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ABSTRACT The characterization of protein-folding ki-
netics with increasing chain length under various thermody-
namic conditions is addressed using the capillarity picture in
which distinct spatial regions of the protein are imagined to
be folded or trapped and separated by interfaces. The quan-
titative capillarity theory is based on the nucleation theory of
first-order transitions and the droplet analysis of glasses and
random magnets. The concepts of folding funnels and rugged
energy landscapes are shown to be applicable in the large size
limit just as for smaller proteins. An ideal asymptotic free-
energy profile as a function of a reaction coordinate measur-
ing progress down the funnel is shown to be quite broad. This
renders traditional transition state theory generally inappli-
cable but allows a diffusive picture with a transition-state
region to be used. The analysis unifies several scaling argu-
ments proposed earlier. The importance of f luctuational fine
structure both to the free-energy profile and to the glassy
dynamics is highlighted. The fluctuation effects lead to a very
broad trapping-time distribution. Considerations necessary
for understanding the crossover between the mean field and
capillarity pictures of the energy landscapes are discussed. A
variety of mechanisms that may roughen the interfaces and
may lead to a complex structure of the transition-state
ensemble are proposed.

Proteins can be thought of as mesoscopic systems; that is, they
are large in atomistic terms but are too small to be completely
analyzed by macroscopic reasoning alone. The energy land-
scape theory of protein folding describes folding kinetics
through a statistical characterization of the energies of differ-
ent conformations (1, 2). This makes a bridge with the theory
of phase transitions in disordered systems. The theory suggests
that rapidly foldable proteins have an energy landscape dom-
inated by a funnel to a large basin of attraction, the native state,
and many small rugged features that give rise to trapping in
local minima (3–5). Reliable folding requires the guiding
forces of the funnel to be strong enough to overcome the
entropy of the unfolded states. This must occur at a temper-
ature such that trapping (also favored at low temperature) is
not so strong that flow down the funnel is too slow. Much of
the qualitative content of this picture has been confirmed
through the computer simulation of small lattice models of
proteins (5–8). Quantitatively, the analytical theories of fold-
ing landscapes have often made use of mean field descriptions
that should be most accurate when the protein is small enough
that we can think of each rearranging subunit of the chain as
being able to interact with a fair fraction of the others at any
time (1, 2, 9–13). This is true of the smallest lattice models. If
the rearranging units are appropriately taken to be small
segments of helices rather than individual residues, it is also
true for the smallest globular proteins in nature, which have
about 70 residues (4).

This paper discusses how the folding dynamics of larger
proteins can be described in terms of funnels and landscapes
also in the opposite limit, where the protein is much larger than
the range of the interresidue forces and the local correlations.
In this limit we can define an interface or front between the
folded and unfolded parts of a protein. Similar fronts, which
are relatively free to move, exist between segments of the chain
that are trapped in incommensurate misfolded configurations.
To obtain a complete picture of the problem, these two aspects
must be combined. The resulting capillarity model seeks to
address the asymptotic behavior of folding kinetics with in-
creasing protein size. As for the funneled aspects of the
landscape, the capillarity picture is just like that of a first-order
phase transition in a cluster. Regarding the rugged features of
the landscape, the capillarity picture of the energy landscape
is based on the droplet model of glasses, spin glasses, and
random ferromagnets (14–19). For at least a decade, despite
many simulation studies and much analysis, it has remained
controversial at what size, if any, such disordered systems
exhibit a crossover from the mean field behavior to the one
envisioned by droplet arguments. Experiments on mesoscopic
spin glasses show features in common with both limits (20).
One apparent difference between the predictions of mean field
and droplet theories is the way kinetics changes with size. But
it is hard to convincingly debate this issue in the biophysical
context because natural proteins, being the result of evolution,
are not truly scaleable at the experimenter’s discretion. In-
stead, large proteins typically have identifiable domains. Al-
though the mean field theories of folding and trapping give
barriers scaling linearly with chain length, these barriers still
are predicted to be modest for proteins in the size range of a
typical naturally occurring domain (11). Weaker scaling with
chain length than mean field theory has already been suggested
several times (21–23). Finkelstein and Badredtinov (21) obtain
a barrier scaling like N2/3, using the capillarity picture in an
elegant way that, however, neglects ruggedness of the land-
scape. Thirumalai (22) focuses on the rugged features of the
landscape and uses the scaling theory for glasses (18, 19) to
obtain a barrier scaling as N1/2. Simulations of proteins selected
from a random pool to be fast folders or designed using the
minimal frustration principle suggest a logarithmic scaling of
the barrier height at the temperature of fastest folding but
linear scaling with N of slow-folding events at low temperature
(23). The general treatment here unifies these disparate
arguments and observations by highlighting the importance of
fluctuations and of how the barriers depend on thermody-
namic state as well as chain length. The treatment also
emphasizes that the dynamics in the capillarity picture is totally
consistent with the funneled landscape pictures used phenom-
enologically.

