Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Jun;171(6):3504–3510. doi: 10.1128/jb.171.6.3504-3510.1989

Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum.

M Del Gallo 1, M Negi 1, C A Neyra 1
PMCID: PMC210077  PMID: 2722757

Abstract

Extracellular polysaccharides synthesized by Azospirillum brasilense and A. lipoferum were shown on agar plates and liquid flocculating cultures. The six strains used in this work expressed a mucoid phenotype, yielding positive calcofluor fluorescence under UV light. The calcofluor-binding polysaccharides were distributed between the capsular and exopolysaccharide fractions, suggesting exocellular localization. No calcofluor fluorescence was observed in residual cells after separation of the capsular and exopolysaccharide fractions. Cellulose content was significantly higher in flocculating than in nonflocculating cultures. Failure to induce flocculation by addition of cellulose (100 mg/ml) to nonflocculating cultures, together with the sensitivity of flocs to cellulase digestion, suggested that cellulose is involved in maintenance of floc stability. Different A. brasilense and A. lipoferum strains bound to a wheat lectin (fluorescein isothiocyanate-wheat germ agglutinin), indicating the occurrence of specific sugar-bearing receptors for wheat germ agglutinin on the cell surface. The biochemical specificity of the reaction was shown by hapten inhibition with N-acetyl-D-glucosamine. All six strains failed to recognize fluorescein isothiocyanate-soybean seed lectin under our experimental conditions. We conclude that azospirilla produce exocellular polysaccharides with calcofluor- and lectin-binding properties.

Full text

PDF
3504

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bal A. K., Shantharam S., Ratnam S. Ultrastructure of Rhizobium japonicum in relation to its attachment to root hairs. J Bacteriol. 1978 Mar;133(3):1393–1400. doi: 10.1128/jb.133.3.1393-1400.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhuvaneswari T. V., Pueppke S. G., Bauer W. D. Role of lectins in plant-microorganism interactions: I. Binding of soybean lectin to rhizobia. Plant Physiol. 1977 Oct;60(4):486–491. doi: 10.1104/pp.60.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bleakley B. H., Gaskins M. H., Hubbell D. H., Zam S. G. Floc Formation by Azospirillum lipoferum Grown on Poly-beta-Hydroxybutyrate. Appl Environ Microbiol. 1988 Dec;54(12):2986–2995. doi: 10.1128/aem.54.12.2986-2995.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bohlool B. B., Schmidt E. L. Lectins: a possible basis for specificity in the Rhizobium--legume root nodule symbiosis. Science. 1974 Jul 19;185(4147):269–271. doi: 10.1126/science.185.4147.269. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw-Rouse J. J., Whatley M. H., Coplin D. L., Woods A., Sequeira L., Kelman A. Agglutination of Erwinia stewartii Strains with a Corn Agglutinin: Correlation with Extracellular Polysaccharide Production and Pathogenicity. Appl Environ Microbiol. 1981 Aug;42(2):344–350. doi: 10.1128/aem.42.2.344-350.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen E., Okon Y., Kigel J., Nur I., Henis Y. Increase in Dry Weight and Total Nitrogen Content in Zea mays and Setaria italica Associated with Nitrogen-fixing Azospirillum spp. Plant Physiol. 1980 Oct;66(4):746–749. doi: 10.1104/pp.66.4.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DUGUID J. P. The demonstration of bacterial capsules and slime. J Pathol Bacteriol. 1951 Oct;63(4):673–685. doi: 10.1002/path.1700630413. [DOI] [PubMed] [Google Scholar]
  8. Dazzo F. B., Brill W. J. Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J Bacteriol. 1979 Mar;137(3):1362–1373. doi: 10.1128/jb.137.3.1362-1373.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dazzo F. B., Napoli C. A., Hubbell D. H. Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl Environ Microbiol. 1976 Jul;32(1):166–171. doi: 10.1128/aem.32.1.166-171.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deinema M. H., Zevenhuizen L. P. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol. 1971;78(1):42–51. doi: 10.1007/BF00409087. [DOI] [PubMed] [Google Scholar]
  11. Dobereiner J., Marriel I. E., Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976 Oct;22(10):1464–1473. doi: 10.1139/m76-217. [DOI] [PubMed] [Google Scholar]
  12. Halverson L. J., Stacey G. Signal exchange in plant-microbe interactions. Microbiol Rev. 1986 Jun;50(2):193–225. doi: 10.1128/mr.50.2.193-225.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Michiels K. W., Vanderleyden J., Van Gool A. P., Signer E. R. Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. J Bacteriol. 1988 Nov;170(11):5401–5404. doi: 10.1128/jb.170.11.5401-5404.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mishkind M., Keegstra K., Palevitz B. A. Distribution of wheat germ agglutinin in young wheat plants. Plant Physiol. 1980 Nov;66(5):950–955. doi: 10.1104/pp.66.5.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mort A. J., Bauer W. D. Composition of the Capsular and Extracellular Polysaccharides of Rhizobium japonicum: CHANGES WITH CULTURE AGE AND CORRELATIONS WITH BINDING OF SOYBEAN SEED LECTIN TO THE BACTERIA . Plant Physiol. 1980 Jul;66(1):158–163. doi: 10.1104/pp.66.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Napoli C., Dazzo F., Hubbell D. Production of cellulose microfibrils by Rhizobium. Appl Microbiol. 1975 Jul;30(1):123–131. doi: 10.1128/am.30.1.123-131.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okon Y., Albrecht S. L., Burris R. H. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol. 1976 Sep;127(3):1248–1254. doi: 10.1128/jb.127.3.1248-1254.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sadasivan L., Neyra C. A. Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol. 1987 Apr;169(4):1670–1677. doi: 10.1128/jb.169.4.1670-1677.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sadasivan L., Neyra C. A. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol. 1985 Aug;163(2):716–723. doi: 10.1128/jb.163.2.716-723.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smit G., Kijne J. W., Lugtenberg B. J. Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol. 1987 Sep;169(9):4294–4301. doi: 10.1128/jb.169.9.4294-4301.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stacey G., Paau A. S., Brill W. J. Host recognition in the Rhizobium-soybean symbiosis. Plant Physiol. 1980 Oct;66(4):609–614. doi: 10.1104/pp.66.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Umali-Garcia M., Hubbell D. H., Gaskins M. H., Dazzo F. B. Association of azospirillum with grass roots. Appl Environ Microbiol. 1980 Jan;39(1):219–226. doi: 10.1128/aem.39.1.219-226.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Updegraff D. M. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969 Dec;32(3):420–424. doi: 10.1016/s0003-2697(69)80009-6. [DOI] [PubMed] [Google Scholar]
  25. Whitfield C. Bacterial extracellular polysaccharides. Can J Microbiol. 1988 Apr;34(4):415–420. doi: 10.1139/m88-073. [DOI] [PubMed] [Google Scholar]
  26. van Berkum P., Bohlool B. B. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol Rev. 1980 Sep;44(3):491–517. doi: 10.1128/mr.44.3.491-517.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES