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A complete and accurate set of human protein-coding gene annotations is perhaps the single most important
resource for genomic research after the human-genome sequence itself, yet the major gene catalogs remain
incomplete and imperfect. Here we describe a genome-wide effort, carried out as part of the Mammalian Gene
Collection (MGC) project, to identify human genes not yet in the gene catalogs. Our approach was to produce gene
predictions by algorithms that rely on comparative sequence data but do not require direct cDNA evidence, then to
test predicted novel genes by RT–PCR. We have identified 734 novel gene fragments (NGFs) containing 2188 exons
with, at most, weak prior cDNA support. These NGFs correspond to an estimated 563 distinct genes, of which >160
are completely absent from the major gene catalogs, while hundreds of others represent significant extensions of
known genes. The NGFs appear to be predominantly protein-coding genes rather than noncoding RNAs, unlike
novel transcribed sequences identified by technologies such as tiling arrays and CAGE. They tend to be expressed at
low levels and in a tissue-specific manner, and they are enriched for roles in motor activity, cell adhesion, connective
tissue, and central nervous system development. Our results demonstrate that many important genes and gene
fragments have been missed by traditional approaches to gene discovery but can be identified by their evolutionary
signatures using comparative sequence data. However, they suggest that hundreds—not thousands—of
protein-coding genes are completely missing from the current gene catalogs.

[Supplemental material is available online at www.genome.org.]

In the excitement about new noncoding elements in mammalian
genomes—including enhancers (Bejerano et al. 2006; Pennac-
chio et al. 2006), insulators (Xie et al. 2007), and various species
of noncoding RNAs (Mattick and Makunin 2006; Pollard et al.
2006)—it is easy to lose sight of the central importance of pro-
tein-coding genes. A complete and accurate protein-coding gene
set for each sequenced genome is still perhaps the single most
important resource for genomic research after the genome se-
quence itself. Good gene sets are critical for microarray design,
association studies, the identification of drug targets, evolution-
ary analyses, systems biology, and many other endeavors. Even
most noncoding elements must be examined in relation to
nearby or interacting genes. Nevertheless, gene annotation in
many ways has not kept pace with genome sequencing. Six years
after the draft sequence of the human genome first became avail-
able (International Human Genome Sequencing Consortium
2001; Venter et al. 2001), not only is no complete human gene

set available, but the number of human genes is still not precisely
known, with estimates ranging from 20,000 to 25,000 (Interna-
tional Human Genome Sequencing Consortium 2004). Further-
more, many genes are erroneously, incompletely, or inconsis-
tently annotated in the major human gene catalogs—RefSeq
(Pruitt et al. 2005), Vega (Ashurst et al. 2005), and Ensembl (Hub-
bard et al. 2007) (see Clamp et al. 2007; http://www.ncbi.
nlm.nih.gov/CCDS/).

A steady stream of new discoveries has made a complete
human gene catalog a moving target. Studies of the mammalian
transcriptome have revealed pervasive transcription, thousands
of noncoding RNAs, extensive antisense transcription, tandem
chimerisms, and widespread alternative splicing and alternative
promoters (Bertone et al. 2004; Cheng et al. 2005; Carninci et al.
2006; Parra et al. 2006; Kapranov et al. 2007). Recently, many of
these observations were corroborated in a close examination of
1% of the human genome (Harrow et al. 2006; Denoeud et al.
2007; ENCODE Project Consortium 2007). Other studies have
revealed extensive and elaborate regulation and modification at
post-transcriptional stages (Bass 2002; Bartel 2004). These discov-
eries point to an unanticipated level of complexity in the way the
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genome encodes functional molecules, and they call into ques-
tion our working definition of the gene (Gerstein et al. 2007).

Nevertheless, for its day-to-day work, the research commu-
nity depends on sets of gene annotations that are as complete
and accurate as possible, by some reasonable working definition
of the gene. Also needed are essential reagents related to genes,
such as cDNA clones. The Mammalian Gene Collection (MGC)
project was created to provide the community with a represen-
tative high-quality full-length cDNA clone for every human and
mouse gene, as well as for a large subset of rat genes (Strausberg
et al. 1999). Roughly three of four human and mouse genes, and
thousands of rat genes, are now represented in the MGC (http://
mgc.nci.nih.gov). However, the goal of a full-length clone for
every gene has proven difficult to achieve. In response to declin-
ing yields from methods based on random expressed sequence
tag (EST) sequencing (Gerhard et al. 2004), several years ago the
MGC adopted a more directed strategy, by which candidate
genes not in the collection were amplified by RT–PCR, then were
cloned and validated by full-length sequencing (Baross et al.
2004; Wu et al. 2004a). A component of this strategy was to use
ab initio computational gene prediction to identify candidates
missing from catalogs of known genes and poorly supported by
ESTs, yet still detectable from subtle signatures in the genome
sequence. In this way, the goals of completing the MGC and of
obtaining a complete set of gene annotations have become in-
tertwined.

Until recently it would have been impractical to test other-
wise unsupported computational predictions by RT–PCR at the
scale of an entire mammalian genome. However, improvements
in gene prediction accuracy, the completeness of gene catalogs,
and the cost effectiveness of RT–PCR have helped to make a
project of this kind feasible (Guigó et al. 2003; Wu et al. 2004b;
Eyras et al. 2005; Brzoska et al. 2006; Harrow et al. 2006). Perhaps
the most important development has been the dramatic decrease
in the false-positive rates of ab initio predictions, owing to the
incorporation of comparative sequence data in gene finders (Korf
et al. 2001; Parra et al. 2003; Siepel and Haussler 2004; Gross and

Brent 2006). Comparative gene-finding programs have reduced
false-positive rates by roughly half (at the nucleotide and exon
levels) with little or no cost in sensitivity, by making use of the
patterns of nucleotide substitutions and insertions/deletions that
are characteristic of protein-coding genes (Flicek et al. 2003;
Siepel and Haussler 2004; Gross and Brent 2006). Improved
methods to filter out pseudogenes and make use of EST evidence
where available have further improved accuracy (Arumugam et
al. 2006; van Baren and Brent 2006). These improvements are
especially important in novel gene discovery, because predic-
tions outside of known genes are strongly enriched for false posi-
tives.

