phosphorylation on p53 Ser6, Ser9, Ser20, and Ser392, which was reversed by rapamycin. However, TSC1þ /þ MEFs did not show p53
phosphorylation during glucose starvation. Nonspecific band was used as a loading control (D) and p53 phosphorylation and accumulation
was stimulated by etoposide. Concurrent rapamycin treatment decreased p53 protein levels and detected p53 Ser15 phosphorylation.
Rapamycin treatment alone also decreased basal p53 levels. Tubulin was used as a loading control.
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blocked by cycloheximide treatment, after which the cells

were maintained in either glucose-free media or switched to

glucose-containing media. Restoration of glucose decreased

p53 stability. This decrease in p53 stability was correlated

with AMPK inactivation (Figure 3A). Similar results were also

seen in the absence of cycloheximide; however, the change in

p53 stability was partially masked by continued p53 synthesis

(Supplementary Figure 3). Furthermore, glucose starvation-

induced phosphorylation of p53 Ser15 was also eliminated by

the restoration of glucose (Figure 3A). The concurrent change

in p53 protein level confounds conclusions about AMPK and

p53 Ser15 phosphorylation with this experiment; therefore,

p53 Ser15 phosphorylation was also subsequently deter-

mined in the absence of degradation.

To test the effect of AMPK activity on p53 phosphorylation

during glucose starvation, p53 was accumulated by glucose

starvation in TSC1�/� MEFs, and MG132, a proteosome

inhibitor, was used to prevent p53 degradation. Block of

AMPK by Compound C reduced p53 Ser15 phosphorylation

even in the absence of p53 degradation. This suggested that

activation of AMPK was responsible for p53 Ser15 phosphor-

ylation during energy starvation (Figure 3B).

To rule out the possibility that accumulation of p53 protein

during energy starvation was due to changes in p53 protein

synthesis, we treated TSC1�/� MEFs with MG132 in the

presence or absence of glucose. p53 synthesis was measured

indirectly by observing its rate of accumulation in the ab-

sence of degradation. Glucose starvation slightly decreased

the rate of p53 accumulation (Figure 3C). Taken together, this

suggests that energy starvation induces p53 accumulation in

TSC1�/� MEFs by increasing p53 stability but not synthesis.

Inhibition of mTOR decreases p53 synthesis without

increasing degradation

Rapamycin treatment of TSC1�/� MEFs decreases p53

levels, which can be due to decreased synthesis, increased

degradation, or a combination of both. To distinguish be-

tween these possibilities, we first tested the effect of mTOR

activity on p53 phosphorylation during glucose starvation.

p53 was accumulated by glucose starvation in TSC1�/�
MEFs and further synthesis was blocked by cycloheximide.

Not only did rapamycin have no effect on p53 Ser15 phos-

phorylation, but rapamycin also did not have a significant

effect on p53 half-life (Figure 4A). In comparison, 30 min of

rapamycin treatment is sufficient to completely eliminate

mTOR-dependent phosphorylation of ribosomal S6 kinase 1

(S6K), a direct downstream target (Supplementary Figure 4).

This suggested that mTOR is not responsible for p53 Ser15

phosphorylation and indicates that rapamycin does not de-

stabilize p53 after prolonged glucose starvation.

To more directly test the effect of rapamycin on p53

stability, an 35S-pulse-chase was used to determine p53

stability. In glucose-containing media, TSC1�/� MEFs were

labeled with 35S-methionine, and then it was chased with

cold methionine. Consistent with the results observed by

cycloheximide treatment in the absence of glucose, rapamy-

cin also did not significantly reduce the half-life of p53 in the

presence of glucose (Figure 4B). The addition of excess

Figure 3 Stabilization of p53 during glucose starvation is due to AMPK. (A) p53 was stabilized by glucose starvation in TSC1�/� MEFs, and
further synthesis was blocked by cycloheximide (50 ng/ml). Reintroduction of glucose 30 min before cycloheximide treatment decreased p53
stability. (B) p53 was accumulated with glucose starvation in TSC1�/� MEFs, and degradation was blocked by MG132 (20mM). Compound C
decreased phosphorylation on p53 Ser15 when degradation of p53 was blocked. Tubulin was used as a loading control. (C) Degradation of p53
was blocked by MG132 in TSC1�/� MEFs. Glucose starvation did not increase p53 synthesis. Tubulin was used as a loading control.
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methionine during the cold chase also had no effect on mTOR

activity, as assayed by S6K1 phosphorylation (Supplementary

Figure 4). Together, this suggests that mTOR inhibition does

not stimulate p53 degradation; therefore, the protective role

of rapamycin during glucose starvation is not due to desta-

bilization of p53.

