
A Fuzzy System for Helping Medical Diagnosis of Malformations
of Cortical Development

Silvia Alayón,
Department of Física Fundamental y Experimental, Electrónica y Sistemas, University of La Laguna,
Spain

Richard Robertson,
Department of Neuroradiology, Children's Hospital (Harvard Medical School), Boston (USA)

Simon K. Warfield, and
Department of Radiology, Brigham & Women's Hospital (Harvard Medical School), Boston (USA)

Juan Ruiz-Alzola
Department of Señales y Comunicaciones, University of Las Palmas de Gran Canaria, Spain

Abstract
Malformations of the cerebral cortex are recognized as a common cause of developmental delay,
neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical
malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral
gray matter and underlying white matter.

There is no automated system for aiding the observer in making the diagnosis of a cortical
malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The
system collects the available expert knowledge about cortical malformations and assists the medical
observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence
of the various factors that take part in the decision.

The evaluation of the system has been carried out by comparing the automated diagnostic algorithm
with known case examples of various malformations due to abnormal cortical organization. An
exhaustive evaluation of the system by comparison with published cases and a ROC analysis is
presented in the paper.
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1. Introduction
Malformations of the cerebral cortex are recognized as a major cause of neurologic
abnormalities in children and adults. It is clear that these malformations have a strong relation

Postal Address: Silvia Alayón Miranda, Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, University of La
Laguna, C/ Astrofísico Sánchez. Ed. de Física y Matemáticas, La Laguna, S/C de Tenerife, Spain. CP: 38200, e-mail: silvia@cyc.ull.es,
Phone: +34 922 31 82 83, Fax: +34 922 31 82 88.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2008 June 1.

Published in final edited form as:
J Biomed Inform. 2007 June ; 40(3): 221–235.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with epilepsy, developmental delay, neurological deficits and mental retardation [5,10,17,23,
29].

While clinical symptoms, past medical and family history are important in evaluating patients
with cortical malformations, neuroimaging findings, especially, those seen with Magnetic
Resonance Imaging (MRI), are the most common non-invasive means of arriving at a
diagnosis. Unfortunately, the diagnostic process is often not simple. The difficulties in
achieving an accurate diagnosis are due to a variety of factors including the existence of
numerous classification schemes for cortical malformations, frequent disagreement on
standard nomenclature even among specialists, and variability in the imaging features of the
different types of malformations. As a result, the diagnosis of a specific cortical malformation
is frequently based on a subjective interpretation of the neuroimaging findings. Clinically,
uncertaintities in diagnosis may lead to under-recognition of a cortical malformation as the
cause of a significant neurologic abnormality, thereby denying the patient potential treatment,
or over-interpretation of the neuroimaging studies resulting in medical intervention that may
be, at best, ineffective, or at worst, harmful.

Currently, there is no computerized system to help in this diagnostic problem. In this paper, a
system for assisting physicians in the diagnosis of malformations of cortical development is
proposed. The functions of this system are: first, to collect all the information that is usually
analyzed in these cases by the expert, second, to study the relations between the different
considered factors and the possible malformations, and third, to offer an automated diagnostic
aide. The proposed system utilizes fuzzy logic. Fuzzy logic is an extension of classical logic.
In some situations it is very difficult to use classical logic to model a system with the available
knowledge. Classical logic does not allow working with uncertainty in the information when
knowledge about the behaviour of the systems is imprecise.

One of the most important areas of application of fuzzy set theory as developed by Zadeh
[35] is Fuzzy Rule-Based System (FRBS). These fuzzy logic systems constitute an extension
of the classical rule-based systems, because they deal with “if-then” rules whose antecedents
and consequences are composed of fuzzy logic statements, instead of classical logic ones.

In a broad sense, an FRBS is a rule-based system where fuzzy logic is used as a tool for
representing different forms of knowledge about a problem, as well as for modelling the
interactions and relationships that exist between its variables. Due to this property, fuzzy logic
principles have been successfully applied to a wide range of problems in different domains for
which uncertainty and vagueness emerge in varying ways. Fuzzy modelling [25], fuzzy control
[12] and fuzzy classification [11] are the most common applications.

Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the
imprecision intrinsic to many medical problems. For example, FRBSs have been applied in
the classification of benign and malignant nuclei in cytological images [2,13], diagnosis of
myocardial infarction [14], medical data analysis [32], fuzzy control of anaesthesia [21], and
others. The impact fuzzy set theory has had on the work in medical AI is investigated in [1,
19,30].

