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The ERK MAPK signalling pathway is a highly conserved

kinase cascade linking transmembrane receptors to down-

stream effector mechanisms. To investigate the function of

ERK in neurons, a constitutively active form of MEK1

(caMEK1) was conditionally expressed in the murine

brain, which resulted in ERK activation and caused spon-

taneous epileptic seizures. ERK activation stimulated

phosphorylation of eukaryotic translation initiation factor

4E (eIF4E) and augmented NMDA receptor 2B (NR2B)

protein levels. Pharmacological inhibition of NR2B func-

tion impaired synaptic facilitation in area cornus ammo-

nicus region 3 (CA3) in acute hippocampal slices derived

from caMEK1-expressing mice and abrogated epilepsy

in vivo. In addition, expression of caMEK1 caused phos-

phorylation of the transcription factor, cAMP response

element-binding protein (CREB) and increased transcrip-

tion of ephrinB2. EphrinB2 overexpression resulted in in-

creased NR2B tyrosine phosphorylation, which was

essential for caMEK1-induced epilepsy in vivo, since condi-

tional inactivation of ephrinB2 greatly reduced seizure

frequency in caMEK1 transgenic mice. Therefore, our

study identifies a mechanism of epileptogenesis that links

MAP kinase to Eph/Ephrin and NMDA receptor signalling.
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Introduction

Epilepsies comprise a remarkably diverse collection of dis-

orders that have an effect on millions of people worldwide

(Logroscino et al, 2005). Current therapy is symptomatic and

many suffer from seizures that cannot be readily controlled

by current antiepileptic medications. Neither an effective

prophylaxis nor a cure for any of these disorders is available

except for neurosurgical resection of epileptic tissue in se-

lected instances. It remains unclear how pathological levels

of neuronal activity in the form of focal seizures might be

triggered by the cellular and molecular mechanisms under-

lying epileptogenesis.

Extracellular signal-regulated kinases 1 and 2 (ERK1 and

ERK2) are essential components of pathways through which

signals received at membrane receptors are converted into

specific changes in protein function and gene expression

(Chen et al, 2001; Pearson et al, 2001). As with other

members of the mitogen-activated protein (MAP) kinase

family, ERK1 and ERK2 are activated by phosphorylations

catalysed by dual-specificity protein kinases known as MAP/

ERK kinases (MEKs). ERK kinases are the only known

substrates of MEK1 and MEK2 (Chen et al, 2001).

Extracellular stimuli such as neurotransmitters, neurotro-

phins and growth factors in the brain regulate critical cellular

events, including synaptic transmission, neuronal plasticity,

morphological differentiation and survival. The ERK kinases

are abundantly expressed in the central nervous system and

are activated in response to various physiological stimuli

associated with synaptic activity and plasticity, most notably

calcium influx and neurotrophins, but also during pathologi-

cal events such as brain ischaemia and epilepsy (Pearson

et al, 2001; Otani et al, 2003; Merlo et al, 2004; Sweatt, 2004;

Thomas and Huganir, 2004). The substrates of the ERK

pathway include numerous proteins with a diverse set of

functions, with protein kinases forming a particularly impor-

tant subset of ERK1/2 targets. ERK can activate several

classes of kinases, including the ribosomal S6 kinase (RSK)

and MAPK-interacting kinase (Mnk) protein families (Chen

et al, 2001). Thus MEK/ERK signalling controls biological

processes either by directly phosphorylating substrates or

indirectly by changing the activity of other kinases.

ERK signalling plays an important role in transcriptional

regulation by phosphorylating and thereby modulating the

activity of transcription factors (Treisman, 1996). ERK can

also alter transcription indirectly, for example through activa-

tion of RSKs which phosphorylate, among other substrates,

the cAMP response element-binding protein (CREB) at

serine 133 (Weeber and Sweatt, 2002). Moreover, ERK also
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positively regulates translational efficiency by controlling the

phosphorylation of translational initiation factors (Herbert

et al, 2002; Ueda et al, 2004). Recent evidence has shown that

neuronal activity-dependent modulation of translation initia-

tion factor activity by the ERK MAPK signalling pathway

plays an important role in long-lasting forms of synaptic

plasticity and memory (Kelleher et al, 2004).

To investigate the consequences of ERK activation in

neurons, we employed conditional brain-specific expression

of a caMEK1 to show that ERK activation causes spontaneous

epileptic seizures. Mechanistically, our study identifies

NMDA receptor 2B (NR2B) as a novel target for both trans-

lational and for transcriptional regulation by ERK.

Results

Transgenic brain-specific MEK1 overexpression causes

epilepsy

Although ERK signalling is implicated in many biological

processes, how and why activation of the MEK/ERK path-

ways results in distinct biological outputs is unclear. Loss-of-

function studies in the mouse have yielded important clues

about ERK function (Mazzucchelli et al, 2002; Fischer et al,

2005), but the interpretation of the mutant phenotypes has

been complicated by genetic redundancy as the ERK kinases

ERK1 and ERK2 are encoded by two different genes (Chang

and Karin, 2001; Chen et al, 2001). Because of this redun-

dancy, it is possible that essential roles of MAP kinase

signalling have remained undetected. Therefore, we devised

a strategy that allows to reproducibly activate ERK kinase

signalling in mice.