To compare the effects of mTOR activity on p53 synthesis,

MG132 was used to block degradation in both TSC1�/� and

TSC1þ /þ MEFs. p53 accumulation was determined both in

the presence and absence of glucose. In the TSC1þ /þ
MEFs, p53 synthesis was inhibited by glucose starvation. In

contrast, in the TSC1�/� MEFs, p53 synthesis continues

despite the absence of glucose (Figure 5A). In other words,

when the mTOR pathway can be shut down by energy

starvation, p53 synthesis is abated; however, when glucose

starvation cannot shut down mTOR, p53 synthesis remains

unaffected.

To demonstrate that inhibition of mTOR in the TSC1�/�
MEFs can indeed reduce the accumulation of p53, rapamycin

was used to inhibit mTOR before the addition of MG132.

Pretreatment with rapamycin decreased the rate of p53

accumulation, which suggests that rapamycin indeed reduces

p53 synthesis. Furthermore, whether glucose was present in

the media has no effect on the rapamycin induced reduction

in p53 (Figure 5B). Therefore, mTOR activity seems to be

critical for regulating p53 synthesis.

Together, inhibition of mTOR decreases p53 synthesis but

does not affect p53 stability. This suggested that the robust

activation of p53 by glucose starvation in the TSC1�/� MEFs

was due to unabated p53 synthesis by constitutive mTOR

Figure 4 Rapamycin does not affect p53 stability or phosphoryla-
tion. (A) p53 was stabilized by glucose starvation in TSC1�/�
MEFs, and further synthesis was blocked by cycloheximide
(50 ng/ml). Addition of rapamycin 30 min before cycloheximide
treatment did not affect p53 stability or phosphorylation on
Ser15. Tubulin was used as a loading control. (B) 35S Pulse-chase
both in the presence and absence of rapamycin in glucose-rich
media of TSC1�/� MEFs. Rapamycin did not enhance the degrada-
tion of p53.

Figure 5 Inhibition of mTOR decreases p53 synthesis. (A) p53 degradation was blocked by MG132. Accumulation of p53 was examined under
various conditions in TSC1�/� and TSC1þ /þ MEFs. In TSC1�/� MEFs, glucose starvation is unable to shut down p53 synthesis. In
TSC1þ /þ MEFs, glucose starvation decreases the rate of p53 synthesis. (B) TSC1�/� MEFs were pretreated with rapamycin for 6 h prior to
MG132 treatment. Accumulation of p53 was decreased by rapamycin pretreatment regardless of whether glucose was present. Tubulin was
used as a loading control. (C) p53 mRNA was normalized to either Actin mRNA or HPRT mRNA in TSC1�/� and TSC1þ /þ MEFs. Neither
glucose starvation (�G, 6 h) nor rapamycin (þR, 6 h) treatment had significant effects on p53 mRNA level. (D) p53 mRNA was fractionated
over a sucrose gradient in WT MEFs to examine the p53 mRNA association with polysomes. Fractions 8–12 represent polysome-associated
fractions. Rapamycin decreased polysome association of p53 mRNA. A full colour version of this figure is available at EMBO Journal Online.
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activation. Conversely, the lack of p53 response in the

TSC1þ /þ MEFs could be explained by inactivation of

mTOR by AMPK-dependent phosphorylation of TSC2,

which leads to inhibition of p53 synthesis (Inoki et al, 2003b).

mTOR regulates the association of p53 mRNA with

polysomes

mTOR plays a role in the regulation of both transcription and

translation; therefore, to clarify the mechanism by which

mTOR affects p53 synthesis, both p53 transcription and

translation were examined. In order to determine the effects

of mTOR inhibition on TP53 transcription, quantitative

RT–PCR (qRT–PCR) was used to determine p53 mRNA level.