Fuzzy sets have been recognized most for their ability to introduce notions of continuity into
deductive thinking. Because it is continuous, the behavior of fuzzy systems is likely to be closer
to medical reality than the behaviour of the classical systems. At the same time, fuzzy sets
allow to use symbolic models. Fuzzy sets can bridge the gap between the discrete world of
reasoning and the continuity of reality. In [30] this appears to be the main reason why they are
considered useful. The “if-then” rules of the proposed RFBSs for helping diagnosis of
malformations of the cortical development were derived from the input of a pediatric
neuroradiologist experienced in the diagnosis of cortical malformations using MRI.
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The paper is organized as follows: description of the diagnostic problem, an introduction to
the principles of fuzzy logic and FRBSs, description of the proposed system for helping with
this medical diagnostic problem, implementation of the system, results of the evaluation of the
system, and finally, our conclusions.

2. Problem description
2.1. Classification of the malformations of cortical development

Although there is disagreement in the literature as regards the classification and nomenclature
of malformations of the cerebral cortex [24,16,6,18], in this work we have followed the
classification proposed by Barkovich et al [4]. In this scheme, abnormalities of cortical
development are considered to have their onset during one of three fundamental embryologic
events of cortical formation:

1. Cellular proliferation in the germinal zones.

2. Migration of cells to developing cerebral cortex.

3. Vertical and horizontal organization of cells within the cortex.

Therefore, malformations of the cortical development are mainly classified in the following
three categories:

1. Malformations due to an abnormal neuronal proliferation.

2. Malformations due to an abnormal neuronal migration.

3. Malformations due to an abnormal cortical organization.

Within each of these categories, hierarchical subsets of cortical malformations are recognized.
As illustrated by category 3, malformations of cortical organization, there are two main subsets:
generalized malformations and focal or multifocal malformations (table 1). Within each
subset are a number of specific pathologic entities (i.e. polymicrogyria, schizencephaly,
cortical dysplasia and microdysgenesis).

2.2. Objective of the proposed system for helping diagnosis
The system as designed is used for helping in the diagnosis of malformations due to abnormal
cortical organization (Barkovich et al, category three, see table 1). In addition to the
malformations presented in table 1, primary porencephaly is also considered (see section 3.2.2).

3. Description of the proposed fuzzy system
3.1. Principles of Fuzzy Logic and FRBSs

It is impossible to cover all aspects of current developments in the field of the fuzzy logic. The
aim of this section is to provide a summary of its basic concepts. A more complete summary
can be found in [15].

The concept of fuzzy logic was first introduced by Zadeh in 1965 [35]. Fuzzy logic was
proposed as an extension of classical logic. A classical logic set is a set with a crisp boundary.
In contrast, a fuzzy set is a set without a crisp boundary. The transition from “belonging to a
set” to “not belonging to a set” is gradual, and this smooth transition is characterized by
membership functions that give fuzzy sets flexibility in modelling linguistic expressions.

For example, if X is a collection of objects denoted generically by x, then a fuzzy set A in X is
defined as a set of ordered pairs:
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A = {(x, μA(x)) ∣ x ∈ X } (1)

where μA(x) is called the membership function (MF) for the fuzzy set A. The MF maps each
element of X to a membership grade between 0 and 1.

The central idea of the fuzzy logic is to model the imprecise aspects of the behaviour of the
system through fuzzy sets and fuzzy rules. System variables are defined as linguistic
variables and their possible values are linguistic terms (expressed as fuzzy sets). Fuzzy sets
are used to represent linguistic variables. For example, if the temperature is a linguistic variable,
its possible values could be {very cold, cold, medium, warm, hot, very hot}. These terms are
called linguistic terms and each one is characterized by a fuzzy set. A possible interpretation
of the linguistic variable “temperature” and its linguistic terms is shown in figure 1. In this
example each linguistic term is represented by different fuzzy sets.

A fuzzy if-then rule has the form:

if x is A then y is B (2)

where A1, A2,.. and B are linguistic values defined by fuzzy sets on universes of discourse X
and Y respectively. Often “x is A” is called the antecedent while “y is B” is called the
consequent. An example of fuzzy if-then rule could be: “if the pressure is high, then the volume
is small”. We can employ fuzzy if-then rules to model and analyse a system. First we have to
formalize what is meant by the expression “if x is A then y is B”, which is sometimes abbreviated
as A → B.

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure that derives
conclusions from a set of fuzzy if-then rules and known facts. The basic rule of inference in
traditional two-valued logic is modus ponens, according to which we can infer the truth of a
proposition B from the truth of A and the implication A → B. This concept is illustrated as
follows:

Premise 1 (fact): x is A
Premise 2 (rule): if x is A then y is B

Consequence (conclusion): y is B

However, in much of human reasoning, modus ponens is employed in an approximate manner.
This is written as:

Premise 1 (fact): x is A’
Premise 2 (rule): if x is A then y is B

Consequence (conclusion): y is B’

where A’ is close to A and B’ is close to B. When A, B, A’ and B’ are fuzzy sets the foregoing
inference procedure is called approximate reasoning or fuzzy reasoning. It is also called
generalized modus ponens (GMP), since it has modus ponens as a special case.

In this work fuzzy implications are carried out with Mamdani’s fuzzy implication and the max-
min composition rule. In figure 2, this process is explained on a rule with two antecedents and
one consequent. First we find the degree of match w1 as the maximum of the intersection of
the membership functions that represent A (rule) and A’ (fact), μA ∧μA′ (x) (the shaded area in
the antecedent part between A and A’ in figure 2). We repeat the same procedure for B and
B’ (the second antecedent of the rule) to obtain the second degree of match w2. The MF of the
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resulting consequence C’ is the shaded area in the consequent part (see figure 2), obtained with
the lowest degree of match. Intuitively, w represents a measure of degree of belief for the
antecedent part of a rule.

The interpretation of multiple rules is usually taken as the union of the fuzzy relations
corresponding to the fuzzy rules, as shown in figure 3. The final consequence is the union of
the obtained consequences for each rule.

The fuzzy inference system is a computing framework based on the concepts of fuzzy set theory,
fuzzy if-then rules and fuzzy reasoning. The basic structure of a fuzzy inference system consists
of three conceptual components: a rule base, which contains a selection of fuzzy rules, a
database, which defines the membership functions used in the fuzzy rules, and a reasoning
mechanism, which perfoms the inference procedure (usually the fuzzy reasoning). The basic
fuzzy inference system can take either fuzzy inputs or crisp inputs (which are viewed as fuzzy
singletons), but the outputs it produces are fuzzy sets. Sometimes it is necessary to have a crisp
output. Therefore, we need a method of defuzzification to extract the crisp value that best
represents the resulting fuzzy set. In this work we have calculated the centroid of the area of
the output fuzzy set. A fuzzy inference system with a crisp output (centroid of the area) is
shown in figure 3. This kind of fuzzy system is called Mamdani fuzzy systems [20].

3.2. Design of the proposed FRBS
In this paper, a FRBS for assisting physicians in the diagnosis of malformations of cortical
development is proposed. The functions of this system are: first, to collect all the information
that is usually analyzed in these cases by the expert, second, to study the relations between the
different considered factors and the possible malformations, and third, to offer an automated
diagnostic aide. Rule-based systems have been successfully used to model human problem-
solving activity and adaptive behaviour, where the classical way to represent human knowledge
is the use of “if-then” rules. The fulfilment of the rule antecedent gives rise to the execution
of the consequent. Conventional approaches to knowledge representation are based on bivalent
logic, which is associated with a serious shortcoming: their inability to deal with the issue of
uncertainty and imprecision. As a consequence, conventional approaches do not provide an
adequate model for this mode of reasoning familiar to humans.

The general design of a FRBS includes:

1. Construction of the data base: the data base contains the linguistic term sets
considered in the linguistic rules and the membership functions defining the semantics
of the linguistic labels.

2. Construction of the rule base: collection of linguistic rules that model the problem.

3. Election of the fuzzy inference system.

There are several ways to design a FRBS:

1. Derivation from experts. In this first method, the composition of the data base and the
rule base is made by means of the expert information available.

2. Derivation from automatic learning methods based on the existing numerical
information. Due to the difficulties associated with the derivation of the data base and
the rule base from experts, researchers developed inductive learning methods over
the last few years for the different types of FRBSs. These design techniques are
diverse. A complete summary can be found in [9].

In this research work, a neuroimaging specialist specified the linguistic labels associated to
each linguistic variable, the structure of the rules and the meaning of each label. Linguistic
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variables represent the different factors that take part in the diagnostic problem (antecedents
of the rules) and the possible malformations associated with the appearance of these factors
(consequents of the rules). The fuzzy inference system selected was the Mamdani method
[20]. In the next subsections, a complete description of the defined linguistic variables for
antecedents and consequents is shown.

