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Abstract

The fractal exponents used to quantify the complexity of cranial sutures were computed for 17 coronal and 17

sagittal sutures of adults from different populations, using the box-counting algorithm. This paper discusses the

main sources of error for the fractal exponents, and gives the error estimates. We then compare our results with

those obtained by other authors. We suggest that the usual error estimates implied by the standard deviation

for the regression line are too low. We emphasize the crucial role played by the choice of regression line in

the log–log plot. For the coronal and sagittal sutures we found mean fractal dimensions of 1.48 and 1.56,

respectively. Our values are close to the value for Brownian random walk.
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Introduction

The coronal and sagittal sutures facilitate proper cranial

growth and expansion of the cerebral hemispheres. It

is well known that these sutures are a type of fibrous

joint in which the apposed bony surfaces are so closely

united by a thin layer of fibrous connective tissue that

only limited movement can occur. The coronal suture

extends across the skull between the two parietal

bones and the frontal bone. This enables elongation of

the cranial vault. The sagittal suture joins the right and

left parietal bones and facilitates transverse cranial

growth (Oudhof, 1982; Persson, 1995). The coronal and

sagittal sutures serve as the major growth centres and

articulate bones of the neurocranium (Opperman,

2000). The sutural morphology is strongly related to

the extra- and intracranial forces generated during

head growth (Moss, 1957).

Morphologically, these bony formations resemble

irregular curves, which may vary locally from nearly

straight lines to extremely convoluted sinusoids or even

loops. Visually, cranial sutures resemble fractal struc-

tures. In principle, any geometric object can be non-

fractal, monofractal or multifractal (Mandelbrot, 1983).

Fractal objects have the following property: parts of

the set – properly rescaled (magnified), and possibly

with different scaling factors in different directions (for

self-affine fractals) – are identical. They are perfectly

identical in the case of deterministic fractals. In the real

world we are more likely to encounter statistical frac-

tals, where the rescaled parts have the same statistical

properties as the whole object. In particular, cranial

sutures are statistical fractals. For statistical fractals,

determination of fractal dimensions is usually less accu-

rate than for deterministic fractals. Both deterministic

and statistical fractals can be either monofractals or

multifractals. Multifractal sets are more complicated;

they can be viewed as a superposition of many fractal

sets with different fractal dimensions, and they are

characterized by infinite multiplicity of generalized frac-

tal exponents. There is a very large diversity of mono-

fractals and it is possible to construct two monofractal

curves that differ far more than a multifractal curve dif-

fers from a monofractal curve. Hence, it is not possible

to distinguish between the two cases by visual inspec-

tion, and computational methods should be applied.

There have been several attempts to calculate the

fractal dimensions of cranial sutures (Tsonis & Tsonis,

Correspondence
 Dr Janusz Skrzat, Department of Anatomy, Collegium Medicum, 
Jagiellonian University, Kopernika 12, 31-034 Krakow, Poland. 
E: jskrzat@poczta.onet.pl

Accepted for publication 2 November 2005



Error estimation of fractal dimension measurements, A. Z. Górski and J. Skrzat

© 2006 The Authors
Journal compilation © 2006 Anatomical Society of Great Britain and Ireland

354

1987; Long & Long, 1992; Lynnerup & Jacobsen, 2003;

Skrzat & Walocha, 2003; Yu et al. 2003). However,

there are quite considerable discrepancies in the results

obtained by different authors, with the suggested

fractal dimension ranging from physically impossible

values below 1.0 up to the values above 1.6 (Lynnerup

& Jacobsen, 2003).

We suspect that one important factor in these differ-

ences is the use of ‘black box’ commercial software to

estimate fractal dimension. Therefore, the aim of this

study was to perform a careful analysis of the fractality

of cranial sutures using our own box-counting code,

paying more attention to fitting the regression line in

the log–log plot. We set out to determine whether the

cranial sutures are monofractal, multifractal or non-

fractal structures; we estimated the expected accuracy

of these calculations; and finally we estimated the frac-

tal dimensions of the coronal and sagittal sutures.

Materials and methods

We analysed the coronal and sagittal sutures of 17 adult

skulls (13 males, four females) from different popula-

tions. The cranial set that we investigated presents con-

siderable morphological variation caused by diversified

ethnicity. The skulls are stored at the Department of

Anatomy of Collegium Medicum of Jagiellonian Uni-

versity, Krakow, Poland.