After glucose starvation or rapamycin treatment, the level of

p53 mRNA was determined and normalized to either actin

mRNA or hypoxanthine-guanine phosphoribosyltransferase

(HPRT) mRNA (Figure 5C). Our data indicate that neither

rapamycin nor glucose starvation significantly changed p53

mRNA levels.

To examine the effect of mTOR on p53 translation, poly-

some fractionation was used to determine the fraction of p53

mRNA being actively translated. Lysates were fractionated in

a sucrose gradient, and mRNA was collected and analyzed by

qRT–PCR to determine the relative distribution of the mRNA.

In the untreated TSC1þ /þ MEFs, the p53 mRNA was

predominately associated with the polysome fractions

(Figure 5D). However, rapamycin decreased the percentage

of p53 mRNA in the polysome-associated fractions and

increased the percentage of p53 mRNA in the non-polysome

fractions. This shift in p53 mRNA indicated that rapamycin

treatment was able to decrease the fraction of p53 mRNA

being actively translated (Figure 5D). Although the decrease

in p53 translation by rapamycin was not specific to p53, as

seen by a corresponding decrease in polysome-associated

actin mRNA (Supplementary Figure 5), the distribution of

mRNA across the different fractions was different between

p53 and actin. Together, the lack of change in total p53 mRNA

and the shift of p53 mRNA away from the polysome by

rapamycin suggests that regulation of p53 protein levels by

mTOR activation is primarily due to increased translation.

Energy starvation triggers apoptosis by intrinsic

pathway in TSC cells

p53 is a potent activator of the intrinsic apoptotic pathway;

however, energy starvation can induce cell death via both

necrosis or apoptosis. To confirm that induction of p53 was

triggering apoptosis in the TSC1�/� MEFs, Annexin V/

propidium iodide (PI) double staining was measured by

FACS analysis. TSC1�/� MEFs were glucose starved both

in the presence and absence of rapamycin. FACS analysis

demonstrated that the dying cells induced by glucose starva-

tion were predominately stained by Annexin V and not PI;

thus, demonstrating death was predominately apoptotic

(Figure 6A). Furthermore, consistent with the protection

against gross cell death (Figure 1A left) and inhibition of

p53 synthesis (Figure 2A) seen earlier, rapamycin decreased

apoptosis in response to glucose starvation.

To show that p53 was important for inducing apoptosis,

FACS analysis was also performed on TSC2�/� p53�/� and

TSC2þ /þ p53�/� MEFs. Like what was seen by gross

visualization (Figure 1B right), both cell types were equally

resistant to glucose starvation (Figure 6B). To exclude the

possibility that the TSC2�/� MEFs had a delayed apoptotic

response, Annexin V/PI doubling staining was also carried

out after 24 h of glucose starvation. Again, the TSC2�/�
p53�/� cells did not show enhanced sensitivity to glucose

starvation (Supplementary Figure 6). In comparison, in-

creased sensitivity to glucose starvation in the TSC1�/�
MEFs was readily apparent at 12 h (Figure 6A). Together,

these data suggest that p53 triggers apoptosis induced by

glucose starvation, when mTOR is misregulated.

To further confirm that the intrinsic pathway was activated

by glucose starvation, caspase activation was assayed by

immunoblot. In the TSC1�/� MEFs, glucose starvation

induced the intrinsic death pathways as seen by cleavage of

caspases 9 and 12 (Figure 6C). Furthermore, the executioner

caspase 3 was also activated. In contrast, glucose starvation

did not activate caspase 3, 9, or 12 in the TSC1þ /þ MEFs.

To demonstrate that rapamycin also prevented the induc-

tion of caspase cleavage in the TSC1�/� MEFs, mTOR was

inhibited by rapamycin during glucose starvation. When

TSC1�/� MEFs were rescued with rapamycin, cleavage of

caspases 12 and 9 did not occur; thus, the intrinsic apoptotic

pathway was not activated. Furthermore, glucose starvation

had no effect on caspase 8 (Figure 6D). Taken together,

glucose starvation of TSC1�/� MEFs induces apoptosis

consistent with the observed changes in p53 activation.

To further confirm biochemically that rapamycin protects

against DNA damage, both TSC1�/� and TSC1þ /þ MEFs

were treated with either MMS or etoposide. TSC1�/� MEFs

were more sensitive to DNA damage by both MMS and

etoposide, as seen by the induced caspase 3 cleavage.

