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High-level expression of the TnlO tetracycline resistance protein TetA in Escherichia coli caused partial
collapse of the membrane potential, arrest of growth, and killing of the cells. Since a-methylglucoside transport
was not affected, the overproduced TetA protein may cause not destruction of membrane structure but rather
unrestricted translocation of protons and/or ions across the membrane.

Transposon TnWO mediates high-level tetracycline resis-
tance in Escherichia coli and other enteric bacteria (7, 12).
Two genes of the transposon-tetA, encoding the resistance
protein, and tetR, encoding a repressor-are involved in
tetracycline resistance. Both genes are tightly regulated at
the level of transcription by the tetR gene product (3, 4, 9,
11). Although the resistance mechanism is not fully under-
stood, the data available indicate that resistance is based on
TetA protein-mediated, energy-dependent export of the an-
tibiotic from the cytoplasm (14, 15). Its localization within
the bacterial cell inner membrane (13) is in agreement with
such a function. A surprising finding was that strains with
transposon TnWO located on a high-copy-number plasmid
exhibited lower levels of resistance to tetracycline than did
strains which carry the tet genes in a low-copy state (5, 6).
Moreover, this negative gene dosage effect was correlated
with overexpression of the tetA gene (16, 17).

Effects of TetA protein overproduction on growth and
viability. To achieve controlled overproduction of TetA
protein, the tetA gene of TnJO was cloned behind the tac
promoter on multicopy plasmid pCB258. Expression from
the tac promoter was controlled by the lac repressor en-
coded on the same plasmid. E. coli B strain CM12 (21) was
transformed with plasmids pCB258 and pFDX127 (the pa-
rental plasmid of pCB258 lacking tetA, derived from
pFDX104 [20]). Induction of tetA expression in
CM12(pCB258) with isopropyl-,-D-thiogalactopyranoside
(IPTG) resulted in a rapid decrease in growth rate and, upon
longer incubation, complete stoppage of growth (Fig. la).
Induction of tetA also stopped the increase of cell numbers
followed by a decrease in the number of viable cells (Fig.
lb). In the control culture, CM12(pFDX127), no effect of
induction of the tac promoter on growth rate or viability was
detected. Since the only difference between plasmids
pFDX127 and pCB258 was the presence of tetA on pCB258,
the lethal effect observed could be correlated with the
overproduction of TetA protein. Similar effects have previ-
ously been observed after overproduction of lactose per-
mease (18) and the membrane-bound ATP synthase of E. coli
(22).

Effect of TetA protein overproduction on membrane poten-
tial. The effect of induced overexpression of tetA on mem-
brane potential (Al) was tested by measuring uptake of the
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FIG. 1. Effects of overexpression of tetA on cell growth (a) and
viability (b). Strains CM12(pFDX127) (O and *) and CM12
(pCB258) (A and A) were grown in nutrient broth with 60 ,g of
ampicillin per ml. IPTG (5 mM) was added at the times indicated by
arrowheads. OD450, Optical density at 450 nm.

3557

a
a U

IPTG/ A, * A*
/ A

2',
r ,0/

11



3558 NOTES

TABLE 1. Effect of induced overproduction or TetA protein on
transport of proline and ot-methylglucoside

Substrate and plasmid Relative rate of transport"
carried by strain CM12 Without IPTG With IPTG

[3H]proline
pFDX127 100 100
pCB258 100 12

[`4Cka-methylglucoside
pFDX127 100 100
pCB258 100 85

' Cells were grown in nutrient broth with 60 ,ug of ampicillin per ml at 37°C.
For uptake assays (37°C), they were suspended in 100 mM potassium
phosphate buffer (pH 7.5) to an optical density of 0.5 at 450 nm. Three samples
were taken within the first 60 s after addition of [3Hlproline (2 ptM; specific
activity, 0.27 Ci/mmol) or [a-_4C]methylglucoside (0.4 mM; specific activity,
0.4 mCi/mmol). Cells were collected on membrane filters (Sartorius SMlll)
and washed twice with potassium phosphate buffer, and the radioactivity was
determined after drying. Initial uptake was calculated from three time points.
The transport rates of CM12(pFDX127) were set as 100%. The actual rates
were 26 pmol/2.5 x 108 cells and 2.4 nmol/2.5 x 108 cells for proline and
cs-methylglucoside, respectively.