All the sutures we examined, and their contours,

were clearly visible and undamaged (Fig. 1). The por-

tion of the coronal and sagittal suture that was visible

at the superior aspect of the cranial vault was photo-

graphed using a digital camera. The fractal dimension

was computed for one pixel line that was extracted

from the suture contours with the aid of graphics soft-

ware. The pixels were digitalized to two-dimensional

(2D) coordinates. We used our own dedicated box-

counting code instead of commercial software to

enable us to control the subtleties of the intermediate

steps. The generalized fractal dimensions were com-

puted applying the standard box-counting algorithm

to the digitized data. This gives the corresponding

points in the standard log–log plot. However, the

points used for the linear regression were chosen manu-

ally. For each suture we computed several neighbour-

ing fits, choosing the best one, in order to minimize

the χ2 parameter (a sum of the squared deviations

from the fit) and to minimize the influence of the

boundary conditions.

A fractal dimension of a curve is a non-integer number,

which in principle may vary between 1.0 (a smooth

curve) and 2.0 (extremely erratic data, e.g. white

noise). The Brownian random walk (BRW) has an inter-

mediate value fractal dimension equal to 1.5. Greater

fractal dimension values are usually related to higher

complexity of the underlying structures. Considering a

cranial suture as a fractal makes it possible to classify its

morphological structure and level of complexity based

on the value of its fractal dimension. We have assumed

that sutures are 2D objects, as the skull’s surface is

relatively smooth and the fractal dimension is invariant

with respect to smooth transformations. Hence, the

numerical data can be viewed as a local projection of

sutures to the tangent x–y-plane, and our initial

numerical data are sets of the coordinates (x, y). The

number of data points (ntot) in each set varies within

the interval 9 000–29 000, with the average of above

16 000. For 2D sets, this is not a very large number and

determination of the best fit for the log–log plot

should be performed very carefully.

The box-counting algorithm and its pitfalls

To determine the fractal properties of our data we used

the standard box-counting algorithm for sets embedded

in 2D planes. The box-counting algorithm successively

divides the data set into smaller and smaller squares

Fig. 1 The least and the most complicated coronal (a,b) and 
sagittal sutures (c,d) of the analysed cranial set.
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(the linear ratio is usually taken to be 1/2). This pro-

cedure is repeated N times. The number N should not

be too large, because for sufficiently small ‘boxes’

(squares) there is only one data point in each box and

the subsequent divisions give the same contribution

to the algorithm, leading to the fractal dimension

approaching zero (see the sum in Eq. 1 below). Hence,

if N is too large, it can give us unrealistically small

numbers. It is clear that this was the case for Lynnerup &

Jacobsen (2003), where the authors reported physically

impossible low fractal dimensions below 1.0. This result

is theoretically impossible for any curve. This effect can

be more subtle, leading to results that are apparently

more realistic but still too low. In addition, the largest

box (division N = 1), containing the whole set, also

gives the incorrect contribution to the fractal dimen-

sion. In the log–log plot this will always be the point

with coordinates (0,0), whatever data we take into

account. To summarize, for a good estimate of the

fractal dimension one must take into account divisions

at least of the order of Nmin > 1, and at most of the

order of Nmax. Nmax can be estimated by checking the

average number of data points per one non-empty

box. This number must be considerably greater than

one (Molteno, 1993; Górski, 2001). In addition, to call

the set a ‘fractal’, a good scaling should be apparent

within the range from Nmin to Nmax, i.e. an excellent

linear fit in the log–log plot.

To find a multifractal structure instead of a single

fractal dimension (d), an infinite set of fractal expo-

nents d(q) is used (they are also called the generalized

fractal dimensions). Mathematically they are defined

by the following formula (Hentschel & Procaccia, 1983;

Górski, 2001):

(1)

Here, N enumerates successive divisions of a plane into

squares (‘boxes’), i = i(N) counts the boxes for a given

division and pi(N) denotes the fraction of the data

points contained in the ith box (of a given division, N).

The numbers pi(N) can be interpreted as probabilities

of finding a data point in the ith box of the division N.

In principle, the parameter q can be any number from

minus to plus infinity. However, the most common

choices for q are 0, 1 and 2. They are called capacity,

information and correlation dimension, respectively.