Here we describe the results of a genome-wide effort to iden-
tify novel human genes by computational gene prediction fol-
lowed by RT–PCR validation. Because success rates for RT–PCR
tend to decline with product length, our approach was first to
target short, intron-spanning fragments of predicted genes for
validation, then—if sufficient support for expression and splicing
was found—to submit larger predictions to the MGC pipeline for
full-length cloning (see Fig. 1). This initial phase of gene predic-
tion and fragment validation produced relatively short EST-like
sequences—here called RT–PCR amplified sequence tags (RSTs)—
that provide evidence of transcription and splicing, but do not
define full-length transcripts. Thus, this approach can be thought
of as a kind of directed EST sequencing, which targets likely pro-
tein-coding exons that have been undersampled by ordinary EST-
sequencing methods. We refer to this method as computational
exon discovery (CED). In this article, we present an analysis of
more than 2000 novel human exons identified by CED.

Results

Selection of targets and RT–PCR validation

For the initial gene predictions, we used three programs that have
high-prediction accuracy, yet do not depend on direct cDNA evi-
dence: N-SCAN, Exoniphy, and TRANSMAP. All of these methods

Figure 1. (A) Flowchart for computational exon discovery (CED). Beginning with three sets of gene predictions, candidate novel genes are tested for
evidence of expression and splicing in several rounds of candidate selection, RT–PCR amplification, and sequencing. The result is a large set of EST-like
sequences, called RSTs, that provided supporting evidence for novel protein-coding exons, but do not define full-length transcripts. (B) Illustration of
CED. Gene 1 is known and well-supported by public cDNA sequences, so overlapping gene predictions are ignored. Predicted gene 2 appears to be
novel and is selected for RT–PCR validation, but the validation experiment fails. Predicted gene 3 also appears to be novel and is tested by two RT–PCR
experiments, both of which produce valid RSTs (“hits”). The first experiment validates the TRANSMAP prediction, and the second validates the N-SCAN
prediction and one of two Exoniphy predictions. A cDNA cluster is constructed to summarize each set of overlapping cDNAs (including RSTs), and a
novel gene fragment (NGF) is constructed by merging the two RSTs that support novel exons (NEs; in red).
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make use of comparative sequence data, but in different ways
(Table 1). They were expected to complement one another by
identifying somewhat different sets of novel genes. We selected
intron-containing predictions that did not overlap known genes
and had little or no support from publicly available human EST
or mRNA sequences, and tested them for expression and splicing
in pooled mRNA sources by RT–PCR (see Methods and Supple-
mental material). RT–PCR experiments that produced sequences
with high-quality spliced alignments to the genome were con-
sidered “hits,” while other experiments were considered “misses”
(Fig. 1B; Methods). Stringent filters ensured that the targeted
genes, and not paralogs, had been amplified and sequenced. No-
tably, a hit implies that a targeted region is expressed and spliced,
but does not prove that it encodes a functional protein. In addi-
tion, misses may arise for reasons other than false-positive pre-
dictions, such as failures of reverse transcription, PCR amplifica-
tion, or sequencing, or incomplete sampling of tissues in the
mRNA pool.

A total of 12,164 RT–PCR experiments were performed, ex-
cluding ones that produced RSTs with ambiguous mappings to
the genome. Of these, 2767 (22.7%) were hits (Table 2). We also
evaluated hits at the level of “prediction clusters,” or maximal
sets of co-tested predictions (Methods), to account for multiple
sets of overlapping predictions and multiple experiments per pre-
diction. A total of 4140 prediction clusters were tested, of which
1090 yielded at least one hit, for a hit rate of 26.3% (Table 2).
While targets were, in practice, identified from individual pre-
dictions (a large majority being based on N-SCAN), each experi-
ment was retrospectively considered to be a test of all compatible
predictions (see Fig. 1B and Methods).

The three prediction sources displayed quite different hit
rates, ranging from 26.0% at the cluster level (22.4% at the ex-
periment level) for N-SCAN to 72.8% (49.8%) for Exoniphy and
71.7% (54.2%) for TRANSMAP (Table 2). At the same time, far
more hits were accounted for by N-SCAN than by the other two
sources. Predictions supported by multiple sources were validated
at a significantly higher rate than those that were supported by a
single predictor, with a hit rate of >80% for predictions supported

by all three sources. Predictions in segmental duplications were
validated at a much lower rate (8.2%) than those outside segmen-
tal duplications (23.9%; P < 2.2 � 10�16, Fisher’s exact test),
probably owing to an enrichment for pseudogenes in duplicated
regions (data not shown). The differences in hit rates between
predictors primarily result from different strategies in candidate
selection rather than differences in the native false-positive rates
of the gene predictors. For example, the Exoniphy predictions
were passed through stringent filters before they were submitted
for validation, while a more inclusive strategy was used with
N-SCAN predictions (see Supplemental material). The goal of this
work was not to perform an unbiased evaluation of gene predic-
tion accuracy, but to identify as many novel genes (exons) as
possible. However, these results do demonstrate that an inclusive
strategy for candidate selection in CED can identify fairly large
numbers of novel genes, even in a well-annotated genome, but
hit rates may be fairly low (∼25%), while stringent filtering can
improve hit rates considerably (to >70%), but will reduce yields.