To investigate the significance of ERK activation in the

brain, we generated transgenic mice allowing the overexpres-

sion of a constitutively active form of the ERK kinase MEK1

(MEK1-LA; Robinson et al, 1998). A cassette encoding a

fusion protein of b-galactosidase and NeoR (bgeo) flanked

by loxP sites prevents the expression of constitutively active

MEK1 before cre-mediated recombination (bgeo-caMEK1)

(Figure 1A). Floxed single transgenic mice were crossed

with Nestin-cre transgenic mice previously shown to provide

ubiquitous brain-specific cre activity (Tronche et al, 1999;

Raivich et al, 2004). Southern blot analysis confirmed effi-

cient removal of the floxed bgeo selection cassette in the

brain (Figure 1B). In the absence of Cre recombinase,

endogenous MEK1 protein was readily detectable in the

brains of bgeo-caMEK1 single transgenic mice (Figure 1C).

caMEK1 transgene expression was induced in bgeo-

caMEK1;Nestin-creþ double transgenic mice (designated

caMEK1DN mice), to protein levels comparable to endogen-

ous MEK1. Whereas total ERK protein levels were unaltered

in caMEK1DN mice, a 2- to 3-fold increase in phosphorylated

ERK (P-ERK) was detectable in total brain extracts

(Figure 1C). caMEK1DN mice developed normally and were

indistinguishable from control littermates until early adult-

hood. Rotarod tests revealed normal motor function in 5-

week-old caMEK1DN mice (Figure 1D). However, starting

from 6–8 weeks of age, all caMEK1DN mice exhibited sponta-

neous epileptic seizures, which were often associated with

behavioural arrest and forelimb myoclonus (Supplementary

movie 1). These seizures occurred throughout the lifetime of

caMEK1DN mice, although seizures appeared less frequently

in older (8–14 months) mice (data not shown). In vivo

electrophysiological recording from microwire electrodes po-

sitioned in the hippocampus revealed electrographic seizures

in caMEK1DN mice (Figure 1E). Quantification of seizure

frequencies showed that caMEK1DN mice had frequent phe-

notypical seizures (on average 6.2 seizures per mouse within

a 7 h observation time), whereas wild-type mice were

seizure-free (Figure 1F).

caMEK1DN mice had normal brain histology and normal

expression of neural markers such as NeuN, MAP-2, neuro-

filament, parvalbumin and synaptophysin (Figure 2A–H; and

data not shown). Visualization of mossy fibre arborization

with Timm’s stain did not reveal differences between

caMEK1DN and control mice, arguing against aberrant

mossy fibre sprouting as a cause of epilepsy (Figure 2I and

J). However, caMEK1DN mice showed a reactive gliosis,

an activation of astrocytes characterized by increased

GFAP expression, which is commonly seen in response to

epileptic seizures (Heinemann et al, 1999) (Figure 2K–N).

Surprisingly, despite the occurrence of frequent seizures,

caMEK1DN mice could survive for over 1 year (which is the

longest time period they were kept). The hippocampi of 13-

month-old caMEK1DN mice did not show signs of neuronal

demise as judged by absence of cells staining for FluoroJade

and TUNEL and showed no signs of hippocampal sclerosis

(Supplementary Figure 1 and data not shown). Thus, ERK

activation triggers epilepsy without causing widespread

neuronal death.

Although histological analysis suggested that neuronal

organization was normal in caMEK1DN mice, we were unable

to rule out that caMEK1 overexpression caused subtle devel-

opmental defects. To exclude more directly that the observed

epilepsy was due to impaired neuronal development, the

bgeo-caMEK1 mice were crossed with CamKII-cre trans-

genics, which directs preferential excision of floxed se-

quences in the postnatal forebrain (caMEK1Dfb mice), with

recombination becoming detectable 2–3 weeks after birth

(Minichiello et al, 1999). caMEK1Dfb mice displayed a similar

phenotype as caMEK1DN mice since they also were showing

spontaneous seizures (data not shown and Figure 6A). This

strengthens the notion that the epileptic seizures caused by

caMEK1 overexpression are not a consequence of a defect of

neuronal development.

Increased levels of P-ERK in caMEK1DN mice

The CamKII-cre transgene expression is confined to the

cortex, striatum and hippocampus, with little cre activity

detectable elsewhere in the brain (Minichiello et al, 1999;

Fan et al, 2001), implicating these brain regions in caMEK1-

induced epilepsy. Immunohistochemical (IHC) detection of

P-ERK revealed higher levels of P-ERK throughout the brain

in caMEK1DN compared to bgeo-caMEK1 or wild-type non-

transgenic littermates (Figure 3A–F). P-ERK was localized to

different cellular compartments in different neuronal cell

types, as noted previously (Thomas and Huganir, 2004).

Remarkably, the highest P-ERK staining in the hippocampus

was detected in the stratum lucidum, the region located

between the dentate gyrus and the cornus ammonicus region

3 (CA3) where the mossy fibre synapses are localized (Figure

3C and D arrowheads). A similar, but weaker, P-ERK staining

was observed in the stratum lucidum of control mice, in

agreement with previous reports (Sananbenesi et al, 2002).

Moreover, P-ERK was also increased in the soma of pyramidal
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neurons of caMEK1DN hippocampi (Figure 3C and D).

In cortical neurons, P-ERK was located mostly in the

nucleus (Figure 3E, F and F0). Thus, caMEK1 overexpression

causes ERK activation in both cortex and hippocampus, but

the location of activated ERK differs between neuronal cell

types.

As the in vivo electrophysiological recording indicated an

important role of the hippocampus for caMEK1-induced
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epilepsy, we investigated in more detail the location of P-ERK

in the stratum lucidum. Immunofluorescence studies on

microdissected stratum lucidum from caMEK1DN hippocampi

showed P-ERK staining in the territory marked by the pre-

synaptic marker SNAP-25, whereas immunoreactivity for

P-ERK and the postsynaptic marker MAP-2 overlapped less

well (Figure 3G–L). To further characterize the localization

of P-ERK, we employed immunoelectron microscopy. Strong

P-ERK staining was found in synaptic terminals of mossy

fibres, but postsynaptic staining in dendritic spines was also

detectable (Figure 3M and N). Thus, P-ERK is present at both

sides of the mossy fibre synapse.

ERK activity regulates NR2B protein expression

To investigate the molecular mechanisms underlying

caMEK1-induced epilepsy, we tested whether ERK signalling

affected N-methyl-D-aspartate receptors (NMDARs). NMDARs

are heteromeric complexes containing both NR1 and NR2

subunits located at the postsynaptic side of excitatory sy-

napses and regulate the influx of Ca2þ ions (Cull-Candy et al,

2001; Prybylowski and Wenthold, 2004). NMDARs have been

strongly implicated in epileptogenesis and have been sug-

gested as therapeutic targets for anti-epileptic treatment

(Cull-Candy et al, 2001; Palmer, 2001). Whereas the mRNA

levels of the NMDAR subunits NR2A and NR2B were un-

changed in the hippocampi of caMEK1DN mice (Figure 4A),

there was a significant increase in NR2B, but not NR1 or

NR2A, protein levels (Figure 4B). This suggested that NR2B is

regulated by ERK signalling through a post-transcriptional

mechanism.

The eukaryotic translation initiation factor 4E (eIF4E) is a

well-characterized substrate of the MEK signalling pathway,

and phosphorylation of eIF4E positively regulates translation

efficiency. Whereas total eIF4E protein levels were unaltered,

eIF4E phosphorylation was augmented in hippocampal pro-

tein extracts from caMEK1DN mice (Figure 4C).

To directly investigate whether ERK activity regulates

NR2B translation, we used the SHSY5Y neuronal cell line as

a model system. SHSY5Y cells have high endogenous ERK

activity and substantial eIF4E phosphorylation, which were

both greatly reduced by treatment with the pharmacological

MEK1 inhibitor U0126 (Figure 4D). To address whether ERK

signalling controls NR2B translation, we performed meta-

bolic labelling studies. The experiment was carried out in

the presence of Actinomycin-D and proteasome inhibitors, to

exclude potential effects of ERK on NR2B transcription or

stability. 35S-labelling revealed that in the absence of ERK

activity, the amount of de novo synthesized NR2B protein was

reduced by 50–70% compared to control-treated cells

(Figure 4E). Thus, ERK signalling regulates NR2B abundance

in neurons in vivo and in vitro.

Ifenprodil is representative of a class of NMDA receptor

antagonists (phenylethanolamines) with high selectivity for

NR2B-containing receptors (Kew and Kemp, 1998; Chenard

and Menniti, 1999). To test the functional significance of

NR2B upregulation, NR2B function was pharmacologically
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inhibited in caMEK1DN mice. Strikingly, a single injection of

ifenprodil almost completely abrogated the epileptic seizures

caused by overexpression of caMEK1. However, after 8 days

the seizure frequency was again comparable to untreated

caMEK1DN animals (Figure 4F).

To further explore the functional significance of increased

NR2B protein levels in the CA3 area directly, we tested

the effects of ifenprodil on synaptic transmission in acute

hippocampal–entorhinal cortex slices from wild-type and

caMEK1DN mutant mice. Extracellular field potentials were

recorded in CA3 in response to orthodromic electrical stimu-

lation. Paired-pulse stimulation resulted in a more than 3-fold

increase in population spike amplitudes of the second field

potential response in both wild type and mutant, indicating

synaptic facilitation (Figure 4G). Bath application of ifenpro-

dil (10mM, 60 min) had no effect in controls, but significantly

reduced the paired-pulse index (PPI) in caMEK1DN mutants

(Figure 4H). These data indicate a considerably higher con-

tribution of functional NR2B receptor subunits in synaptic

transmission in caMEK1DN mutants. Ifenprodil reduced spon-

taneous excitatory postsynaptic currents in hippocampal CA3

neurons of caMEK1DN mutant mice (Supplementary Figure

2). Thus, the effects of ifenprodil on caMEK1DN mutants both

in vivo and in vitro are in agreement with the notion that

increased NR2B function contributes to ERK-induced

epilepsy.