The organization of this paper is as follows: In the first
section the funneled aspects of the landscape are discussed
within the capillarity approximation. The similarity with the
kinetic description usually discussed via mean field theory is
made clear. In the next section the glassy landscape ruggedness
is discussed using an explicit capillarity-based picture gener-
alizing Thirumalai’s scaling arguments. These aspects are
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combined to discuss the ‘‘typical’’ behavior of folding times for
a large protein. The ‘‘fine structure’’ of the free-energy profile
and other fluctuation effects are discussed in the following
section. This analysis shows the delicacy required of computer
simulations addressing size scaling issues and why fluctuation
effects need to be considered in interpreting recent simula-
tions. Further questions raised, especially involving the cross-
over between the mean field and capillarity approximations to
the landscape, are discussed in the final section.

Capillarity Description of a Folding Funnel. Bryngelson and
Wolynes (9) examined folding barriers with capillarity ideas in
1990. Following classical nucleation theory for first-order
transitions, they wrote the free energy in terms of a progress
coordinate, the number of residues folded, Nf. Their expres-
sion contains a linear ‘‘bulk’’ term and an interfacial term
scaling like Nf

2y3:

F~Nf! 5 ~fF 2 fu!Nf 1 gNf
2y3 [1]

The bulk term depends on the free-energy difference per
particle Df between folded (fF) and unfolded (fu) protein; the
small value of Df 5 fF 2 fu under folding conditions reflects
the near cancellation of the entropy of unfolded state and the
stabilizing energy of the native structure. The ‘‘interface’’ term
g was taken to be largely energetic. Putting in the typical
stabilization of proteins under physiological conditions
(10kBT), they concluded that of the order '100 residues need
to be ordered at the folding transition state, a number com-
parable to a protein domain size. At this level, that a biopoly-
mer is being studied is largely immaterial and, in fact, nearly
the same description was used somewhat earlier by Reiss et al.
to describe mesoscopic cluster freezing transitions. In that
context they made an observation that is important for pro-
teins as well: the bulk transition temperature at which Df
vanishes does not coincide with the transition temperature of
the cluster TF. The temperature at which the two global
free-energy minima have the same free energy is depressed by
the surface contribution, as has long been known for the
boiling of drops (25). Following Reiss et al. (24), we can then
rewrite Eq. 1 by showing explicitly the temperature depen-
dence of the free energy referenced to the transition temper-
ature

Fid~Ñf! 5 ~ 2 g̃ 1 DH~T 2 TF!yTF!Ñf 1 g̃Ñf
2y3, [2]

where we have written g̃ 5 gN2/3 and scaled Nf by the chain
length N. At TF, this is a crudely universal form for the ‘‘ideal’’
free-energy profile since Fid(0) must equal Fid(1). The temper-
ature dependence of the stability depends on the enthalpy of
unfolding DH. In this expression we see the normalized folded
fraction Ñf 5 NfyN can be used as a progress coordinate for the
unfolding reaction here just as reaction coordinates high-
lighted in other theories of the funnel. The specific numeric
coefficients above (which are used for concreteness in this
paper) assume the protein or cluster is nearly spherical, so the
curvature of the front is equally limited by all dimensions of the
protein (see Fig. 1).

At TF the free-energy profile is a rather broad curve as
shown in Fig. 2. The maximum occurs at Nf

Þ 5 8⁄27 N. The
barrier can be ascribed to the interface term and is given by
DFÞ 5 4⁄27 gN2/3. This is the barrier scaling obtained by
Finkelstein and Badredtinov (21), using a more elaborate
treatment of the interface contributions and a more careful
treatment of the protein shape. These effects can be important;
for example, if the protein is cylindrical, the front will orient
orthogonal to the long axis and the barrier will not depend on
the total cylinder length, a case reminiscent of coiled coils such
as gcn4, where folding was recently studied (26).