Novel exons and novel gene fragments

We sought to quantify how much novel evidence of transcrip-
tion the 2767 hits provided beyond what was already available
from public cDNA sequence data. Because most cDNAs are frag-
ments, we devised a system for measuring evidence of transcrip-
tion at the level of individual exons. Based on alignments to the
genome sequence of the RSTs and all other public (human)
cDNAs, we defined a set of benchmark exons (BMEs), represent-
ing our current best estimate of the true genomic boundaries of
all cDNA-supported exons (Supplemental Fig. S1). Each BME was
then classified as having complete support (spanning both splice
sites of an internal exon or the single splice site of an initial/
terminal exon), partial support (spanning one splice site of an
internal exon), or no significant support (no coverage of splice
sites), from either the RSTs or from prior cDNA evidence (Supple-
mental Fig. S2; Methods). BMEs that had complete support from
the RSTs and, at most, partial support from prior cDNA evidence
were designated as novel exons (NEs) (Supplemental Fig. S2).

The cDNA database is constantly expanding, so the set of
NEs is a function of the cut-off date used to define prior cDNA
evidence. However, the NEs turn out not to be highly sensitive to
the choice of date. A cut-off date of January 1, 2005 (when the
first RSTs were sequenced) defined a set of 2188 NEs, most of
which (91%) had no significant previous support (Supplemental
Table S1). A cut-off date of June 1, 2007 decreased the number of
NEs by only 14% to 1892, and left the proportion with no sig-
nificant previous support essentially unchanged. Thus, while the
number of public cDNAs has nearly doubled since early 2005, the
NEs identified by our methods appear to be relatively impervious
to other methods for exon discovery. For simplicity, we assume a
cut-off date of January 1, 2005 for the remainder of this article.

We define a novel gene fragment (NGF) to be a set of n
connected exons supported by RSTs that contain NEs. (If there
are multiple overlapping NE-containing RSTs with consistent
splice junctions, they are merged to create one NGF; see Fig. 1B.)
NGFs provide partial information about the transcripts to which
NEs belong. The 2767 hits yielded 734 NGFs. Nearly half of the
NGFs are completely novel, in the sense that they are isolated
gene fragments that do not overlap prior cDNA evidence (as were
given priority in target selection). About a third represent 5� or 3�

extensions of prior cDNA clusters (with slightly more 5� than 3�

extensions), another 12% contribute single internal exons, and

Table 1. Computational gene finders used in this study

Program Description

N-SCAN (Gross and
Brent 2006)

Multispecies descendant of ab initio gene
finders GENSCAN (Burge and Karlin
1997) and TWINSCAN (Korf et al.
2001). Incorporates context-dependent
substitution, insertion, and deletion into
a full-featured hidden-Markov model for
eukaryotic genes. Was applied here to
genome-wide pairwise and multiple
alignments.

Exoniphy (Siepel and
Haussler 2004)

Multispecies ab initio exon finder that
identifies conserved protein-coding
exons by patterns of substitution and
insertion/deletion. Was applied here to
genome-wide human/mouse/rat
alignments. Exons were joined into
gene fragments and likely false positives
were removed in post-processing.

TRANSMAP (Zhu et al.
2007)

Performs a “transitive mapping” to a
genome A of mRNAs aligned to a
second genome B, based on syntenic
alignments of A and B. Was used here
to map mouse genes from the RefSeq
collection to the human genome.
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the remainder represent other combinations of internal exons
and transcript extensions (Supplemental Table S2).

To assess the degree to which the NGFs represent indepen-
dent genes, we built clusters based on several combined sources
of evidence—including the RSTs, other cDNAs, the predictions,
known human genes, and homologous genes from other spe-
cies—and conservatively assumed that NGFs in the same cluster
represented the same gene. This procedure produced 563 distinct
NGF clusters (NGFCs). Compared with the latest curated, cDNA-
supported gene sets (RefSeq and Vega), 327 (58%) of these NGFCs
are completely novel, 99 (18%) are 5� or 3� extensions, and 43
(8%) augment genes by contributing novel internal exons (Table
3). A total of 94 (17%) of the NGFCs are no longer novel with
respect to these gene sets, in many cases because they have al-
ready been used in defining new genes. Comparisons with more
inclusive sets of known genes result in fewer completely novel
NGFCs and more no-longer-novel, extending, and augmenting
NGFCs. For example, adding the Ensembl gene predictions
(which were not considered in candidate selection; see Supple-
mental material) reduces the completely novel set to 178 (32% of
NGFCs), and extending known genes by overlapping cDNA clus-
ters further reduces it to 164 (29%). Thus, the NGFCs are esti-
mated to represent between 164 and 327 novel genes, depending
on how the known genes are defined. In all cases, hundreds of

known genes are found to be extended or otherwise augmented
by NGFCs.

Protein-coding potential of novel gene fragments

To address the possibility that many NGFs might be noncoding
RNAs (ncRNAs) falsely predicted as protein-coding genes
(Mattick and Makunin 2006), we searched for homologs of the
NGFs in a large database of proteins. For comparison, we per-
formed the same search with 509 sequences annotated as
ncRNAs in the RefSeq database. Most NGFs (86%) had at least
one significant homolog, compared with only about 15% of
ncRNAs. This difference is significant even after correcting for
differences in query sequence length (see Supplemental materi-
als). Similarly, 70% of NGFs and only 11% of ncRNAs had at least
one significant match to a conserved domain. At the same time,
only about 5% of NGFs had high-scoring matches to ncRNAs
from the Rfam database (Griffiths-Jones et al. 2003), compared
with 12% of RefSeq protein-coding genes and 75% of RefSeq
ncRNAs.

We also compared the NGFs with annotated coding se-
quences (CDSs), untranslated regions (UTRs), and noncoding
RNAs (ncRNAs) from RefSeq in terms of two signatures of pro-
tein-coding potential: the length distribution of indels and the
distribution of distances between mismatches in human/mouse
alignments. Both of these measures show a pronounced period-
icity (with period three) in CDSs, and both show an absence of
periodicity in UTRs and ncRNAs (Fig. 2; Supplemental Fig. S3).
The NGFs display pronounced periodicity by both measures, al-
though it is somewhat dampened in comparison with CDSs. This
dampening may result from some ncRNAs among the NGFs, but
it may also reflect increased sequencing and alignment error, as
the fragmentary RSTs map to the genome less precisely than do
the full-length mRNAs in RefSeq. It also appears to reflect a re-
duction in the overall level of conservation of the NGFs.