3.2.1 Rule antecedents—Four categories of factors have been considered for the
construction of the antecedents:

1. Localization of the lesion.

2. Visual characteristics (MRI characteristics).

3. Symptoms.

4. Past medical/family history.

Each category is composed of a high number of linguistic variables, as shown in tables 2, 3, 4
and 5. These linguistic variables have been defined by the neuroimaging specialist. Rule
antecedents have been constructed with different combinations of these variables.

The first category (“Localization of the lesion”) has 3 linguistic variables, the second one
(“Visual characteristics”) adds 14 variables, the third one (“Symptoms”) adds 12 variables and
the last one (“Past medical/family history”) has 7 variables. Therefore, there are 36 linguistic
variables and 78 linguistic labels related to the rule antecedents in the data base. Membership
functions used are Gaussian functions.

3.2.2 Rule consequents—The consequences of the rules are the system outputs: the
“probability” (i.e., how likely it is) of suffering the studied abnormalities. The terms
“probability of suffering …” are the linguistic variables for the system output. Note that the
term probability does not correspond to the usual meaning. In our context, this term is only a
linguistic variable that represents an intuitive measure of how close the patient is of suffering
any considered cortical malformation. Rule consequents are shown in table 6.

Therefore, there are 9 linguistic variables and 27 linguistic labels related to the rule consequents
in the data base. Membership functions used are Gaussian functions.

3.2.3 Rule base design—The rule base design (construction and adjustment) has been
developed with the direct supervision of a pediatric neuroradiologist. The expert knowledge
available has been represented with 47 fuzzy rules. A rule example is presented in figure 4. In
this example, only three possible antecedents and all the consequents are considered for the
rule construction.

3.2.4 Design of the fuzzy inference systems—The total FRBS is composed of four
subsystems. The fuzzy inference systems are Mamdani fuzzy systems [20]. Each subsystem is
independent and extracts the conclusions from each one of the four considered categories of
antecedents. Therefore, we have a different fuzzy system for the localization of the lesion, the
visual characteristics, the symptoms of the patient and the past medical/family history of the
patient.

There are several reasons to divide the global system in four subsystems:

1. This strategy facilitates the construction of the rules: if the information is divided in
four categories the rules can also be divided in four categories. The number of
antecedents to handle is lower and the structure of the rules can be simpler.
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2. The relations between the variables can be better studied and the rule base is more
interpretable.

3. This strategy simulates the human reasoning. Before making diagnosis, the human
expert analyzes first these four categories of information separately.

4. This scheme provides additional flexibility to the final system and to the user since
the neuroradiologist may not always have information about all the categories that
are represented in the system. For example, it could happen that only the MRI or the
past medical/family history are available. The system can be used in a partial way
with this scheme.

Each subsystem contributes to the final consequence (probability of having a specific type of
malformation) with a partial score. These partial scores are combined for obtaining the total
score between 0 –100. If any subsystem is not used (there is no available information about
that category), the final score is obtained by combining the partial scores of the used
subsystems, therefore, the final score would be lower.

Not all the subsystems have the same significance. For example, for a given malformation, the
information related to the visual characteristics of the lesion extracted from MRI may be more
specific with regard to the type of cortical anomaly than the clinical symptoms. Therefore, the
final system output (final score) is a weighted combination of the subsystems outputs (partial
scores), where the output of the subsystem “Visual characteristics” carries more weight. This
interaction between the four subsystems has been designed in close collaboration with the
neuroradiologist. We have adjusted the weights in order to represent his expert reasoning.

4. Implementation of the proposed fuzzy system for assisting in medical
diagnosis

The system has been implemented using Matlab [22]. If any researcher is interested in knowing
more details about this software, please contact the first author.

In order to make the system more comprehensible and useful for the neuroradiologist, a visual
interface was developed. This visual interface allows the user the direct utilization of the
system. The interface was programmed with the tool GUIDE of Matlab.

Through this visual interface, the users can:

1. Input all of the information available about the problem.

2. Give a subjective valuation of each input variable.

3. Analyse the relationship between different input factors and how different
combinations of input factors can modify the output of the system (probability of
having a cortical malformation).