The breadth of the free-energy profile has consequences for
the kinetic description and is reflected in the size of the transition

state region dNTST, defined as the range over which F(N) changes
by kBT. This range in the fractional progress co-
ordinate is dÑTST 5 =kBTy(d2Fyd2Ñ2). Using Eq. 2 at TF, the
number of residues displaced in moving over the transition region
is approximately dNTST > 2.=2y3N2y3 =kBTyg, showing the bar-
rier becomes broader in terms of displaced residues with increas-
ing chain length. An elementary move in folding dynamics is
thought to involve displacing a loop (27) whose length scales like
N1/3. Thus, crossing this region will take many elementary moves
and will be expected to be at least at the border of diffusive
behavior. Even in the small-size regime, Socci et al. (28) have
shown that, for the 27-mer lattice model, the diffusive dynamics
works quite well. Thus, we see at TF, the capillarity argument, like
that of the mean field, suggests that Ñf can be taken as a reaction
coordinate but must be treated as diffusive and traditional
transition state theory should not be used. The only difference
from the mean field funnel description is that capillarity theory
assumes most contacts made in the partially folded protein are
contiguous in physical space, whereas mean field estimates allow
them to spread out. The capillarity model, therefore, obtains a
different scaling of the thermodynamic barrier with chain length,
but the phenomenological analysis is unchanged. It is worth
noting that predictions of mean field barrier heights (11) at TF

FIG. 1. A schematic view, according to the capillarity picture of
structure of a protein (lysozyme is shown for illustration) once it is
advanced partially down the folding funnel. When several phases of the
protein are possible, they can lead to a rather complex interface, as
illustrated here. Thermal- and disorder-induced roughening of the
interfaces can smooth out the transition region seriously. The figure
shows several kinds of ordering that are possible: a region in which side
chains are completely ordered (blue), a transition zone with topolog-
ically correct folding but no side-chain order (red), a molten-
disordered phase (yellow), and the random coil (green). Having such
a gradual progression of phases can lower the activation energy but
broadens the interface between completely folded and unfolded
regions. The front is shown, for clarity, as progressing from one end
of the protein to the other. The most well ordered part may be buried
in the core, depending on the relative surface tensions between the
phases and the solvent.
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actually are smaller than Finkelstein’s (21) specific estimates for
barriers even for N ' 100, suggesting that the contiguous
configurations assumed by capillarity need not dominate in this
size range over a set of more diffuse arrangements of contacts
with greater diversity. Eventually as temperature decreases when
T ,, TF, the curvature of the fronts will be large and the barrier
to folding will be nearly independent of chain length. Polymeric
effects of chain connectivity should give a weak logarithmic
dependence on size for the purely thermodynamic barrier (22).

In using capillarity arguments we note there are two
reasons proteins may have quite a complicated structure for
the interface between ‘‘folded’’ and ‘‘unfolded’’ regions.
First, thermal f luctuations and heterogeneity of native con-
tacts roughen the interface. Indeed, because of the reduction
in the number of neighbors when going from three dimen-
sions to the two dimensions of the interface, the roughening
temperature of the interface could be quite a bit lower than
the folding transition (29). Another source of interfacial
width is the possible existence of what can be thought of as
multiple phases of the protein in bulk. Even when the
equilibrium unfolded state is expanded, a metastable com-
pact liquid or even liquid crystalline state, or one topolog-
ically correct without side chain ordering may exist and have
been theoretically suggested. Being intermediate in struc-
ture, these phases normally will partially wet the interface
between completely folded and unfolded states, as shown in
Fig. 1. This reduces the interface energy g and the thermo-
dynamic activation barrier. Thus, for instance, although in
the interior of the folding phase side chains may be ordered,
they need not be ordered in the interface. If the interface is
very rough and wide enough to be comparable to the
diameter of the protein, the capillarity picture will be
inappropriate, but one crosses over to a more mean field-like
description with contacts spread everywhere.