Consistently, rapamycin treatment protected TSC1�/�
MEFs against DNA damage-induced cell death (Figure 6E).

Taken together, DNA damage by either MMS or etoposide

induces apoptosis of TSC1�/� MEFs consistent with gross

observation.

p53 accumulation associated with energy stress

in angiomyolipomas

To determine whether our model of regulation of p53 by

mTOR was also reflected in vivo, angiomyolipomas were

stained by immunohistochemistry. Angiomyolipomas are

benign tumors consisting of smooth muscle cells, adipose

tissue, and blood vessels of which both the stromal cells and

the vasculature demonstrate loss of heterozygosity for either

TSC1 or TSC2, and thus mTOR activation (Karbowniczek

et al, 2003). Like what was seen in the TSC1�/� MEFs, both

sporadic and TSC disease-associated angiomyolipomas

showed high levels of p53 and VEGF. It has been shown

that VEGF expression can be induced by either hypoxia or

loss of TSC (Brugarolas et al, 2003; El-Hashemite et al, 2003);

therefore, VEGF staining may indicate areas of energy stress

or TSC loss. In patient 774, who has a sporadic angiomyoli-

poma, both tumor and normal tissue can be compared

(Figure 7A). Patients with sporadic angiomyolipomas do

not have associated Tuberous Sclerosis disease, but they

have Loss of Heterozygosity of TSC2; therefore, they show

upregulated mTOR (Henske et al, 1995). In normal kidney

cells, both VEGF and p53 staining are very low. It is interest-

ing to note that there are small areas of VEGF upregulation,

which may reflect areas of energy stress; however, in

the absence of mTOR activation, p53 levels are universally

low. In comparison, within the angiomyolipoma, both VEGF
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expression and p53 levels are correspondingly elevated.

Consistently, in patient 663, who has a TSC-associated angio-

myolipoma, both VEGF and p53 are elevated (Figure 7B).

Furthermore, the distribution of p53 and VEGF upregulation

are also strikingly similar. Together, co-elevation of p53 and

VEGF in angiomyolipomas, and the lack of elevation of p53 in

normal tissue may suggest that loss of TSC1/2 may also

contribute to p53 accumulation during energy stress in vivo.
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Discussion

We have shown that mTOR regulates p53 synthesis, and

continued synthesis of p53 by mTOR activation sensitizes

cells to p53 activators. Aberrant mTOR activation leads to

increased sensitivity to both DNA damage and energy starva-

tion. Interestingly, both DNA damage and energy starvation

can also lead to AMPK activation. DNA damage by etoposide

induces p53-dependent activation of AMPK, which in turn

inhibits mTOR though AMPK-TSC2 (Feng et al, 2005).

Similarly, we also see inhibition of mTOR via TSC2 in

MMS-induced DNA damage. Therefore, our evidence sug-

gests that through the AMPK-TSC-mTOR pathway, p53

forms a negative feedback loop to keep its own synthesis in

check. Consequently, cells that cannot inhibit mTOR are

faced with runaway p53 activation when stimulated.

Using energy starvation as an example, we propose a

model where low energy activates AMPK to phosphorylate

and stabilize p53 (Figure 7C). However, p53 induction is

controlled because AMPK activation also inhibits mTOR

and thereby inhibits p53 translation. Since the stabilization

of p53 occurs more rapidly than the inhibition of p53

translation, a modest degree of p53 accumulation occurs

before further synthesis is shut off. With both aspects of

p53 regulation intact, energy starvation of wild-type cells

only initiates a limited elevation of p53, which induces cell

cycle arrest and protects the cells from unfavorable condi-

tions. However, loss of TSC1 or TSC2 results in a dramatic
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Figure 7 Energy stress in angiomyolipomas is associated with p53 upregulation and model of p53 activation by energy starvation in TSC�/�
cells. (A) Tissues from both normal kidney and sporadically arising angiomyolipomas were stained for p53 and VEGF. Normal tissue showed
little upregulation of either p53 or VEGF, while in the angiomyolipoma, both p53 and VEGF staining were dramatically increased. (B) Tissues
from TSC patient derived angiomyolipomas were stained for p53 and VEGF. Both p53 and VEGF were correspondingly increased. (C) Model for
negative regulation of p53 by mTOR to promote survival during stress. When the mTOR pathway is intact, AMPK activation downregulates p53
synthesis via the mTOR pathway and stabilizes p53 via phosphorylation. However, in the absence of TSC, p53 synthesis cannot be
downregulated; therefore, when AMPK stabilizes p53, p53 is greatly elevated and apoptosis is induced.
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elevation of p53 protein because p53 translation is no longer

inhibited by energy starvation. The high levels of p53, there-

fore, induce apoptosis in TSC cells under energy starvation

and may contribute to the highly apoptotic and benign nature

of TSC tumors.