Increased transcription of ephrinB2 in caMEK1DN mice

Western blot analysis of caMEK1DN hippocampi revealed

increased phosphorylation of the transcription factor CREB,

a known mediator of ERK signalling (Pearson et al, 2001;

Weeber and Sweatt, 2002) (Figure 5A). Activated CREB is an

important regulator of neuronal function and CREB phos-

phorylation is strongly induced by a plethora of stimuli,

including excitotoxins (Lonze and Ginty, 2002). To determine

whether changes in neuronal transcription contributed to

epilepsy induced by caMEK1 overexpression, the transcrip-

tome of caMEK1DN and control bgeo-caMEK1 hippocampi

was compared. Microarray analysis showed not only in-

creased mRNA levels of tyrosine hydroxylase and C/EBPb,
known CREB target genes (Kim et al, 1993; Niehof et al,

1997) but also genes that had previously not been associated

with ERK signalling were deregulated (Supplementary Table 1).

Most notably, the transcription of ephrinB2, a ligand for the

Eph family of tyrosine kinases (Klein, 2004), was increased,

whereas there was no alteration in the expression of the
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homologous ephrinB1 (Figure 5B). Quantitative PCR analysis

confirmed increased expression of C/EBPb and ephrinB2, but

revealed no differences in ephrinB3 transcription (Figure 5C).

Also, ephrinB2 protein levels were increased in caMEK1Dfb

hippocampi and pharmacological MEK inhibition reduced

ephrinB2 protein levels in SHSY5Y cells (Figure 5D). CREB

has recently been shown to bind the ephrinB2 promoter in a

genome-wide approach to characterize CREB target genes,

suggesting that ephrinB2 may be a direct target of CREB

(Zhang et al, 2005). We were especially interested in

ephrinB2 as a target for ERK signalling because previous

work had linked ephrinB2 function to NMDA receptor signal-

ling at synapses. Trans-synaptic interactions between post-

synaptic EphB receptors and presynaptic B-ephrins are

necessary for the induction of mossy fibre long-term poten-

tiation (LTP) (Contractor et al, 2002). Treatment of cultured

neurons with ephrinB2 led to tyrosine phosphorylation spe-

cifically of the NR2B subunit (Takasu et al, 2002). We there-

fore investigated whether the phosphorylation status of NR2B

was altered in caMEK1-overexpressing mice. NR2B tyrosine

phosphorylation was greatly augmented in caMEK1DN mu-

tant mice (Figure 5E), suggesting that stimulation of NR2B

phosphorylation, in addition to increasing NR2B protein

levels, is a second mechanism by which ERK signalling

augments NR2B activity.

EphrinB2 is required for NR2B phosphorylation and

epilepsy in caMEK1Dfb mice

To directly test the relevance of EphrinB2 as a target of ERK

signalling, we crossed mice harbouring a floxed allele of

ephrinB2 (ephrinB2fl) (Grunwald et al, 2004) to caMEK1Dfb

mice. Spontaneous seizures were significantly reduced in

bgeo-caMEK1; ephrinB2fl/fl; CamKII-creþ compound mutant

mice (caMEK1Dfb; ephrinB2Dfb mice). Quantification revealed

that the absence of ephrinB2 reduced the frequencies of

seizures by 80% (Figure 6A). Probably as a consequence,

astrocytic gliosis was not observed in caMEK1Dfb; ephrinB2Dfb

mice (Figure 6B). Hippocampal NR2B protein levels were

increased to similar extents in mice overexpressing caMEK1

and in caMEK1Dfb; ephrinB2Dfb double mutants, suggesting

that EphrinB2 is not involved in the regulation of NR2B

translation by caMEK1 (Figure 6C). In contrast, inactivation

of ephrinB2 significantly reduced tyrosine phosphorylation of

NR2B seen in caMEK1Dfb mutant mice, to levels detectable in

control mice (Figure 6C). Tyrosine residue 1472 (Tyr-1472)

within NR2B is a major phosphorylation site for Src-family

kinases (Nakazawa et al, 2001; Takasu et al, 2002). caMEK1

overexpression increased Tyr-1472 phosphorylation com-

pared to controls; however, in caMEK1Dfb; ephrinB2Dfb double

mutants Tyr-1472 phosphorylation was significantly reduced

(Figure 6D). EphrinB2 is thus essential for NR2B phosphor-

ylation and epileptogenesis triggered by caMEK1 in vivo.