Another possibility is that the NGFs include transcribed
pseudogenes (Zheng et al. 2007). However, these pseudogenes
would have to be spliced as well as transcribed, and if they were
identified by N-SCAN or Exoniphy (as were all but a few; see
Table 2), they would have to have been pseudogenized recently
enough so that their substitution and indel patterns still strongly
resembled those of functional genes. They would also have to

Table 2. RT–PCR hit rates by gene prediction source

Sourceb

Experiments Clustersa

No.c Hits Rated Percent hitse No.c Hits Rated Percent hitse

All NS 11,612 2,602 22.4 94.0 4,014 1,043 26.0 95.7
All EX 1,441 718 49.8 25.9 581 423 72.8 38.8
All TM 1,577 854 54.2 30.9 477 342 71.7 31.4
NS only 9,389 1,382 14.7 49.9 3,307 508 15.4 46.6
EX only 49 12 24.5 0.4 38 9 23.7 0.8
TM only 252 97 38.5 3.5 83 35 42.2 3.2
NS + EX only 929 473 50.9 17.1 318 231 72.6 21.2
NS + TM only 862 524 60.8 18.9 169 124 73.4 11.4
EX + TM only 31 10 32.3 0.4 5 3 60.0 0.3
NS + EX + TM 432 223 51.6 8.1 220 180 81.8 16.5
Total 12,164 2,767 22.7 100.0 4,140 1,090 26.3 100.0

aClusters of co-tested predictions (see Methods).
b(NS) N-SCAN, (EX) Exoniphy, (TM) TRANSMAP.
cTotal number of hits and misses (excludes ambiguous mappings to genome; see Methods).
dNumber of hits divided by number of hits and misses �100.
ePercentage of all hits that this source contributed (e.g., 2602/2767 = 94% for experiments in first row).

Table 3. NGF clusters by relationship with current known genes

Class

R + Va R + V + E R + V + E ext.

No. Percent No. Percent No. Percent

Completely novelb 327 58.1 178 31.6 164 29.1
5� extensionc 45 8.0 73 13.0 76 13.5
3� extensiond 54 9.6 70 12.4 74 13.1
Novel Internale 43 7.6 107 19.0 114 20.2
No longer novelf 94 16.7 135 24.0 135 24.0
Total 563 100.0 563 100.0 563 100.0

aBackground gene set: (R) RefSeq; (V) Vega; (E) Ensembl; (ext) extended
by overlapping cDNA clusters.
bDoes not overlap known genes.
cOverlaps gene(s) and extends in 5� direction.
dOverlaps gene(s) and extends in 3� direction.
eOverlaps gene(s), does not extend, but contributes novel internal exons.
fAll exons now represented in gene set.
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have eluded our pseudogene filters. It is therefore unlikely that a
large number of pseudogenes are included.

Taken together, these results strongly suggest that, while the
NGFs may contain some ncRNAs and pseudogenes, they consist
predominantly of genuine protein-coding sequences.

Historical exon discovery

As a side benefit, our database of BMEs allows the discovery of
novel human exons to be tracked over time. Our data show that
the number of BMEs completely supported by public cDNA data
began to grow rapidly in about 1993 and experienced a dramatic
acceleration of growth through the mid and late 1990s (Fig. 3).
The growth rate reached a peak between 2000 and 2001, and has
steadily declined since—except for a pronounced spike in 2006
from 5�-end sequencing (Kimura et al. 2006). The decline in
growth around 2001, when about two-thirds of BMEs had been
identified, primarily reflect “saturation” in cDNA sequencing,
with new sequences becoming less likely to identify new exons
and more likely to provide additional support for known exons
(Supplemental Fig. S4). By 2004, exon discovery had declined to
its 1993 level. Coding exons appear to have reached saturation
somewhat earlier than noncoding exons. Notably, most novel
exons since 2004 are apparent noncoding exons, contributed by
methods designed to enrich for the 5� ends of transcripts.

Our contribution of ∼2000 NEs is not on the scale of the
largest contributions from EST-sequencing projects, some of
which numbered in the tens of thousands (Fig. 3). Nevertheless,
despite saturation in exon discovery, the NEs are equal in num-
ber to ∼1% of all annotated coding exons, and they represent
>0.5% of all cDNA-supported exons.

Functional categories of novel gene fragments

To obtain information about the possible functions of the NGFs,
we translated them into peptide sequences, searched for homolo-
gous vertebrate genes, and assigned the NGFs to the Gene On-
tology (GO) (Ashburner et al. 2000) categories of their closest
homologs. We also identified conserved protein domains within
the NGFs. To avoid overcounting the categories or domains of
especially long or fragmented genes, we analyzed the NGF clus-
ters (NGFCs) instead of the individual NGFs.

Compared with a background set of RefSeq genes, several
GO categories were significantly over-represented among the

NGFCs (Supplemental Table S3). If these categories are clustered
by the NGFs assigned to them (Fig. 4), two main groups emerge:
(A) “motor activity” and related categories such as “ciliary or
flagellar motility” and “response to mechanical stimulus;” and
(B) “extracellular region” and related categories such as “extra-
cellular matrix,” “collagen binding,” and “cell adhesion.” There
were fewer over-represented protein domains than GO categories
(Supplemental Table S3), and they generally corresponded
closely to the enriched GO categories.