Because of the diffusive nature of the barrier crossing at TF,
the time for folding will involve both the thermodynamic
barrier DFÞ and the reconfiguration times, which themselves
can involve an activated barrier crossing. The description using

diffusive theory (2, 8) gives a simple dependence on the typical
reconfiguration time in the unfolded state, t0

RC:

t 5 t 0
RC~N,T!eDFÞykBT. [3]

In the case where T ,, TF, with its resulting ‘‘small’’ folding
nucleus, the free-energy profile will be sharper at the transi-
tion-state region, allowing the barrier crossing to be less
diffusive and more direct as in transition-state theory. If the
inherent thermodynamic barrier is small, however, the subse-
quent growth of the folded region for a large enough protein
can be rate limiting. The time for this thermodynamically
downhill step will also be proportional to t0

RC. Within the
capillarity picture, as in mean field theory, the reconfiguration
times depend on escaping from traps and on the ruggedness of
the landscape. These effects have been neglected in earlier
work by focusing primarily on the case where the unfolded part
of the chain is not compact (21). This requires TF to exceed the
random heteropolymer collapse transition, TC, otherwise an
additional barrier for expanding the chain, scaling with N, is
introduced. TC is a fortiori even higher than the glass transition
temperature, so ruggedness effects can be neglected for such
a well designed, minimally frustrated protein. It is not yet clear
whether proteins are in fact frustrated so little. If the stability
gap is not so large as to allow TF to exceed TC, the unfolded
segment will be collapsed and possibly transiently misfolded.
We must then consider trapping in determining the N and T
dependence of the trap escape processes that enter t0

RC.
Capillarity Description of Reconfiguration Dynamics. The

capillarity description of first-order phase transitions is well
established by experiments documenting the reduction of
freezing temperature with size. The size dependence of glassy
phenomena, the sort needed to understand trapping, is hardly
explored. In mesoscopic samples of magnetic spin glasses,
elegant experiments of Weissman (20) show behavior remi-
niscent of mean field theories, although in some cases droplet-
like excitations seem to be involved, too. Experiments on glass
transitions of fluids confined to pores also sometimes show a
reduction in TG, but there are complications due to surface
anchoring (30). Nevertheless, it is worth examining where
theory leads.

The glass transition of random heteropolymers is believed to
be a ‘‘random first-order transition’’ involving a discontinuous
change in heat capacity and an entropy crisis similar to the
supposed ideal glass transition of supercooled liquids (31, 32).
The scaling theory of dynamics of liquids approaching such an
ideal glass transition (18–19) has been formulated partially in
terms of capillarity arguments. We can explicitly adapt those
arguments to discuss the finite size effects appropriate to
proteins. Above the thermodynamic transition a system that
will undergo a random first-order transition can be thought of
as a system that has an exponentially large number of meta-
stable phases. In the heteropolymer context these are the
trapping states. Above a dynamic transition temperature TA,
which is greater than TG, each of those phases becomes even
locally unstable to thermal motions. Above TA, the chain
dynamics is slowed down by caging but is much like a free
chain. Below this temperature, on the other hand, when the
interactions are short ranged, reconfigurational movements
become slow and activated. The driving force for escape from
one to another is the configurational entropy density. When
the system is trapped in a given minimum it costs energy to
move into another one, but there are so many ways to do this
that escape becomes favorable. If a region of size Ne monomers
to reconfigure the free-energy cost is

Ftrap
RC ~Ne! 5 2 TscNe 1 fI~Ne! [4]

where sc is the configurational entropy per residue and fI(Ne)
is an interfacial energy term representing the mismatch be-

FIG. 2. The funnel free-energy profile in the capillarity approxi-
mation. The solid curve is the ideal profile of the free energy versus
the folded fraction, assuming no heterogeneity of stabilization energy.
An actual profile differs by a fluctuation that is random and Gaussianly
distributed due to this heterogeneity. This is the ‘‘fine structure’’ of the
folding funnel. A specific such profile is indicated by a dotted line.
Notice the cusp-like minima occur at precisely Ñf 5 0 and Ñf 5 1,
because the capillarity theory is an asymptotic result for large NTOT.
Simulations and mean field theory show smooth minima at nonex-
treme values of the order parameters.
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tween the configurations, each one of which is a local mini-
mum, naively the interface energy fI would scale as a surface
term Ne

2y3. A detailed approximate calculation for the random
heteropolymer yields this result (33) for the interface energy
and an approximate quantification of trapping barriers. To
understand the scaling we must recognize also that the exis-
tence of many ‘‘phases,’’ which represent proteins in globally
different local minima, however, reduces this surface energy by
means of a wetting phenomenon such as the one we discussed
for a finite number of phases at the end of section two of this
paper.