4. Obtain the probability of having any considered malformation (diagnostic).

The main window of the visual interface is shown in figure 5. It is composed of two different
zones: the upper zone shows the four categories of input variables and the lowest zone shows
the output variables (system diagnostic: probability of having the considered malformation).

The user can load an evaluated case, in order to consult or modify it, and create a new evaluation
(study of a new case). The four input modules are independent (i.e. they can be used all at the
same time or individually), however, the system result is more reliable as additional
information is introduced and more modules are used together to obtain the final diagnosis.
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There are different windows to input the information in each category. These secondary
windows are shown in figure 6. The user introduces his subjective valuation of each variable
with a numeric qualification: between 0–10. With this number, the user can indicate if the
particular input factor has more or less weight in the analysed information.

5. Evaluation of the proposed fuzzy system for helping medical diagnosis
The first evaluation of the system was carried out by comparing the automated diagnostic
algorithm with known case examples of various malformations due to abnormal cortical
organization. As result of this evaluation, some adjustments in the rules were developed in
order to improve the efficiency of the system. A pediatric neuroradiologist has collaborated in
this evaluation process. A more exhaustive evaluation of the system by comparison with
published cases was subsequently performed. We have selected two studies [5,23] to test the
system in similar clinical cases. These studies have been selected so that each one provides
different types and amounts of information. This fact is important because we have two main
purposes in this evaluation stage:

1. Evaluate the system response (how accurate it is).

2. Analyze the weight of the different subsystems that composed the final system. As
more information is introduced to the system, the diagnostic accuracy of the system
improves, because more subsystems and more variables can be used.

5.1. First study
The first selected study is [23]. In this study, 6 patients with Bilateral Symmetrical Perisylvian
Polymicrogyria (BSPe-PMG) were reported.

The available information in that study includes age, sex, epilepsy, tongue and lip movements,
finger movements, intellectual capacity, the location of the lesion and
magnetoencephalographic (MEG) data for every patient. Our system cannot use all this
information (i.e., age, sex and MEG data is not considered in the rules of the system). The
information that can be used is presented in table 7. It is shown that the available information
to test our system (extracted from [23]) can be classified in two categories used by our system:
‘Localization of the lesion’ and ‘Symptoms’.

In [23], the diagnostic of these 6 patients was Symmetrical Perisylvian Polymicrogyria (BSPe-
PMG). We used the information of table 7 to test our system and obtain a diagnostic that could
be compared with the one presented in [23].

In this case it is not possible to use the four subsystems of the total system because there is not
enough information. But this fact does not represent a problem in using the system, because
the program can be used in a partial way (see section 3.2.4). Using two subsystems
(‘Localization of the lesion’ and ‘Symptoms’), we obtained different probabilities of having
the considered malformations. We must remember that the terms “probability of having …”
are the linguistic variables for the system output. The term probability means how likely it is
(see explanation in section 3.2.2).

We obtained a probability between 33–39% of having bilateral perisylvian cortical
malformation for all the patients, and these probabilities are the highest ones (see table 8).

In this test, there is not enough information for the system to offer higher probabilities, and
the subsystem ‘Visual characteristics’, that has more weight in the decision (see section 3.2.4)
is not used (there is no available information related to imaging features in the study). The
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system output could be improved with the inclusion of more information. This aspect is
analyzed in the next section.

5.2. Second study
In a separate study presented in [5], 21 patients diagnosed with Bilateral Symmetric
Polymicrogyria were presented. The available information in that study includes sex/age at
most recent examination, the location of the lesion, seizures/EEG results and different
neurologic findings. Similar to the first study, not all of the available factors in [5] are
considered in our system. The information that can be used in this case is presented in table 9.
It is shown that the available information to test our system (extracted from [5]) can be classified
in three categories used by our system: ‘Localization of the lesion’, ‘Visual characteristics’
and ‘Symptoms’.

The diagnostic presented in [5] of these 21 patients is shown in table 10. We used the
information of table 9 to test our system and obtain a diagnostic that can be compared with the
one presented in [5] (see table 10).

Using our system gave a probability of between 75–82% of having bilateral symmetric
polymicrogyria in different cerebral regions (see table 11). In this case, the study provides more
information and the results obtained with our system are considerably better. Moreover, three
subsystems (instead of two, as in previous example) are collaborating in this case to offer the
final probabilities of having the different malformations.

The system results shown in table 11 are consisted with the published results in [5] (see table
10). The system response is highly dependent on the amount of available information. Because
of this, the results are better for analysis of the study population in [5] than for that presented
in [23].