The enrichments for “motor activity” and related categories
came primarily from more than a dozen NGFCs homologous to
dynein and myosin heavy-chain polypeptides (HCPs). In particu-
lar, several NGFCs showed strong homology with the HCPs of
axonemal dyneins, large protein complexes that are responsible
for the movement of cilia and flagella. Other clusters were ho-
mologous to HCPs of cytoplasmic dynein 2, which plays a role in
intraflagellar transport. Some of these NGFCs were extensions of
well-studied genes, such as ngf338–ngf339, which extend
DNAH17 by 14 exons in the 5� direction (Supplemental Table S5).
Others appear to be essentially novel. For example, ngf51–ngf55
contain 24 novel exons that apparently belong to a new axone-
mal dynein HCP gene of ∼66 exons (Fig. 5). With myosins, as
with dyneins, the NGFCs included both novel genes (e.g.,
ngf634–ngf638) and extensions of known genes (e.g., ngf408–
ngf409).

The dynein and myosin HCP gene families are both diverse,
with large numbers of functionally specialized—and often quite
divergent—members. At the same time, orthologs in these fami-
lies are generally well conserved across long evolutionary dis-
tances (Weiss and Leinwand 1996; Pfister et al. 2006). In addi-
tion, many of these genes are known to exhibit tissue and cell-
specific expression. For example, DYNC2H1 (Supplemental Table
S5), is specifically expressed in ciliated cell species of the mam-
malian brain, the olfactory epithelium, and the retina (Mikami et
al. 2002). Moreover, many of these genes are quite large, so EST
coverage is likely to be incomplete, and attempts at acquiring
full-length mRNAs are likely to have failed. Combined, these fac-
tors could have caused these genes to be missed by conventional

Figure 3. Number of benchmark exons completely supported by at
least one cDNA sequence in GenBank as a function of time, and the rate
of growth of this number (computed in a 12-mo sliding window). Sepa-
rate curves are shown for all exons and for exons that overlap annotated
CDSs of known genes. Four spikes in growth can be traced to major EST
submissions by (1) Adams et al. (1993a,b), (2) Hillier et al. (1996), (3)
Adams et al. (1995) and L.D. Hillier and colleagues (“The WashU-Merck
EST Project,” unpubl.), and (4) Kimura et al. (2006). The largest spike,
between (3) and (4), comes from various sources.

Figure 2. Distributions of distances between nearest mismatches in
human–mouse alignments for NGFs vs. CDSs, UTRs, and ncRNAs from
RefSeq.
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methods for gene discovery, yet allowed them to be readily de-
tectable by CED.

Many of the NGFs assigned to the “extracellular region”
group of categories showed strong homology with cell-adhesion
molecules such as mucin-like proteins, integrins, cadherins, and
von Willebrand factors. Thus, these genes may function as com-
ponents of biofilms, in blood coagulation, in epithelial tissues, or
in other extracellular capacities. Others were homologous to
structural proteins such as collagens, or to extracellular enzymes
such as the serine proteases trypsin, neurotrypsin, and neutro-
phil. Several of the NGFCs in this group were nearly or com-
pletely novel, such as ngf167–ngf171, which contribute 24 NEs to
a homolog of von Willebrand factors and mucins, and ngf510–
ngf513, which cover most of a novel collagen homolog. Others
contributed major extensions to known genes, such as ngf101–
ngf103, which extends the otogelin (OTOG) gene in both the 5�

and 3� directions (Supplemental Fig. S5). OTOG is an example of
a well-studied gene that has been slow to make its way into the
human gene catalogs, probably because tissue-specific expression
has resulted in poor cDNA coverage (Cohen-Salmon et al. 1997;
El-Amraoui et al. 2001). Similar examples include MUC19,
COL28A1, and HMCN2. Notably, several of the NGFs in this
group—such as ones overlapping SSPO, CNTN3, and SDK2—
appear to function in central nervous system development and/
or synaptic transmission.

Despite their over-representation, these groups of categories
account for only about one-fourth of all NGFs, and the remain-
ing NGFs have diverse functional roles. Thus, the deficiencies of
the current gene catalogs cannot be attributed to any particular
class of genes.

In situ hybridizations to zebrafish embryos

To test the possibility that some NGFs might be specifically ex-
pressed in embryonic development, we identified 23 that had
little or no other cDNA support and that could be mapped, via
whole-genome syntenic alignments, to the zebrafish genome.
We then synthesized probes for the zebrafish orthologs of these
NGFs, and used them for whole-mount in situ hybridizations to
zebrafish embryos.

Clear expression was observed for three NGFs, of 19 for
which probe synthesis was successful. The first case, ngf136, con-
sists of two of the three exons of the brain-specific homeobox
(BSX) gene, which has recently been added to RefSeq. We ob-
served specific expression of this gene in the hypothalamus dur-
ing embryonic development, consistent with other findings (Cre-
mona et al. 2004). The second case, ngf674, now corresponds to
a minimally annotated three-exon kelch-like gene (RefSeq NM
001081675). This gene was found to be highly expressed in the
zebrafish embryo’s branchial arches (precursors of gills) and pro-
nephric duct (precursor of the kidney). The third case, ngf60, is a
nine-exon NGF consisting completely of novel exons (Supple-
mental Table S5). This gene has no known vertebrate orthologs,
and its predicted product shows only weak homology with sev-
eral kinesin-like proteins. In zebrafish embryos, it displays an
expression pattern in the telencephelon and hindbrain similar to
the transcription factor OTP, a homeobox transcription factor
that is essential for the development of the hypothalamus (Fig.
6). Therefore, ngf60 may play a critical role in development.
These examples show that at least some NGFs exhibit tissue-
specific expression during embryonic development in zebrafish,
and probably in human as well.