Discussion

We have generated a mouse model that allows for the

activation of ERK signalling in vivo by conditional cre/loxP-

mediated overexpression of caMEK1. A main advantage of

this approach is its great versatility, since by choosing the

appropriate cre-expressing transgenic lines, any tissue or
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biological process can be studied. In this study, we describe

that brain-specific overexpression of caMEK1 in mice causes

spontaneous epileptic seizures.

Localization of phosphorylated ERK

caMEK1D mice showed robust activation of ERK signalling

and phosphorylation of downstream pathway components.

IHC revealed that P-ERK staining in the hippocampus was

most pronounced in the stratum lucidum. This localization is

in contrast to the predominantly nuclear localization of active

ERK that is commonly seen in many cell types and that we

also observed in cortical neurons (Ranganathan et al, 2006).

It is noteworthy that the location of activated ERK is not

unique: the neurotrophin receptor TrkB is ubiquitously ex-

pressed throughout the brain, but during epileptogenesis

TrkB undergoes phosphorylation at the mossy fibre synapse

and active phosphorylated TrkB receptor is specifically de-

tected in the stratum lucidum (Binder et al, 1999; He et al,

2002). Conditional neuron-specific deletion of TrkB prevented

epilepsies in the kindling model, underscoring the functional

relevance of TrkB activation (He et al, 2004). The concomi-

tant activation of both TrkB and ERK in the same anatomical

region indicates that the stratum lucidum is a particularly

important location for pro-epileptogenic signalling events.

Regulation of NR2B translation by ERK

Activation of ERK signalling increased NR2B protein levels in

protein extracts from caMEK1D hippocampi. Importantly,

modulation of ERK signalling also affected NR2B protein

expression in neuronal cell lines (Figure 4D), suggesting

that deregulation of NR2B is a direct consequence of changes

in ERK activity (Figure 7). However, it should be noted that
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while our data are consistent with the notion that NR2B is

one of the translational targets of ERK signalling, we cannot

formally exclude that ERK signalling also affects other aspects

of NR2B biology, such as receptor internalization and recy-

cling. It is noteworthy that the increase in NR2B tyrosine

phosphorylation cannot account for increased NR2B levels

since caMEK1Dfb; ephrinB2Dfb double mutants show wild-

type levels of NR2B tyrosine phosphorylation but still

increased NR2B protein (Figure 6C).

The entorhinal cortex via the perforant path produces most

of the input into dentate gyrus (DG) granule cells and

onwards to CA3. P-ERK is most highly expressed in DG

neurons, and more NR2B in DG neurons could increase the

perforant path/DG drive to CA3. In line with this model,

targeted deletion of NR1 has recently been shown to decrease

firing rates in CA3 neurons (McHugh et al, 2007) and NMDA

receptors in the dentate gyrus neurons are important for

kindling-induced epilepsies (Mody and Heinemann, 1987).

In addition, the increased perforant path/DG drive may be

further amplified by increases in CA3 NR2B. Thus, we spec-

ulate that increased NR2B protein may function both in

dentate gyrus granule cells and in CA3 neurons to increase

the drive and firing rates of the hippocampal circuit

(Figure 7).

The attenuation of epilepsies in ageing caMEK1DN mice

might be due to changes in NMDA receptor function with age.

Ageing animals exhibit a decline in NMDA receptor-binding

densities and NMDA-stimulated release of transmitters is

decreased with age (Gonzales et al, 1991). An age-related

reduction in binding of glutamate to NMDA-binding sites has

been reported in mice, rats, dogs and monkeys (Tamaru et al,

1991; Wenk et al, 1991). Thus, it is conceivable that an age-

related decline in NMDA receptor activity reduces the fre-

quencies of seizures in old caMEK1ÄN mice.

While NR2B translational regulation has not been studied,

some work has been carried out on NR2A. Mutational

analysis of the NR2A 50-UTR implicated secondary structure

as a major translational impediment and an important biolo-

gical role for the 50-UTR of NR2A was further suggested by the

unusually high level of sequence conservation among spe-

cies. In contrast, the 50-UTR of NR1 did not affect translation

and is not conserved (Wood et al, 1996). The molecular

details of ERK-mediated regulation of NR2B translation are

certainly worth investigating as they may reveal interesting

insights into the control of synaptic plasticity.

Cross-talk between Eph/Ephrin and NMDA receptor

signalling

In addition to increased NR2B translation, ectopic activation

of ERK signalling also employs transcriptional mechanisms to

regulate the ephrin/Eph and NMDA receptor pathways. In

wild-type hippocampus, EphrinB2 mRNA is expressed in the

CA1 and DG neurons, but absent from the CA3 region

(Henderson et al, 2001; Grunwald et al, 2004). In contrast,

several Eph receptors that are capable of binding EphrinB2

ligand, including EphB1, EphB2 and EphA4, are present in

CA3 neurons (Grunwald et al, 2004). Therefore, at the mossy

fibre synapse EphrinB2 ligand is expressed presynaptically

and Eph receptors are expressed postsynaptically (Klein,

2004). Functional analysis indeed confirmed an important

function for Ephrins and Eph receptors in trans-synaptic

signalling in the induction of mossy fibre LTP as suggested

by their complementary expression patterns (Contractor et al,

2002).