5.3. System evaluation with ROC curves
It is important to evaluate our system from a medical point of view, specifically with an
orientation to the diagnosis. ROC (Receiver Operating Characteristic) analysis, a methodology
developed in Decision Theory in the 50’s and applied to the biomedical ambit [28,31], is the
framework for this study, where the diagnostic exactitude is measured in terms of sensitivity
and specificity. ROC analysis is carried out through the construction of ROC curves, graphical
representations of pairs (1-specificity, sensitivity) corresponding to different test cut values.

Test exactitude increases if the curve goes from diagonal to higher left vertex. An ideal
classifier (100 % sensitivity, 100 % specificity) would result in a curve passing through that
point.

We have used the obtained results in the second study (see section 5.2) to construct the ROC
curves for our diagnosis system. In this study, 21 patients diagnosed with Bilateral Symmetric
Polymicrogyria (BS-PMG) were presented: six patients with Anterior BS-PMG, six patients
with Perisylvian BS-PMG and nine patients with Posterior BS-PMG. Pairs (1-specificity,
sensitivity) for each response of the system for these malformations are calculated using
different cut values.

The ROC curves obtained for the three cases are the same curve (see figures 7, 8 and 9). The
ROC curve shows the ideal behaviour of the system: the curve passes through the higher left
vertex. These ROC curves have been constructed with the data related to the output of the
system shown in table 11 (Anterior BS-PMG: third column, Perisylvian BS-PMG: fourth
column, and Posterior BS-PMG: fifth column).
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6. Conclusions
Malformations of the cerebral cortex are an important cause of epilepsy, developmental delay,
neurological deficits and mental retardation. Despite medical and imaging advances in recent
years, the accurate, non-invasive diagnosis of a specific type of malformation is often illusive.
The use of a fuzzy logic based, computer based diagnostic algorithm, as presented in this work,
seeks to improve the accuracy in the diagnosis of a subset of cortical malformations by
increasing the diagnostic confidence of the physician.

The proposed system allows one to:

1. Collect all the information that is usually analyzed in these cases by the clinician.

2. Study the relations between the different considered factors and the possible
malformations.

3. Offer an automated diagnostic tool.

The proposed system is a Fuzzy Rule-Based System (FRBS). A FRBS was proposed because
rule-based systems have been successfully used to model human problem-solving activity and
adaptive behaviour, where the classical way to represent human knowledge is the use of “if-
then” rules.

Machine learning techniques suiting computer-aided medical diagnosis should have good
comprehensibility, i.e. the transparency of diagnostic knowledge and the explanation ability.
In general, machine learning techniques can be categorized into two classes, that is, symbolic
or connectionist learning techniques. Symbolic learning techniques such as rule induction are
usually regarded as comprehensible techniques because the learned knowledge is expressed in
forms such as production rules that are easy to be understood by the user. On the other hand,
most connectionist learning techniques such as artificial neural networks are regarded as
incomprehensible techniques because the learned knowledge is concealed in a lot of
connections and is not transparent to the user.

For example, the neural network approach has proven useful for the development of artificial
intelligence systems in the medical domain [7,33]. However, a disadvantage with this approach
is that the knowledge embedded in the neural network is opaque. Fuzzy logic can model the
interactions and relationships that exist between different variables in a clearer way due to its
symbolic formulation.

Decision trees have proven to be a valuable tool for description, classification and
generalization of data. This is related to the compact and intelligible representation of the
learned classification function, and the availability of a large number of efficient algorithms
for their automated construction. A wealth of algorithms for the automatic construction of
decision trees can be traced back to the ancestors ID3 [26,27] or CART [8]. However, in many
practical applications, the data used are inherently of imprecise and subjective nature. In theses
cases, Fuzzy Logic performs better than decision trees.

The designed rules of the FRBS represent expert knowledge about the problem. Four categories
of information are considered in the system: localization of the lesion, visual characteristics
extracted from MRI, clinical symptoms and past medical/family history of the patient. The
total FRBS is composed of four subsystems. There is a different fuzzy system for the
localization of the lesion, the visual characteristics, the clinical symptoms and the past medical/
family history. This scheme provides additional flexibility to the final system in that it can be
used when only partial information is available.
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The output of the system is the probability of having any considered malformation. The term
probability does not correspond to the usual meaning. In our context, this term is only a
linguistic variable that represents an intuitive measure of how close the patient is of suffering
any considered cortical malformation. Each subsystem contributes to the probability of
having any malformation in a different way. Therefore, the final system output is a weighted
combination of the subsystems outputs, where the subsystem “Visual characteristics” carries
more weight. This scheme makes it possible to use the system when only partial information
is available.