Expression levels of novel exons

We examined the expression levels of NEs and NGFs using pub-
licly available data from the Affymetrix Human Exon 1.0 ST Ar-
ray, which, in addition to probes for known genes, has probes for
a large number of ab initio gene predictions—including 75% of
our NEs and 95% of our NGFs. In all 11 tissues for which data was
available, the NEs showed significantly less detectable expression
than exons of known genes, with the fraction of NEs displaying
significant expression above background ranging from 17% to
63% (median 27%) compared with 63% to 86% (median 70%) for
RefSeq exons (P < 1 � 10�103, one-sided Fisher’s exact test;
Supplemental Fig. S7A). Furthermore, among exons showing de-
tectable expression, the NEs showed a significant decrease in es-
timated expression levels compared with RefSeq exons, with me-
dian expression levels 25%–39% lower (Supplemental Fig. S7B).
The NEs also showed significantly greater variation across tissues
in expression levels, with a median coefficient of variation of
0.21 compared with 0.16 for RefSeq exons (Mann Whitney P
< 1 � 10�15). About 3.5% of novel exons that were expressed in
at least one tissue displayed tissue-specific expression compared
with only 0.8% of RefSeq exons (P = 5 � 10�15, one-sided Fish-
er’s exact test). Thus, the NEs and NGFs on average are expressed

Figure 4. Hierarchical clustering of over-represented GO categories,
based on the NGFs assigned to each category. This dendrogram is de-
rived from a dissimilarity matrix defined such that any two GO categories,
X and Y, have dissimilarity 0 when all NGFs assigned to X are also assigned
to Y (or vice-versa), and dissimilarity 1 when the sets of NGFs assigned to
X and Y do not overlap. (Specifically, X and Y have dissimilarity dXY = 1 �
[|�(X)∩�(Y)| / min{|�(X)| ,|�(Y)| }], where �(C) denotes the (nonempty)
set of NGFs assigned to GO category C.) As a result, GO categories
associated with similar sets of NGFs group together in the dendrogram,
even if these categories are not closely related in the GO hierarchy (such
as “liver development” and “cell adhesion”). Here, two major groups of
related categories are evident, broadly related to motor activity (Group A)
and the extracellular region (Group B). (Dendrogram produced by the
hclust function in R with method = “average.”)
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at lower levels, and in a more tissue-specific manner, than are
known exons.

Discussion
There have been several previous attempts at gene or exon dis-
covery in vertebrate genomes by combined computational pre-
diction and experimental validation (CED). Methods similar to
ours have been applied in human and mouse (Guigó et al. 2003),
rat (Wu et al. 2004b), chicken (Eyras et al. 2005), and, most re-
cently, in the 1% of the human genome targeted by the ENCODE
project (Harrow et al. 2006). However, these efforts were done at
substantially smaller scales, and generally either for genomes
that lacked mature gene sets (Wu et al. 2004b; Eyras et al. 2005),
making it relatively easy to identify novel genes, or for regions
that were already so well annotated that essentially no new genes
(and only a few new exons) could be found (Harrow et al. 2006).
Even since the work of Guigó et al. (2003), the human genome
has had 4 yr of close scrutiny by manual annotators and com-
putational algorithms, and it is considerably more difficult to
find new genes now than it was in 2003. Despite these chal-
lenges, we have found evidence for thousands of novel exons
corresponding to hundreds of genes.

The previous work most similar to ours was a project by
Brzoska et al. (2006), in which over 7000 human ab initio gene
predictions were tested in a high-throughput RT–PCR pipeline.
Brzoska and colleagues were able to validate 796 predictions,

163–296 of which were entirely novel and 505–574 of which
included novel exons, with the exact numbers depending on the
choice of reference set. Thus, their yields were roughly compa-

Figure 5. Gene predictions, cDNA evidence, and novel gene fragments in the region on chromosome 1 that includes ngf51–ngf55. Gene predictions
are shown in green, prior cDNA evidence is in black, RSTs (which are represented in GenBank as ESTs) are in gold, and NGFs are in blue, with novel
exons colored red. cDNA sequences recently deposited in GenBank (post 1/1/05) and ignored in evaluating novelty are shown in purple. This cluster
of NGFs contributes 24 novel exons to a gene that spans >450 kb and consists of an estimated 66 exons. This gene appears to code for a novel axonemal
dynein heavy-chain polypeptide.

Figure 6. Whole-mount in situ hybridization for a zebrafish sequence
orthologous to ngf60, showing its expression pattern in the brain 48 h
past fertilization (hpf). For comparison, the expression pattern is also
shown for OTP, a homeobox transcription factor that was used as a
positive control because of its highly specific and well described expres-
sion profile (Eaton and Glasgow 2007). The expression patterns of the
two genes remain generally similar at 72 hpf (Supplemental material).
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rable to ours. However, the sequence data from this project has
not been made public, and therefore it is not reflected in the
public gene catalogs. Brzoska et al. (2006) did not use the newest
and most accurate comparative gene predictors, and partly for
this reason, they had a validation rate of only ∼12% (approxi-
mately half our rate). They also did not attempt to evaluate the
protein-coding potential of their novel genes. On the other hand,
they performed a large number of 5� and 3� rapid amplification of
cDNA ends (RACE) reactions, and were able to augment their
RT–PCR validated gene fragments (the equivalent of our NGFs)
with nearly 400 complete transcripts. Their project and ours, de-
spite different strengths and weaknesses, both demonstrate that
large-scale CED projects can produce significant numbers of
novel genes.

As a method for discovering novel exons, CED can be seen
as an alternative not only to EST sequencing, but to transcription
tiling arrays (Bertone et al. 2004; Cheng et al. 2005; Kapranov et
al. 2007) and techniques for identifying transcript ends such as
cap analysis of gene expression (CAGE) and oligo-capping (Carn-
inci et al. 2005; Kimura et al. 2006). In comparison with these
approaches, CED is generally more sensitive to rare transcripts
because of its targeted PCR amplification step. Indeed, only ∼10%
of our novel exons are reasonably well covered (�50% of bases)
by Affymetrix-transcribed fragments (transfrags) (Kapranov et al.
2007) from a typical cell line, and only ∼30% by a merged set of
transfrags from all cell lines (Supplemental Table S6). In addition,
because the targeted exons are selected by computational gene
finders, CED enriches strongly for protein-coding exons. Unlike
tiling arrays, it also captures splice junctions, allowing for more
precise definitions of exon boundaries and some information
about splice patterns. In addition, with careful primer design and
analysis of sequenced products, it is far more specific than arrays,
which suffer from the problem of cross-hybridization. On the
other hand, at least if used with comparative gene-finding meth-
ods, CED may miss some lineage-specific or fast-evolving genes.
Also, unlike methods such as CAGE, it has no built-in capacity
for identifying transcript ends.