The delayed effect of mTOR inhibition on p53 synthesis

may be explained by p53 translation via both cap-dependent

and internal ribosomal entry site (IRES)-dependent mechan-

isms (Ray et al, 2006; Yang et al, 2006). Although rapamycin

decreases phosphorylation on S6K and 4EBP very rapidly, the

effects on p53 synthesis require several hours to become

apparent. In TSC1�/� MEFs, rapamycin can rapidly shut

down cap-dependent p53 synthesis; however, IRES-depen-

dent p53 translation may continue as a result of low AKT

levels (Ray et al, 2006; Yang et al, 2006). After prolonged

exposure to rapamycin, negative feedback on AKT via mTOR-

S6K1-IRS-1 is relieved, and AKT activity is restored, which

inhibits IRES-dependent p53 translation. Thus, only after

rapamycin inhibits both mechanisms for p53 translation

does the change in p53 synthesis become easily detectable.

Since mTOR acts upon p53 synthesis, the effect of rapa-

mycin is ambivalent toward the initiator of p53 stabilization.

It has also been reported that treatment with rapamycin

reduces p53-dependent apoptosis by HIV infection (Castedo

et al, 2001) and ionization radiation (Tirado et al, 2003).

Consistent with mTOR’s role in regulating p53 synthesis, it

has also been reported that loss of PTEN, which activates

mTOR by activation of AKT, also increases p53 expression

and upregulation of p53 gene targets (Kim et al, 2007).

Furthermore, TSC2�/� MEFs undergo early senescence

through elevated p21, a transcriptional target of p53, and

loss of p53 is necessary to prevent senescence (Zhang et al,

2003a). Taken together, it is possible that mTOR is critical for

modulating the effects of p53 during a variety of stresses.

It has been previously shown that AMPK activation leads

to direct phosphorylation of p53 Ser15 by AMPK. AMPK

activation also inhibits mTOR via TSC2 phosphorylation.

Inactivation of mTOR also activates the a4/PP2A phospha-

tase complex, which plays a role in dephosphorylation of p53

Ser15; therefore, inactivation of the PP2A phosphatase also

contributes to the increase of p53 phosphorylation in an

mTOR-dependent manner (Levine et al, 2006). Additionally,

our studies do not elucidate whether the regulation of p53

phosphorylation by mTOR is direct; therefore, downstream

effectors such as S6K may play a role in p53 phosphorylation.

Further studies using the S6K1 and S6K2 double knockout

cells or S6K RNAi would provide further insight into S6K’s

role in p53 regulation.

In addition to DNA damage and glucose starvation, activa-

tion of mTOR has also been shown to sensitize cells to cell

death by other stimuli. Activation of AKT plays an important

role in cell survival; however, activation of AKT is antago-

nized by mTOR-dependent inhibition of IRS-1 via S6K.

Consequently, TSC1�/� and TSC2�/� p53�/� MEFs have

also shown an increased sensitivity to serum starvation

(Shah et al, 2004). Furthermore, activation of mTOR has

also been shown to reduce NF-kB activation, thereby sensi-

tizing cells to apoptosis. Through downregulation of NF-kB,

TSC1�/� and TSC2�/� p53�/� MEFs are sensitized to

TNFa and DNA damage (Ghosh et al, 2006).

The majority of these studies have been performed in

TSC1�/� and TSC2�/� cells, which assumes that the effect

of TSC1 and TSC2 loss is constitutive mTOR activation. It is

possible that TSC1 and TSC2 have functions in addition to

inhibiting mTOR. However, inhibition of mTOR by rapamycin

rescued glucose deprivation-induced apoptosis. Furthermore,

overexpression of Rheb sensitized cells to stress-induced

apoptosis. Our data are consistent with Rheb-mTOR playing

a major role in the hypersensitivity of TSC mutant cells in

response to stress, although we cannot exclude the involve-

ment of mTOR-independent function in this apoptotic

response.