In order to make the system accessible, a visual interface has been created. This interface allows
the medical specialist to more easily use the system.

The evaluation of the system has been extensive. The first evaluation of the system was carried
out by comparing the automated diagnostic algorithm with known cases. A pediatric
neuroradiologist has collaborated with us in this validation stage. As result of this evaluation,
some adjustments in the rules were developed in order to improve the efficiency of the system.

Subsequently, the system has been evaluated with data from published research studies related
to the same diagnostic problem, and a ROC evaluation has been also carried out. Analysing
these results, we conclude that the system offers a reliable aide to diagnosis when enough
information is provided. Results are better for the second study carried out (see section 5.2),
than for the first one (see section 5.1). More information about the patients was available in
the second study.

One disadvantage of the system is the high dependency of its response on the amount of
available information. When the available amount of information is high, the system response
is useful for making diagnosis, because the probabilities of having any malformation are
significant. When the available amount of information is not very high, these probabilities are
low; therefore the system response is not so reliable. In this case, the system could be used as
a screening tool.

The “if-then” rules of the proposed RFBSs for helping diagnosis of malformations of the
cortical development were derived from the input of a pediatric neuroradiologist experienced
in the diagnosis of cortical malformations using MRI. A fuzzy rule base design has two
important objectives. One is to achieve a good approximation. The other is to reduce the number
of rules. The main difficulty is that these two objectives are contradictory. Complexity
reduction is therefore becoming a pertinent research topic of fuzzy theory [3,34].

The rules have been formulated by the human expert and no study about the optimization of
this rule base has been carried out. This study can improve the system response. But this
reduction can also make worse the interpretability of the rules. The presented system is planned
to be used in teaching tasks due to its ability to show the relations between different factors
and how they can affect the resulting diagnosis. Therefore, the interpretability of the rules is
very important in our case.

In future research work, we will try to expand the system to the other two categories of
malformations of the cortex shown in [4]: malformations due to an abnormal neuronal
proliferation and malformations due to an abnormal neuronal migration.
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Figure 1.
Definition of the linguistic variable “temperature” and its linguistic terms (very cold, cold,
medium, warm, hot, very hot) expressed as different fuzzy sets (triangular and trapezoid
shaped).
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Figure 2.
Graphic interpretation of GMP using Mamdani’s fuzzy implication and the max-min
composition.
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Figure 3.
Fuzzy reasoning for multiple rules with multiple antecedents. Mamdani fuzzy system.
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Figure 4.
Rule example. The consequents are the probabilities of having G-PMG (Generalized
polymicrogyria), BSA-PMG (Bilateral symmetric anterior polymicrogyria), BSPe-PMG
(Bilateral symmetric perisylvian polymicrogyria), BSPo-PMG (Bilateral symmetric posterior
polymicrogyria), A-PMG (Asymmetric polymicrogiria), P (Porencephaly), CD (Cortical
Dysplasia), S (Schizencephaly), M (Microdysgenesis).
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Figure 5.
Main window of the visual interface of the proposed system for helping diagnosis.
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Figure 6.
Secondary windows: Localization of the lesion, Past medical/family history, Symptoms and
Visual characteristics.
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Figure 7.
Roc curve for the BSA-PMG data (third column of table 11).
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Figure 8.
Roc curve for the BSPe-PMG data (fourth column of table 11).
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Figure 9.
Roc curve for the BSPo-PMG data (fifth column of table 11).
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Table 1
Malformations due to an abnormal cortical organization (extracted from [4]).

A. Generalized 1. Polymicrogyria (PMG)
B. Focal or multifocal 1. Polymicrogyria/Schizencephaly a. Bilateral symmetric PMG

I. Bilateral anterior PMG

II. Bilateral perisylvian PMG

III. Bilateral posterior PMG

b. Asymmetric PMG

c. Schizencephaly and mixed schizencephaly/PMG
2. Focal or multifocal cortical dysplasia without
ballon cells
3. Microdysgenesis

J Biomed Inform. Author manuscript; available in PMC 2008 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Alayón et al. Page 24

Table 2
Localization of the lesion: rule antecedents.