An important question that still remains to be answered is
how far CED can be pushed in detecting novel genes. As shown
here, CED is most effective at identifying conserved genes that
have a strong evolutionary footprint, but a weak expression foot-
print (at least when mRNA samples are pooled across tissues and/
or developmental stages). In contrast, most cDNA-based methods
require strong expression, but do not require evolutionary con-
servation. There are almost certainly genes that are essentially
invisible to both types of methods—for example, lineage-
specific, fast-evolving, very short, or single-exon genes that are
expressed at low levels. Some of these genes may be detectable by
more sophisticated computational gene finders that can effec-
tively combine weak comparative and weak expression-based sig-
nals, perhaps along with chromatin state or other information.
Comparative gene finders would also benefit from richer evolu-
tionary models that allow for gene duplication, lineage-specific
gains and losses of genes, or changes across species in gene struc-
ture. Better gene predictors would allow our synteny and dupli-
cation filters to be relaxed, opening up heavily duplicated and
rearranged regions of the genome to CED. New computational
tools of this kind and/or new high-throughput methods for de-
tecting low-abundance transcripts will be needed before the re-
maining “dark matter” of the proteome can be characterized.

The number of human genes has been estimated to be about
20,000–25,000 (International Human Genome Sequencing Con-

sortium 2004). The major gene catalogs together currently con-
tain ∼24,500 genes, near the upper limit of this range, but a
recent comparative analysis of mammalian genomes (Clamp et
al. 2007) suggests that the number of well-supported genes is
only ∼20,500, closer to the lower limit of the estimated range (see
also Goodstadt and Ponting 2006). Our identification of 164–327
additional genes does not dramatically change the number of
human genes, and assuming Clamp et al.’s estimates are accurate,
it leaves the total number well below 21,000. Similarly, Brzoska et
al. (2006) provide evidence for, at most, hundreds of new human
genes (see also Lee et al. 2006). However, current high-
throughput approaches to gene discovery all have fundamental
limitations that cause whole classes of genes to be invisible to
them. In addition, no method is completely efficient at detecting
genes in its target class. For example, some well-conserved genes
were undoubtedly missed by our methods because of errors in
gene prediction, primer design, PCR, reverse transcription, se-
quencing, or alignment (although a precise estimate of the over-
all false-negative rate is quite difficult to obtain). Consequently,
while improved gene sets are giving more confident lower
bounds on the number of human genes, a tight upper bound is
much more difficult to establish.

Identifying novel genes tends to be the main focus of efforts
in gene discovery, but obtaining a complete representation of
each gene is equally important. Our results show that many
genes are only partially represented in the gene catalogs, by being
truncated at the 5� or 3� ends, by missing one or more internal
exons, or by being represented as separate genes despite strong
evidence that they are joined. Some of these genes are missing
dozens of exons. This evidence is consistent with recent studies
identifying many novel 5� extensions of known genes (Harrow et
al. 2006; Kimura et al. 2006; Denoeud et al. 2007). As full-length
clones, based in part on our NGFs, are produced by the MGC
pipeline, additional exons and exon boundaries will be identi-
fied, and it will become clearer which NGFs belong to the same
transcript. Standard protocols will allow the RefSeq and Ensembl
gene catalogs to be updated based on the MGC clones.

If gene completeness is followed to its logical conclusion,
however, alternative splicing and alternative promoters must be
considered, as well as more exotic phenomena such as tandem
chimerisms. At present, these issues are largely ignored by the
MGC, and are addressed in a simplified way by the major gene
catalogs. Even the GENCODE Consortium, which made an effort
to capture as many alternative transcripts as possible in its de-
tailed annotation of 1% of the human genome, simply enumer-
ated transcripts (and associated open reading frames) (Harrow et
al. 2006). Ideally, these resources would also have information
about tissue-, cell-, and developmental stage-specific distribu-
tions over transcripts, and perhaps would even have information
about the joint distributions for multiple transcripts.

Attempts to enrich the representation of genes will inevita-
bly bump up against the thorny question of what a gene is (Ger-
stein et al. 2007). However, it may be that the definition of the
gene will become less, rather than more important as more in-
formation becomes available about alternative transcripts. With
complete information about expression patterns, protein prod-
ucts, and functions at the transcript level, a “gene” becomes just
a label for a set of transcripts; the real information is in the
transcripts themselves. Similarly, as more becomes known about
transcript diversity, counts of genes become less interesting.
Therefore, it may be that “a complete representation of func-
tional transcripts” would be a more appropriate long-term goal
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than a “complete gene set.” In any case, it is clear that much
work remains to be done.

Methods

Selection of targets
Gene predictions were based on BLASTZ (Schwartz et al. 2003)
and MULTIZ (Blanchette et al. 2004) alignments of the July 2003
(hg16) and May 2004 (hg17) assemblies of the human genome
with the mouse (mm3/mm5), rat (rn3), and/or chicken (galGal2)
genome assemblies. Target selection occurred over a 2-yr period,
using various versions of the alignments and prediction pro-
grams and using post-processing filters that differed somewhat
by prediction source. However, in all cases, candidate genes were
required, at the time of selection, not to overlap the RefSeq
(Pruitt et al. 2005) or Vega (Ashurst et al. 2005) gene sets, genes
either already in the MGC, or genes in the MGC pipeline for
full-length cloning. In addition, preference was given to candi-
dates with little or no cDNA support, as defined by overlap in
genomic coordinates with alignments of public EST or mRNA
sequences. In some cases, additional filters were used to elimi-
nate likely pseudogenes, to avoid recent duplications, and to re-
quire conserved synteny between species. Predictions that did
not contain at least one intron between coding exons were re-
moved, and any predicted UTRs were ignored. The procedure for
target selection was designed to maximize the number of vali-
dated novel genes (exons), not to evaluate the (absolute or rela-
tive) performance of the gene predictors. See the Supplemental
material for further details.