As discussed earlier for specific, qualitatively different
phases, a series of different phases also can decorate the
interface, making it very broad and lowering the barrier. For
highly curved interfaces fI will behave like a surface term, but
as the reconfiguring region increases in size, the effective
surface tension will diminish through wetting as the interface
straightens. A detailed argument much like the one for the
random field Ising magnet (16, 18) finally gives a contribution
that scales like aDENe

1y2, where DE is the root mean square of
the energy variance per particle of the trapped states. In more
elaborated theories of random systems there can be a more
anomalous scaling such as Ne

1y21x. The maximum of F(Ne) gives
the barrier for reconfiguration, DFtrap

ÞRC and we can write t0
RC 5

t0expDFtrap
RC ykBT, as the typical reconfiguration time. For an

infinite system the critical size corresponding to the maximum
is Ne

Þ 5 (aDEyTsc)2 and the barrier is DFtrap
ÞRC 5 a2DE2y2Tsc.

The barrier is the same as the empirical Vogel–Fulcher law and
depends on the configurational entropy density just as in the
Adam–Gibbs description of glassy dynamics (31), but the
number of units in the reconfiguring region is quite a bit larger
than the Adam–Gibbs result for the critical size that scales only
like the sc

21 rather than sc
22 predicted by random first-order

transition scaling, where the so-called correlation length ex-
ponent is n 5 2yd.

The capillarity argument shows that well above TG the
reconfiguration barriers are finite (i.e., they do not scale with
chain length) just as the thermodynamic barriers to folding are
chain length-independent far below TF. Nevertheless there is a
connection of the capillarity result to the famous Levinthal
estimate, which arises in the mean field theory. We can see that
at any temperature, the reconfiguration barrier is DFtrap

ÞRC 5
1⁄2scNe

Þ 5 1⁄2S(Ne
Þ). This is one-half of a renormalized

Levinthal entropy for the critical sized drop S(Ne
Þ). The barrier

now depends on the actual configurational entropy of the
critical drop, not the infinite temperature value of the entropy
of the entire system So. The barrier thus grows as TG ap-
proaches, but more slowly than in the mean field theory,
because the random wetting phenomenon allows the entropy
to be gained in stages. At TG the energy landscape for an
infinite random heteropolymer is self-similar for different size
regions. There are minifunnels within minifunnels.

Once Ne
Þ grows to a size such that the rearranging region is

comparable to the protein diameter, the interface cannot get
any larger. Within the capillarity approximation, the driving
force term can now be neglected, and again the barrier involves
moving a front between different trap states across the mol-
ecule, giving a barrier DFtrap

ÞRC 5 aDEN1/2. This is the result
obtained more elliptically by Thirumalai (22). We now see it
is an asymptotic result valid near TG.

Reconfiguration dynamics then gives a contribution to the
apparent folding barrier that is independent of N at high T and
scales like N1/2 for T near TG.

The same wetting phenomenon operating for traps can
change the scaling of the thermodynamic barrier, too. If the
randomness is large enough, the native state is hardly distin-
guishable from any other trap in energetics. The resulting
multiple-phase wetting resembles disorder-induced roughen-
ing of the interface.

When we combine the results for the thermodynamic bar-
riers and the typical configurational diffusion barriers in the
diffusive barrier-crossing expression, we obtain various differ-
ent scalings of folding time for a ‘‘typical’’ protein with chain
length under different thermodynamic conditions, as shown in
Fig. 3. For very well designed proteins that can be made to
stably fold well below TF but above TG, the asymptotic scaling
of folding time is polynomial in chain length. There is no
contradiction with well known NP completeness theorems (34)
about predicting global minima of a random heteropolymer
because well designed proteins are selected, minimally frus-
trated systems. If still above TG but near TF, the scaling for the
time grows exponentially in size but the barrier rises sublin-
early as N2/3 in Finkelstein’s (21) calculation. Near to TG, the
scaling even for a well designed protein again would be
exponential but with a different power, N1/2, for the barrier, as
Thirumalai (22) suggests. This is also the behavior of the
typical folding time for an unselected random heteropolymer.