LOCALIZATION OF THE LESION
Linguistic variable Linguistic label
1. Generalizad Yes / No
2. Bilateral Anterior / Perisylvian / Posterior
3. Unilateral Anterior / Perisylvian / Posterior
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Table 3
Visual characteristics: rule antecedents.

VISUAL CHARACTERISTICS
Linguistic variable Linguistic label
1. Number of cortical folds Excessive / normal
2. Boundary gray/white matter Fuzzy / sharp
3. Cortical folds depth Shallow / normal
4.Periventricular cysts
5. Ventriculomegaly

Yes / no
Severe / no

6. Abnormal cerebellum Yes / no
7. Abnormal corpus callosum Absent / intacto
8. Brainstem size Small / normal
9. Abnormal clefts Lined white matter/lined gray matter/ no
10. Calcification Yes / no
11. Abnormal signal whitematter Yes / no
12. Cortical folds wide Too wide / normal
13. Heterotopic neurons Yes / no
14. Microcephaly Yes / no
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Table 4
Symptoms: rule antecedents

SYMPTOMS
Linguistic variable Linguistic labels
1. Developmental delay Severe / no
2. Seizures Severe/moderate/no
3. Feeding difficulties Yes /no
4. Breathing difficulties Yes / no
5. Speech difficulties
6. Dysconjugate gaze

Severe/moderate/no
Yes / no

7. Muscular problems in face, throat, tongue and/or jaw Yes/no
8. Drooling Yes/no
9. Joint deformities (arthrogryposis) Yes/no
10. Delayed speech Yes/no
11. Weakness Complete/partial/no
12. Hypotonicity Yes/no
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Table 5
Past medical/family history: rule antecedents

PAST MEDICAL/FAMILY HISTORY
Linguistic variables Linguistic labels
1. Autosomal reccesive inheritence pattern Yes/no
2. Intra-uterine infections (e.g. cytomegalovirus) Yes/no
3. Problems with in utero-placental perfusion Yes/no
4. Twin-twin transfusion syndrome Yes/no
5. Degenerative disordes of the central nervious system (e.g. Zellweger) Yes/no
6. Development disorders (e.g. Aicardi) Yes/no
7. Other problems during pregnancy Yes/no
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Table 6
System output: rule consequents

SYSTEM OUTPUT
Linguistic variables Linguistic labels
1. Probability of having Generalized polymicrogyria (G-PMG) No/low/high
2. Probability of having Bilateral symmetric anterior polymicrogyria (BSA-PMG) No/low/high
3. Probability of having Bilateral symmetric perisylvian polymicrogyria (BSPe-PMG)) No/low/high
4. Probability of having Bilateral symmetric posterior polymicrogyria (BSPo-PMG) No/low/high
5. Probability of having Asymmetric polymicrogyria (A-PMG) No/low/high
6. Probability of having Porencephaly (P) No/low/high
7. Probability of having Scizencephaly (S)
8. Probability of having Cortical Dysplasia without balloon cells (CD)

No/low/high
No/low/high

9. Probability of having Microdysgenesis (M) No/low/high
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Table 7
Available information to test our system extracted from [14].

Patient Localization of the lesion Symptoms
Bilateral perisylvian Muscular problems in face, throat, tongue and/or jaw Intellectual capacity Seizures

1 Yes Yes Borderline No
2 Yes Yes Normal No
3 Yes Yes Mild disability Yes
4 Yes Yes Normal Yes
5 Yes Yes Borderline No
6 Yes Yes Normal Yes
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Table 10
Diagnostic of the 21 patients (extracted from [3]). PMG – Polymicrogyria.

Patient Diagnostic
1 Bifrontal PMG
2 Bifrontal PMG
3 Bifrontal PMG
4 Bifrontal PMG
5 Bifrontal PMG
6
7

Bifrontal PMG
Bilateral Posterior PMG

8 Bilateral Posterior PMG
9 Bilateral Posterior PMG
10 Bilateral Posterior PMG
11 Bilateral Posterior PMG
12 Bilateral Posterior PMG
13 Bilateral Perisylvian PMG
14 Bilateral Perisylvian PMG
15 Bilateral Perisylvian PMG
16 Bilateral Posterior PMG
17 Bilateral Posterior PMG
18 Bilateral Perisylvian PMG
19 Bilateral Perisylvian PMG
20 Bilateral Posterior PMG
21 Bilateral Perisylvian PMG
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