Thus, presynaptic ephrinB2 transcription induced by ERK

signalling may signal across the mossy fibre synapse to

activate postsynaptic Eph receptors. Ligand binding causes

Eph receptor clustering and reciprocal phosphorylation on

multiple tyrosine residues. The phosphorylated tyrosines

recruit downstream signalling proteins containing SH2 do-

mains, including Src family kinases such as Fyn (Klein, 2004;

Murai and Pasquale, 2004). Fyn physically associates with

both the EphB and NMDA receptors and Fyn phosphorylates

NR2B on tyrosines 1252, 1336 and 1472 (Nakazawa et al,

2001). Treatment of primary cortical neurons with recombi-

nant ephrinB2 was shown to cause NMDA receptor tyrosine

phosphorylation through activation of EphB receptors and

subsequent stimulation of Src family kinases. These

ephrinB2-dependent events resulted in increased NMDA re-

ceptor-dependent influx of calcium and suggested that

ephrinB2 stimulation of EphB modulates the functional con-

sequences of NMDA receptor activation (Takasu et al, 2002).

This molecular mechanism appears to contribute to caMEK1-

induced epilepsy since genetic inactivation of ephrinB2 led to

a significant decrease in NR2B tyrosine phosphorylation and

the number of epileptic seizures. While this result is in

agreement with the notion that ephrin/Eph signalling regu-

lates NR2B tyrosine phosphorylation in vivo (Figure 7), we

cannot rule out that the reduced numbers of seizures con-

tribute to the decrease in NR2B tyrosine phosphorylation.

ephrinB2 has previously been shown to participate in the

regulation of plasticity of CA3/CA1 hippocampal synapses;
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however, mossy fibre synapses were not investigated in this

study (Grunwald et al, 2004). We noted that NR2B tyrosine

phosphorylation was not only reduced by the absence of

ephrinB2 in caMEK1Dfb transgenics but that ephrinB2Dfb

single mutant mice also showed decreased NR2B tyrosine

phosphorylation compared to wild-type control mice

(Figure 6C and data not shown). Thus, the control of NR2B

phosphorylation by EphrinB2 may be a signalling pathway

that contributes to the physiological regulation of synaptic

plasticity, and whose hyperactivation in caMEK1D mice leads

to epilepsy.

Pharmacological treatment of ERK-induced epilepsies

ERK activation appears to be sufficient to trigger epilepsy in

mice and it is therefore conceivable that this pathway may

also play an important role in the aetiology of some forms of

human epilepsy. Our data suggest that ERK triggers a signal-

ling network that culminates in the augmentation of NR2B

function. The importance of NMDAR activity downstream of

ERK was confirmed by pharmacological inhibition of NR2B

with ifenprodil, which efficiently blocked ERK-induced

seizures. In addition to NR2B, other components of the

signalling network could also be considered as targets for

therapeutic intervention. Genetic inactivation of ephrinB2

significantly reduced the frequency of seizures in

caMEK1Dfb mutant mice, indicating that Eph receptors

could be attractive molecular targets for preventing epilepsy.

Most obviously, inhibition of ERK signalling may be of

potential clinical benefit. Inhibitors of MEK1 have been

identified (Sebolt-Leopold and Herrera, 2004) and it will be

worthwhile to test whether these reagents have a therapeutic

effect for treatment of epilepsies.

Materials and methods

Mice
The bgeo-caMEK1 transgenic construct was electroporated into
embryonic stem cells, stable transfectants were selected and mice
were generated according to standard protocols (Behrens et al,
1999). bgal staining was used to ensure high transgene expression
in ES cells and Southern blot analysis was used to confirm single-
copy integration (data not shown). Mice harbouring a floxed
ephrinB2 allele have been described previously (Grunwald et al,
2004).

Quantification of epilepsies and in vivo electro cortical
recordings
Phenotypical epileptic seizures were characterized by arrest of
motion, tonic/clonic limb movement and loss of posture (see
Supplementary movie 1 for an example). Mice were observed and
scored by two independent observers for 7 h/day. Ifenprodil
(Sigma) was injected intraperitoneally to a final concentration of
1 mg/g body weight. In response to ifenprodil injection, both control
and mutant mice appeared drowsy for 5–10 min, after which animal
behaviour returned to normal.

Mouse PhysioTels EA-F20 single channel implantable radio-
telemetry transmitters (Data Sciences International, Arden Hills,
USA) were used to record from area CA3 in the dorsal hippocam-
pus. A 125-mm Teflons-insulated silver wire (Advent, Eynsham,
UK) was soldered to the active lead and the connection was
insulated with Dow Cornings Silicone 734. A bone screw was
attached to the ground lead.