RT–PCR and sequencing
PCR primers were designed for each candidate gene, such that
predicted amplicons would span at least one intron and would
have lengths of ∼500–800 bases. The number of exons spanned
by the amplicons ranged from two to 13, with a median of four.
Equal amounts of total RNA were pooled from 20 human tissues,
including adrenal gland, bone marrow, cerebellum, brain
(whole), fetal brain, fetal liver, heart, kidney, liver, lung, pla-
centa, prostate, salivary gland, skeletal muscle, spleen, testis, thy-
mus, thyroid gland, trachea, and uterus (Human Total RNA mas-
ter panel II, BD Biosciences Clontech). Pooled total RNA was
reverse transcribed using Superscript III reverse transcriptase with
Oligo dT primer according to the manufacturer’s instructions
(Invitrogen). Reverse transcription was followed by ‘touchdown’
PCR amplification (Don et al. 1991) using Phusion high-fidelity
DNA polymerase (New England Biolabs). PCR products were di-
rectly sequenced, and forward and reverse reads were assembled
into contigs, if possible, using Phrap (P. Green and B. Ewing,
unpubl.).

The resulting sequences (either assembled or unassembled)
were then aligned to the genome sequence using BLAT (Kent
2002) or Pairagon (Arumugam et al. 2006). For sequences aligned
with BLAT, est2genome was used to re-align cDNAs to BLAT-
extracted regions of the genome. Any sequence that formed a
high-quality alignment (>75% identity and >80% identity within
10 bases of splice sites) and revealed at least one intron with
canonical (GT-AG) donor and acceptor splice sites was con-
sidered a valid RST. Failure to produce a valid RST could occur
for various reasons, including failures of PCR amplification, se-
quencing, or alignment. Positive controls succeed at an aver-
age rate of 93%. All valid RSTs were submitted to GenBank as
ESTs. Due to mispriming, the best alignment of an RST to the
genome occasionally did not match the original targeted gene
prediction.

Alignment of cDNAs to genome sequence
EST and mRNA sequences available in GenBank as of June 1,
2007—including the RSTs—were aligned to the human genome
sequence (hg17) using BLAT. Each cDNA sequence with at least
one high-quality alignment (�25% coverage and �95% identity)
was assigned its best-matching position in the genome, plus any
secondary positions having high-quality alignments within 1%
identity of the best match. Any cDNAs without high-quality
alignments were discarded. RSTs assigned multiple genomic po-
sitions (usually because of a recent genomic duplication) were
excluded from subsequent analyses. (See Supplemental material)

Evaluation of hit rates
Each RT–PCR experiment was associated with one or more gene
predictions by mapping the PCR primer pair used in the experi-
ment to the genome with isPcr (J. Kent, unpubl.; http://
hgdownload.cse.ucsc.edu/downloads.html) and identifying
overlapping predictions. Success rates were evaluated for predic-
tion clusters as well as for individual predictions, because predic-
tions tend to overlap and some (such as those from Exoniphy) are
more fragmented than others. Prediction clusters correspond to
the connected components of a graph in which nodes represent
predictions, and an edge is present between two nodes if, and
only if, the corresponding predictions are both associated with
the same experiment. An experiment was considered a “hit” if it
produced a valid RST that had an unambiguous mapping to the
genome, a “miss” if it did not produce a valid RST, and otherwise
was ignored. A prediction cluster was considered a “hit” if any
associated experiment was a “hit,” and a “miss” if it had no
associated “hits” and at least one “miss.” Hit rates were calculated
as the number of hits divided by the number of hits and misses.
(See Supplemental material)

Definition of benchmark exons
Benchmark exons (BMEs) were derived from cDNAs aligned to
the genome with canonical (GT-AG) flanking introns and an
unambiguous direction of transcription. Any internal cDNA
exon with canonical flanking introns defined an internal BME.
An initial exon with a flanking canonical intron defined an ini-
tial BME, provided no overlapping cDNA suggested additional
exons in the 5� direction, and provided no other initial exon with
the same 3� boundary extended farther in the 5� direction
(Supplemental Fig. S1). Terminal BMEs were defined in a sym-
metric manner. Because of uncertainty in the alignment of
cDNAs, two exon boundaries were considered “equal” if they
were within 2 bp of one another in genomic coordinates. (See
Supplemental material.)

Identification of novel exons and novel gene fragments
Novel exons were defined as BMEs having complete support from
RSTs, but at most, partial support from prior cDNA evidence.
RSTs that overlapped and had equal exon boundaries in their
region of overlap were merged (Fig. 1B). Novel gene fragments
(NGFs) were defined as merged RSTs that provided complete sup-
port for novel exons. To merge RSTs, overlapping exons were
merged, then all exons were concatenated together. Note that
this simple approach may inaccurately represent complex alter-
native splicing scenarios such as mutually exclusive exon incor-
poration.

To cluster together the NGFs that are likely to correspond to
the same transcript, the NGFs were combined with the N-SCAN,
Exoniphy, and TRANSMAP predictions, the latest human RefSeq
genes, human mappings of non-human RefSeq genes (as defined
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by the “Non-Human RefSeq Genes” track in the UCSC Browser),
and clusters of cDNAs from the PASA program (Haas et al. 2003).
These features were then clustered by same-stranded exonic over-
lap using the UCSC clusterGenes program (http://hgdownload.
cse.ucsc.edu/downloads.html). All non-NGF features were then
discarded. There were 563 remaining non-empty NGF clusters.

Methods for the analyses of protein-coding potential, func-
tional categories, and expression levels, and for the in situ hy-
bridization experiments, are provided in the Supplemental ma-
terial.
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