From our experiments, we have identified a novel mechan-

ism by which mTOR regulates p53 to maintain cell viability.

This provides new insights into the proapoptotic role of

mTOR and may help to explain the benign nature of many

hamartoma syndromes, including TSC (Inoki et al, 2005).

Immunohistochemical staining of TSC tumors showed con-

current staining by VEGF and p53, which indicates that in

tumors lacking TSC, p53 levels are substantially elevated

under stress conditions (Figure 7A and B). These data in-

dicate that our model of overaccumulation of p53 by disrup-

tion of the mTOR pathway is not limited to just cell culture

but may also play a role in vivo. Given that the TP53 gene

encodes the most commonly mutated tumor suppressor in

human cancers, our study suggests that p53 status may be

important for determining the effect of mTOR inhibitors

against various malignant and benign neoplasms. However,

recent studies have shown that mTOR inhibitors enhance the

effects of chemotherapeutics in A549 human non-small-cell

lung carcinomas as well as ovarian cancer cells (Beuvink

et al, 2005; Treeck et al, 2006). It is possible that the

protective effect of rapamycin against DNA damage agents

may be limited to benign tumors such as tuberous sclerosis.

Materials and methods

Antibodies and materials
Anti-caspase 12, anti-caspase 9, anti-caspase 3, anticleaved caspase
3, anti-p53, anti-phospho p53 (S6, S9, S15, S20, S392), anti-AMPK,
and anti-phospho AMPK (T172) antibodies were obtained from Cell
Signaling (Beverly, MA). Anti-Actin, anti-b-tubulin, and anti-
caspase 8 antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA). Horseradish peroxidase-conjugated IgG secondary
antibodies were obtained from Amersham (Buckinghamshire, UK).

The AMPK inhibitor, commonly known as compound C, was
obtained from Merck (Whitehouse Station, NJ) and was described
previously (Zhou et al, 2001). Cells were treated with 10 mM of the
compound suspended in DMSO. Rapamycin was purchased from
Cell Signaling, suspended in methanol, and used at 20 nM. The
caspase 9 inhibitor Z-LEHD-FMK and pan-caspase inhibitor Z-VAD-
FMK were purchased at R&D Systems and used at 20mM 1 h prior to
and during glucose starvation. The calpain inhibitors, ALLN and
ALLM, were purchased at EMD Biosciences, and treatment with
10mM started 1 h prior to and during glucose starvation. The
proteosome inhibitor MG132 was obtained from Sigma and used at
20mM. Protein stability was assayed with cycloheximide from
Sigma and used at 50 ng/ml. Etoposide was purchased from Sigma
and used at 6 mg/ml. MMS was also purchased from Sigma.

Cell culture and transfection
MEF cells were cultured in DMEM (Invitrogen) containing 10% fetal
bovine serum (Invitrogen) and 50mg/ml penicillin/streptomycin
(P/S). TSC2�/� LExF2 cells (LEF) were maintained in DMEM/F12
(Invitrogen) containing 10% FBS and 50mg/ml P/S. Glucose
starvation was performed with glucose-free DMEM (Invitrogen)
containing 25 mM HEPES, 10% dialyzed FBS (Invitrogen), and
50mg/ml P/S.

RNAi used to knock TSC2 (smart pool) was purchased from
Dharmacon.
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Annexin V/PI staining
Annexin V/PI double staining was carried out with Annexin V and
PI (BD Biosciences) as per the manufacturer’s protocol, and
samples were analyzed via BD FACScalibur (BD Biosciences).

35S labeling
35S Pulse/Chase labeling was carried out with 0.2 mCi/ml of 35S-
Met/Cys Trans label in DMEM (�Met/�Cys) containing 10%
dialyzed FBS for 1 h prior to chase with DMEM containing 10%
dialyzed FBS, 18 mg L-Cys/100 ml media, and 9 mg L-Met/100 ml
media. p53 was immunoprecipitated with anti-p53 antibodies and
resolved by SDS–PAGE.