Three mice (25–30 g body weight) were given prophylactic
peripheral analgesic treatment 15 min before surgery by subcuta-
neous injection of 0.2ml 1:50 dilution Rimadyls vet; 50mg/ml carprofen
(Pfizer, USA). Mice were anaesthetized using isoflurane. The skin
from between the ears to half way the back was shaved and
swabbed with 70% alcohol. The mouse was placed in a stereotaxic

frame fitted with a mouse adapter (Harvard Apparatus, Holliston,
USA). Body temperature was monitored with a rectal probe and
maintained at 36–371C. A B3 cm incision was made between the
eyes and the exposed skull was cleaned with 1% H2O2. After
removal of the skin a burr hole for electrode placement was made at
2.0 mm posterior 2.0 mm right from bregma and two holes for bone
screws were made straddling the hole. The transmitter was placed
in a subcutaneous pocket in the scruff and fixed with Prolenes 4/0
suture. The ground electrode screw (contacting the cortical surface)
and anchor were inserted, followed by the silver wire electrode with
the tip located 1.6 mm below the cortical surface. Electrode, leads
and screws were fixed to the skull with Simplex Rapid dental acrylic
(Howmedia, London, UK). The incision was closed with Prolenes

5/0 suture. After surgery, mice were given additional pain relief by
subcutaneous injection of 0.05 ml Temgesics (0.3 mg/ml bupreno-
fin, Schering-Plough, USA) and placed in a warmed recovery cage.
Recording of biopotentials, using Dataquests ART software (Data
Sciences International), started after 10 days by which time the
wound was fully recovered and the mice had adapted to carrying
the transmitter.

Electrophysiological recordings
Acute hippocampal–entorhinal cortex slices were prepared using
standard techniques (Kann et al, 2005). In brief, adult genotyped
wild-type and caMEK1DN mutant littermates were decapitated
under deep diethylether anaesthesia and the brain was quickly
removed. Horizontal slices (350 mm) were prepared using a
vibratome (VT 1000 S; Leica, Bensheim, Germany) in ice-cold
preparation solution (in mM; 87 NaCl, 26 NaHCO3, 25 glucose, 2.5
KCl, 7 MgCl2, 1.25 NaH2PO4, 0.5 CaCl2, 75 sucrose, pH 7.4) and
directly transferred to a custom-built interface chamber (95% O2,
5% CO2). Slices were allowed to recover in artificial cerebrospinal
fluid (ACSF; 1.5 ml/min, 3670.51C) for at least 1 h before being
used for experiments. ACSF contained in mM: 129 NaCl, 21
NaHCO3, 10 glucose, 3 KCl, 1.8 MgSO4, 1.25 NaH2PO4, 1.6 CaCl2,
pH 7.4. Whole-cell recordings were performed under submerged
recording conditions, in the absence of extracelluar Mg2þ and in
the presence of bicuculline (5 mM). The internal patch solution
contained in mM: 130 Cs-gluconate, 8 CsCl, 10 HEPES, 10 EGTA, 2
NaCl, 2 Mg-ATP, pH 7.3. Preparation solution and ACSF were
saturated with 95% O2 and 5% CO2. Salts were from Sigma-Aldrich
(Taufkirchen, Germany), ifenprodil hemitartrate and bicuculline
methochloride were from Tocris (Bristol, UK).

Extracellular field potentials were recorded at 5 kHz digitization
(1 kHz low-pass filter) from stratum pyramidale of area CA3a with
microelectrodes (5–10 MO), which were filled with 154 mM NaCl
solution, using a custom-built amplifier and a commercial interface
(CED 1401) with ‘Spike2’ software (both from Cambridge Electronic
Design, Cambridge, UK). For paired-pulse experiments, a bipolar
tungsten electrode (10–20mm tip diameter, B200mm tip separation)
was positioned in the dentate gyrus to activate fibre tracts to area
CA3 and paired pulses (100ms stimulus duration, 50 ms interval)
were delivered every 30 s with submaximal stimuli (about 70% of
intensity required to evoke population spikes of maximal ampli-
tude).

Whole-cell recordings were made using a Multiclamp 700B
(Axon Instruments, Molecular Devices, USA) and standard techni-
ques (Gebhardt and Cull-Candy, 2006). Patch pipettes pulled from
thick-walled borosilicate glass had a resistance of 6–8 MO when
filled with solution. CA3 pyramidal neurons were identified
visually. The access resistance was checked during the recording
and the experiments were stopped if the access resistance had
changed more than 10%. Data were recorded by Clampex 9 with a
sampling rate of 10 kHz and filtered at 2 kHz.

For field potential analysis, ‘Signal3’ software (Cambridge
Electronic Design) was used. Ten field potential responses as
evoked by paired pulses were averaged and the population spike
amplitude was determined as the amplitude from the first positive
peak to the maximal negative peak. The PPI was calculated by
dividing the determined population spike amplitude of second by
the first paired-pulse response.

Whole-cell recordings were analysed with Clampfit 9. Data are
given as mean7s.e.m. and are derived from at least three mouse
preparations per group. Statistical significance was determined
using Student’s t-tests.
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Motor function
Mice were accustomed to and trained on the rotarod five times per
week between the age of 3 and 5 weeks. Then mice were tested for
motor function using the accelerating rotarod (4–40 r.p.m.) (UGO
Basile, Varese, Italy) once per day on three consecutive days. The
time spent on the rotarod was recorded. The value is the average of
the three tests 7s.e.m.