radiolabeled lipophilic cation tetraphenylphosphonium
(TPP+). Exponentially growing cultures of CM12(pFDX127)
and CM12(pCB258), either uninduced or induced with IPTG
15 min before the uptake assay, were used (Fig. 2). TPP+
uptake by CM12(pFDX127) was not affected by addition of
IPTG, and the membrane potential, estimated by the Nernst
equation, was approximately -165 mV (assuming a cell
volume of 2.5 RI/mg [dry weight] [21]). Addition of the
uncoupler carbonyl cyanide m-chlorophenylhydrazone in-
duced quick release of the TPP+ accumulated by the cells.
This shows that TPP+ uptake is a direct reflection of the
energized state of the cells. Strain CM12(pCB258) exhibited

reduced TPP+ uptake even in the absence of IPTG, which
corresponded to a membrane potential of about -145 mV. In
cultures of CM12(pCB258) induced with IPTG for 15 min, a
drastic reduction in TPP+ uptake was observed and the
membrane potential was reduced to approximately -85 mV
(Fig. 2a). A kinetic analysis revealed that 4 to 5 min after
induction of tetA, TPP+ uptake had decreased drastically
(Fig. 2b). To analyze whether the decrease in the cell
membrane potential caused by the overproduced TetA pro-
tein was a consequence of the destruction of the inner
membrane, we measured the uptake of proline and x-
methylglucoside. Active transport of proline depends on the
proton motive force (10), of which Asp is the main component
at pHs of around 7.0. The rate of proline uptake was severely
decreased upon induction of TetA protein synthesis (Table
1). ao-Methylglucoside, which is taken up by the phospho-
enolpyruvate sugar phosphotransferase system (19), was
transported at similar rates by uninduced cells and cells
overproducing TetA (Table 1). Since ot-methylglucoside up-
take was essentially unaffected, destruction of the cell inner
membrane could be ruled out as an explanation for the
decrease in Aq, observed. Rather, the effect of excess TetA
protein on Ati appears to be similar to that observed after
addition of uncouplers, i.e., dissipation of ,&* by unrestricted
translocation of protons and/or ions across the membrane.
How can the observed effect of the overproduced TetA

protein be accounted for? According to current concepts,
TetA protein functions as a carrier for tetracycline in the
excretion of the antibiotic (which enters the cell presumably
by passive diffusion [1, 2]). This transport of tetracycline
was shown to be energy dependent (15) and may be driven
by a countertransport of protons. Two models could account
for the dissipating effect of TetA protein overproduction on
membrane potential. (i) Rapid synthesis of a high number of
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FIG. 2. (a) Effect of tetA overexpression on A/v. E. coli B strain CM12 harboring several mutations which result in increased permeability

(21) allowed TPP+ uptake measurements in the absence of EDTA treatment. Strains CM12(pFDX127) (O and U) and CM12(pCB258) (A and
A) were grown in nutrient broth with 60 jig of ampicillin per ml. [3H]TPP+ (specific activity, 25 mCi/mmol) uptake was determined at an
optical density of 0.3 at 450 nm. [3H]TPP+ was added to a final concentration of 5 ,uM, and culture samples were collected on GF/C membrane
filters at 0.5 and 1 min and at 1-min intervals thereafter. Overexpression of tetA was induced (5 mM IPTG) at 15 min before addition of
[3H]TTP+. At 6.5 min after TPP+ addition, the uncoupler (carbonyl cyanide mn-chlorophenylhydrazone (CCCP; 10 ,uM) was added. Open
symbols represent uninduced cultures, and closed symbols represent induced cultures. (b) Change in membrane potential after induction of
tetA. CM12(pCB258) was grown in nutrient broth supplemented with ampicillin (60 ,ug/ml). [3H]TPP+ uptake was measured at different times
before and after addition of IPTG (5 mM) (arrowhead). The amount of [3H]TPP+ accumulated by the cells was determined at 6 min after
addition of ['H]TPP+.
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TetA protein molecules may result in insertion of the protein
into the membrane in an abnormal conformation, which in
turn may lead to an ion channel or to translocation of protons
or ions in the absence of tetracycline. (ii) The observed effect
of overproduced TetA protein on Atp may be a consequence

of the absence of sufficient quantities of other cellular
components in the membrane. Such components, encoded
by the host chromosome, may be involved in TnIO-mediated
tetracycline resistance (8). Genetic analysis of mutants re-

sistant to overproduced TetA protein may provide insight
into the nature of the Ap-dissipating activity associated with
overproduced TetA protein.
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