By changing the parameter q one ‘scans’ the structure

of the multifractal. A large q gives more weight to

large probabilities pi(N), whereas a small q enhances

small probabilities pi(N). Therefore, for larger q-values

the dimension d(q) is more sensitive to noise, increas-

ing errors.

The quantities d(q) are extracted from the log–log

plot of N vs. ln Yq(N), where the latter quantity (see

Eq. 1) is defined as:

(2)

We compute d(q) from the slope of the regression line.

The exponents d(q) do exist if for a reasonable range of

successive divisions one can find a good linear fit in the

log–log plot (see Fig. 2). This implies good scaling prop-

erties and the fractal nature of our object.

For monofractal sets all the above exponents are

identical: d(q) = d = const. If one can find a good

scaling and different values for d(q), this set is termed

multifractal. For non-fractal objects a good linear fit

cannot be found at all, and the mathematical limit in

the formula for d(q) does not exist. Clearly, for practical

calculations we can use the above formula only for

N < Nmax, the infinite limit cannot be reached and the

fractal behaviour cannot be proven in the mathematical

sense. Usually in practical calculations several points
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Fig. 2 The log–log plots used to extract 
fractal dimensions of the coronal and 
sagittal sutures in the case of the six-
point fit. Fits for dq with q = 0, 1, 2 and 4 
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are taken into account, at best up to 8–10 points. The

upper limit is related to the number of data points

(ntot). In addition, for multifractals there is a mathe-

matical theorem that d(q) must be a monotonically

decreasing or a constant function. This is one of the

possible ways to check whether we are dealing with a

real fractal, or if the scaling is merely an artefact

(Górski, 2001).

In our computations we have processed the data for

34 sutures, calculating the generalized dimensions d(q)

for values of q = 0, 1, 2 and 4. Higher values of q are

more sensitive to the noise generated by technical

limitations. The value q = 4 has been used in an extra test

of the accuracy of our calculations. In addition, we have

found that the sample data do not meet the condition

of normal distribution and their variations are unequal.

Thus, a non-parametric Mann–Whitney test was applied

to verify null hypotheses, which states that complexi-

ties expressed by fractal dimensions of the coronal and

sagittal suture are equal. The statistical analysis was

performed using Statistica software (StatSoft, 2003).

Numerical results

Our calculations of the fractal dimensions of the coro-

nal and sagittal sutures show clearly that average

differences |d(0) − d(1)| and |d(1) − d(2)| for the coronal

and sagittal sutures are equal to about 0.01, which is

negligible in comparison with the estimated accuracy.

Hence, we have accepted that d(q) is constant. This

suggests a good monofractal scaling within the investig-

ated range (two orders of magnitude, Fig. 2). The

difference |d(2) − d(4)| calculated for all fits in the case

of coronal and sagittal sutures equals 0.02 and 0.07,

respectively. Thus, the coronal sutures seem to be less

‘noisy’. This effect is due partly to the data series, which

are about 15% longer for the sagittal sutures. It may

also result from better scaling of the coronal data

series. Because the calculations are increasingly more

sensitive to noise as q increases, this supports the view

that we have found good monofractal scaling.

To compute fractal exponents and its accuracy we

have performed several linear fits for each of the 34

sutures, taking into account different sets of points in

the log–log plot (see Fig. 2 as an example of the six-

point fit). The five-point fit to the log–log plot gives a

systematic difference in comparison with the six-point

fit, on average about +0.02 for the coronal and +0.08

for the sagittal sutures. This indicates that we are

approaching the boundary of scaling for the six-point

fit. We also have better scaling for the coronal sutures,

where the number of data points was higher. The other

choices of fitted points were definitely worse. Taking

into account points with N = 8 we approach the satu-

ration region, and the values obtained from the regres-

sion are considerably lower (due to the finite nature of

the sample, for large N and for any data, one obtains

a horizontal line and the regression implies values

approaching zero). This effect can be seen in Fig. 2,

where points with larger N tend to have a lower slope.

Our results support the proposition that coronal and

sagittal sutures have fractal properties, which should

be regarded as stochastic monofractal sets. Hence, the

linear scaling is visible in the range 1 : 26, i.e. for almost

three orders of magnitude. Similar conclusions can be

obtained independently by qualitative analysis of the

raw input data. The size of the whole suture is (in mag-

nitude) about 100 mm. By contrast, its finest details

that can be taken into account are definitely greater

than 0.1 mm. Hence, any reasonable scaling range

must be smaller than three orders of magnitude. This

implies the regression fit for about 5–6 points in the

log–log plot.

From this analysis the accuracy of our calculations for

d(q) can be safely estimated as being about ±0.05 or

better (i.e. about 3–4%). This was deduced from the

comparison of neighbouring regression lines. This is in

strong contrast to the standard deviation calculated for

the fits. The χ2 parameter (a sum of the squared devia-

tions from the fit) implies that the fractal dimension

accuracy is about ±0.01 and ±0.02 for the fractal dimen-

sion accuracy, for the coronal and sagittal sutures,

respectively. This shows that comparison of neighbour-

ing regression lines is a more reliable way of estimating

the accuracy of the box-counting algorithm. In addi-

tion, as was stressed in the previous section, we have

found that shifting the choice of fitted points in the

log–log plot (Fig. 2) by one or two points can consider-

ably change the final result. In our view, this is the most

delicate part of the procedure.

Similar conclusions concerning accuracy can be qual-

itatively obtained by analysing the length of the input

data series. For the Gaussian data the standard error

can usually be estimated as being of the order of 1/√(ntot),

where ntot is the total number of data points. For cra-

nial sutures this number is usually of the order of 104,

leading to an error estimate of the order of 1%. How-

ever, in this case, instead of a simple Gaussian distribution
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we have a complicated 2D geometrical structure. Hence,

we can expect a much larger error estimate, in qualita-

tive accordance with our results. The problem of error

estimates for fractal dimensions is very complicated,

and beyond the scope of this paper (Molteno, 1993;

Górski, 2001).

The averages of our results for the fractal dimensions

of coronal and sagittal sutures are compared in Table 1

and Fig. 3. The range of coronal suture complexity

overlaps with that of sagittal suture complexity. Sagit-

tal sutures have higher mean fractal dimension than

coronal sutures.

The computed result of the Mann–Whitney test

allowed us to reject the null hypothesis, which assumes

that the complexity of the coronal and sagittal sutures

is equal. Taking into account statistically significant

differences between sum ranks of fractal dimensions

(Table 2) and visual inspection of the sutures, we con-

clude that the analysed sutures are morphologically

distinct.

Discussion and conclusions

The fractal structure of a cranial suture is mainly due to

the spatial organization of minute bony projections,

which arise from the edges of the frontal and parietal

bones. Opposing edges of the frontal and parietal

bones meet within the suture, forming interdigitation

of various levels of complexity. Because the patterns of

the right and left coronal sutures (from bregma to

stephanion) are similar, we treated these parts together.

Thus, we obtained twice as many data points for the

fractal dimension estimates, and this increased its accu-

racy. The average number of data points was 17 963 for

coronal sutures and 15 667 for sagittal sutures.

Visual inspection of the coronal and sagittal sutures

reveals a non-uniform character of the suture inter-

digitation and various distributions of the bony projec-

tions along the course of the suture. There are segments

of the suture that only slightly resemble a sinusoid line,

whereas the rest of the suture can be extremely convo-

luted. This makes it difficult to score overall complexity

visually, and also to compare such irregular patterns of

different skulls. The fractal dimension is a good quan-

titative measure of sutural morphology.

We decided to test error estimates for computation

of fractal dimensions using coronal and sagittal sutures

because they are relatively long and distinct, and they

have fractal structure, which means that they yield an

adequate data set for numerical analysis. Because frac-

tal analysis of cranial sutures has already been under-

taken by other authors, we were able to compare our

results and analyse the discrepancies that appear in cal-

culations of fractal dimensions when the box-counting

algorithm is applied. According to Long & Long (1992),

intricate sagittal sutures show 2–3 orders of self-

similarity in a wavy line and yield fractal dimensions of

about 1.3–1.4. Our results, and our previous study on the

Table 1 Comparison of sutural complexity of the coronal and 
sagittal sutures expressed by fractal dimension
 

 

Suture Mean Min. Max. SD

Sagittal 1.56 1.43 1.63 0.060
Corona 1.48 1.30 1.64 0.105

 

Rank sum 
coronal

Rank sum 
sagittal U Z P

Z 
adjusted P

Valid N 
coronal 

Valid N 
sagittal

358 500 236 500 83 500 2101* 0.036* 2105* 0.035* 17 17

*Statistically significant.