35S Pulse labeling for assay of p53 synthesis was performed with
labeling media as described earlier but incubated for only 8 min
prior to immunoprecipitation by anti-p53 antibodies and resolution
by SDS–PAGE.

qRT–PCR
Dishes (10 cm) of TSC1�/� or TSC1þ /þ MEFs were glucose
starved or rapamycin treated for 6 h prior to lysis with 1 ml Trizol
(Sigma), and the aqueous layer was collected after addition of
200 ml chloroform. mRNA was precipitated with 1 volume iso-
propanol. The isopropanol was removed with a 70% ethanol wash
and the RNA pellet air dried. Reverse transcription was performed
with the Superscript First Strand Synthesis System for RT–PCR
(Invitrogen) as per the manufacturer’s protocol.

Quantitative PCR was performed using Power SYBR Green PCR
Master Mix (Applied Biosystems). p53 was amplified using the
forward primer 50-AACCGCCGACCTATCCTTAC-30 and the reverse
primer 50-CTTCTGTACGGCGGTCTCTC-30. HPRT was amplified
using the forward primer 50-TCATTATGCCGAGGATTTGGA-30 and
the reverse primer 50-GCACACAGAGGGCCACAAT-30. Actin was
amplified using the forward primer 50-CCGGGAGAAGATGACT
CAAA-30 and the reverse primer 50-CCAGAATCCAACACGATGC-30.
Samples were done in triplicate to calculate averages and standard
deviations.

Polysome fractionation
Mouse embryonic fibroblasts were cultured in DMEM, supplemen-
ted with 10% fetal bovine serum, penicillin (100 U/ml), and
streptomycin (100mg/ml). MEFs were seeded in 150 mm Petri
dishes (5�106 cells/dish) and collected 24 h later. Prior to harvest-
ing, cells were treated with cycloheximide (100 mg/ml) for 10 min.
Cells were then washed twice with 5 ml of PBS (containing 100mg/
ml), collected by scraping and pelleted at 500 g for 5 min. Cells were
lysed in 0.8 ml of extraction buffer (5 mM Tris (pH 7.5), 2.5 mM
MgCl2, 1.5 mM KCl, 100mg/ml cycloheximide, 2 mM DTT, 0.5%

Triton-X 100, and 0.5% sodium deoxycholate). Extracts were
cleared by centrifugation at 13 000 g for 2 min and then loaded on
11 ml sucrose gradients (10–50%) buffered in 20 mM HEPES (pH
7.6), 100 mM KCl, 5 mM MgCl2. Gradients were subjected to
centrifugation using a Beckman SW40Ti Rotor at 38 000 r.p.m. for
2.2 h at 41C. Gradients were then fractionated (from the lightest to
the heaviest fraction) into 24 fractions (12 drops per fraction;
approximately 0.5 ml) while monitoring the optical density at
254 nm. Adjacent fractions were pooled to yield a total of 12
fractions for qPCR.

Immunohistochemistry
Sections (4mm) were deparaffinized in xylene and rehydrated in a
gradient series of ethanol. For antigen retrieval, sections were
boiled in Citric Buffer (10 mM sodium citrate-trisodium salt
dehydrate, Sigma, St Louis, MO), pH 6.0, for 10 min. Endogenous
peroxidase activity was blocked with 3% hydrogen peroxide in
methanol for 15 min at room temperature. Nonspecific background
was eliminated by incubating the tissue with normal goat serum for
10 min at room temperature (Zymed, San Francisco, CA). The
sections were then incubated in a humidified chamber with mouse
monoclonal antibody against p53 (1C12), dilution 1:100 (Cell
Signaling Technology, Beverly, MA) or prediluted rabbit monoclonal
antibody against VEGF (SP28) (Abcam Inc., Cambridge, MA)
overnight at 41C. The slides were then washed, incubated with
biotinylated affinity-purified secondary antibodies (Zymed, San
Francisco, CA) for 10 min at room temperature, then washed and
incubated with enhanced horseradish peroxidase-conjugated strep-
tavidin (Zymed) for 10 min at room temperature. After washing, the
slides were developed using AEC Chromogen Solution (Zymed),
lightly counterstained with hematoxylin (Biomeda, Foster City, CA),
and mounted using GelMount (Biomeda).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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