Biochemistry
Mice were killed by cervical dislocation, and the hippocampus
region was quickly dissected and frozen in liquid nitrogen. Cell
lysates were homogenized in lysis buffer and protease inhibitor.
Immunoblots were carried out as previously described (Nateri et al,
2004). Antibodies to NR2B, b-actin (Sigma), NR1, NR2A (Synaptic
Systems) and NR2B (Chemicon), phosphorylated NR2B-Y1472
(Sigma), phosphorylated CREB (Ser 133), CREB, eIE4E, phospho-
eIE4E, p44/42 MAPK, phospho-p44/42 MAPK (thr202/tyr204),
MEK1/2 (Cell Signalling), EphrinB2 (R&D Systems), RSK, phos-
pho-RSK, phosphotyrosine (PY99) (Santa Cruz) were used. For
immunoprecipitation, hippocampal lysates were incubated with
primary NR2B-specific antibody and bound to protein G sepharose
beads. Immunoprecipitated proteins were separated by SDS–PAGE.
The gels were transferred to PVDF membranes, and the membranes
were immunoblotted with various antibodies as indicated.

Metabolic labelling was carried out in SHSY5Y human neuronal
cells that were radioactively labelled with 0.2 mCi of 35S-methionine
and 35S-cysteine/ml in a labelling medium lacking methionine and
cysteine (ICN). Actinomycin-D (5 mg/ml; Sigma) and proteasome
inhibitor I (1 mg/ml; Calbiochem) were added 30 min before the
addition of labelling medium to all samples to prevent de novo
transcription and protein degradation. Also, 10 mM MEK inhibitor
U0126 (Promega) was added 30 min before the labelling period to
specific samples. Cell extracts and immunoprecipitation were
carried out with polyclonal anti-NR2B as described (Nateri et al,
2004). For microarray and RT–PCR analysis, total mRNA was
isolated from dissected hippocampus, using RNeasy Mini-kit
according to the manufacturer’s instructions (Qiagen). Microarray
analysis was performed at the CR-UK core service facility using 18
U133 Plus 2.0 arrays (Affymetrix). For RT–PCRs, cDNA was
synthesized using Invitrogen Superscript reagents according to the
manufacturer’s instructions. RT–PCR was performed using a
Chromo4Fluorescence machine (MJ Research), and the data were
analysed using the Opticon Monitor3 software. The reaction
mixture consisted of 2.5ml of cDNA, 12.5ml of 2� SyberGreen

PCR master mix (Applied Bioscience), 2 ml of 5mM forward and 2 ml
of 5 mM reverse primer in a 25 ml reaction volume.

The following primer sequences were used:
F-NR1, 50-GAGGGCCGGGCAGCGCAGAAGCGCCTG-30; R-NR1,

50-GTAGATGCCCACTTGCACCAGGA-30; F-NR2A, 50-GCATCTATGAT
CATGGCTGACAAGG-30; R-NR2A, 50-GTCTCCGGCTTCTCTGTCTGC
CCG-30; F-NR2B, 50-GACCGGAAGATCCAGGGGGTGGTG-30; R-NR2B,
50-GTAGATCCTCTTCTCGTGGGTGTTGTAG-30; F-EphrinB1, 50-GTGC
GGCCAGAGCAGGCGGCTGCTTG-30; R-EphrinB1, 50-GGACGATGTAG
ACAGGATGCCCGTAG-30; F-EphrinB2, 50-GGCCTGGTACTATACCCAC
AGATAGGAG-30; R-EphrinB2, 50-GTCTGCAGTCCTTAGTGGTATGAT
AACG-30; F-EphrinB3, 50-TCTCCTAGTTATGAGTTCTAC-30; R-EphrinB3,
50-CGCAGGGCTATTCCTAGCTCC-30; F-CEBP, 50-GGCGAGCACGAGC
GCGCCATCG-30; R-CEBP, 50-GGACGACGACGACGTGGACAGGCTG-30.

IHC staining
Brain samples were fixed overnight in 10% neutral buffered
formalin, transferred into 70% ethanol and embedded in paraffin
block. Sections (4 m were cut from each block and placed on glass-
charged slides. Slides were subjected to a standard dewaxing
protocol as follows: 2�10 min in xylene, 2 min sequentially in 100,
95, 90, 80, 70, 50, 25% ethanol and 5 min in PBS. For P-ERK
staining, after antigen retrieval (12 min of microwave in 0.1 M
sodium citrate pH¼ 6), slides were blocked for 1 h, the P-ERK
antibody (Cell Signalling; 1 mg/ml) was used at the final dilution
1:250 in combination with a mouse on mouse kit (Dako ARK) and
was developed according to the manufacturer’s instructions. IHC
stainings for neuronal markers were performed as described
(Raivich et al, 2004).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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