Table 2 Result of Mann–Whitney test 
for the fractal dimension of coronal and 
sagittal sutures

Fig. 3 Box-and-whisker plot of the variation of the fractal 
dimension between coronal and sagittal sutures.
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complexity of sagittal sutures, confirm this observation

(Hartwig, 1991; Lynnerup & Jacobsen, 2003; Skrzat &

Walocha, 2003; Yu et al. 2003). Lynnerup & Jacobsen

(2003) found that mean fractal dimensions were relatively

low for coronal sutures (1.106 for female skulls, 1.118

for male skulls) and sagittal sutures (1.049 for female

skulls, 1.161 for male skulls). Our mean fractal dimen-

sions for these two types of sutures are significantly

higher (1.48 and 1.56 for coronal and sagittal sutures,

respectively, estimated for both sexes together). In our

view, these large differences may result from differ-

ences in the choice of points for the regression line

in the box-counting algorithm. Physically impossible

results (d < 1.0) reported by Lynnerup & Jacobsen

(2003) strongly support this hypothesis.

Detailed analysis shows that the cranial sutures are

geometrically monofractal objects with their fractal

dimension oscillating around 1.5. The key factor in frac-

tal analysis based on the box-counting algorithm is

the proper choice of points in the log–log plot for the

regression line. To calculate reliable fractal exponents

we repeated our calculations for each suture at least

three times, fitting the straight line for five, six and

seven points, respectively. In our opinion, the six-point

fit, as shown in Fig. 2, was the most reliable. The differ-

ence between those fits (about 3–4%) provides a good

accuracy estimate of our results. This is in contrast to

the relatively small standard deviation obtained for

each single fit. In our view this is the main cause of the

relatively large differences in the results obtained by

different authors. Our error estimate is quite close to

the standard deviation for fractal dimensions of the

whole set of different sutures.

The accuracy of the finest details of cranial sutures

can be measured within the range 0.1–0.5 mm. The size

of the whole sample is of the order of 100 mm. This

gives, at most, three orders of magnitude of theoretic-

ally possible scaling. Hence, the resulting maximum

number of fitted points in the log–log plot should be

well below 10 (210 = 1024 ∼ 103). This implies that the

expected acceptable scaling cannot extend much

above the range of about two orders of magnitude, as

in our study. In our case, the number of points in the

log–log plot that is within the reasonable linear scaling

range equals 5–7 (Fig. 2). As can be seen from the plot,

the saturation of scaling is clearly visible for N = 10.

Taking into account the points from N = 3 up to N = 9,

we have found that the results deviate considerably

from the case when the scaling exponents are calcul-

ated up to the N = 8 and N = 7 subdivisions. This is

consistent with the fact that, in the subdivision with

the factor 29 = 512, the details below 0.5 mm became

important. The best linear fit is reached with six points.

The χ2 parameter for d0 was below 0.05 in most cases.

Typically, it was much better for the coronal sutures (on

average 0.004 and 0.005 for six- and five-point fits,

respectively, leading to the expected ‘theoretical’ accu-

racy of dq below 0.01). For the sagittal sutures the

corresponding values are 0.05 and 0.02, which implies

uncertainty for d0 below 0.02.

By contrast, results for the mean fractal dimensions

of sagittal sutures estimated by Yu et al. (2003) were

1.29, and at the 95% confidence level they were

between 1.28 and 1.31. Their analysis was based on the

standard deviations for a given linear regression, and

the differences with the ‘neighbouring fits’ were not

calculated. These values may be due to the smoothness

of the sutures in their sample. In our view, however,

these results may also be so low because of problems

with the choice of fitted points.

In conclusion, we suggest that more careful and

extensive investigation of fractal exponents of sutures

is necessary, and that special attention should be paid

to the linear fits in the log–log plots. The error estim-

ates should also be done more carefully, taking into

account the neighbouring fits instead of the standard

deviation for a given regression line. In this context,

investigation of differences between different sexes,

ethnic groups, etc., seems to be premature. This also

applies to investigations of different parts of a single

suture. Here, the number of data points is much smaller

and the results are less reliable. The good news is that

according to our analysis the cranial sutures seem to be

monofractal, and that the computations are more reli-

able than for multifractals, where contributions from

different data subsets must be extracted. The precise

determination of fractal dimensions may also be important

for future models of suture formation.
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