Fine Structure of the Funnel Free-Energy Profile and of
Reconfiguration Dynamics. The simplest phenomenological
funnel description of folding either in mean field or capillarity
approximations maps folding kinetics near TF onto the diffu-
sion of a one-dimensional progress coordinate. More coordi-
nates are needed if different phases are taken into account
(e.g., secondary structure formed versus disordered, collapsed
versus noncollapsed, etc.), but another effect is also important.
At any given value of the progress coordinate, in a specific
protein, different contacts will be made to varying extents,
depending on their energetics. Although the ideal funnel has
a fairly predictable shape in either approximation, the heter-
ogeneity of contact energies and local propensities modifies
the free-energy profile for any specific protein, as shown in Fig.
2. This heterogeneity can be probed experimentally by protein
engineering (35) and by elegant NMR experiments (B. A.
Shulman, P. S. Kim, C. M. Dobson, and C. Redfield, personal

FIG. 3. The various regimes of scaling behavior for the typical
folding time with length are indicated for different values of TFyT, the
folding temperature-to-ambient ratio, and TGyT, the glass tempera-
ture-to-ambient ratio. At high temperatures, folding is always ther-
modynamic uphill and the barrier grows like N. At low temperatures,
the rate is trap-dominated, and the typical barrier behaves like N1/2,
whereas the slowest escape (not indicated in the figure) will have
bigger barriers, scaling like N. Fastest folding occurs for T ,, TF but
T .. TG where polynomial behavior of the folding time in N is to be
found. This occurs for ‘‘well designed’’ proteins. The figure also shows
the boundary between trap escape and quasi-free chain dynamics, as
indicated by the mean field dynamic transition temperature TA. A
realistic value of TFyTG is 1.6. In this figure we assume temperatures
are all less than the collapse temperature TC. If T is bigger than TC,
ruggedness effects can be neglected.
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communication). For specific proteins the resulting structural
correlations can be discussed using free-energy functionals like
those used for liquids or random magnets (37).

We now examine what the capillarity arguments give for the
fluctuation effects on folding and trapping free-energy pro-
files. Let us assume the fluctuations in stabilization energy for
different residues are small and independent, with a typical
value being Deo. We expect Deo to be somewhat smaller than
the ruggedness energy scale for compact states, DE. The ratio
DeoyDE depends on the flexibility of the sequence code used
for encoding the protein. At TF, if the interface is sharp, a
specific protein free-energy profile will differ from the ideal
profile by a random contribution dFrand(Ñf) so that F(Ñf) 5
Fis(Ñf) 1 dFrand(Ñf). dFrand(Ñf) will be characteristic of a
diffusion process in Nf that must return at the end of its journey
to the origin while never crossing the origin, if folding a single
domain. Thus, dF(Ñf) is typically Deo N1/2(Ñf(1 2 Ñf))1/4. At TF
the transition state of the ideal funnel is nearly midway. Thus,
the fluctuation in barrier height is ;1⁄2DeoN1y2. The thermo-
dynamic activation barrier will be approximately Gaussianly
distributed with this width. Taking the rather large value of Deo
'1kBT, one finds fluctuations as big as 5kBT for a 100-mer. In
fact, if dDFÞ is sufficiently large to overcome DFideal

Þ , the
folding event will be broken up into two parts (i.e., a kinetic
intermediate will exist). The probability of finding a sequence
that folds 100 times faster than typical is about one-third for
such a large Deo. It becomes necessary in computer simulations
to examine the distribution of measured rates rather than, for
example, selecting (after the fact) the fastest folders, if the
model is to be compared with analytical work.

There are many different trapping configurations; simply
knowing their typical behavior is not enough. Fine structure
effects on the distribution of trapping escape times are pre-
dicted to be especially large (and more subtle than on the
thermodynamic folding profile) if the capillarity argument is
followed. Adding a Gaussian random contribution to Eq. 4,
which represents fluctuations in energy of the trapped states
contacts just as was done for the folding profile, the typical trap
escape free-energy profile becomes widely distributed because
now the renormalized interfacial energy term scales in exactly
the same way with chain length as the randomness. The mean
and variance of the escape barriers are comparable. Equiva-
lently said, the assumed scaling exponent, x 5 0, is marginal for
a random system’s transition (39).† Although escape from the
typical and, more importantly, the deepest traps will signifi-
cantly slow as TG is approached, there is now a significant
chance that trapping can be avoided altogether through mo-
tions involving one of these low barrier traps, even for long
chains. The wide distribution suggests that trapping dynamics
will be strongly multiexponential as TG is approached. Even
when the overall thermodynamic barrier still is large enough to
give single exponential kinetics, the widely distributed trapping
times can modify the transmission coefficient computed using
the pure diffusion description of the barrier crossing; instead,
a frequency-dependent Kramers theory should be used. This
acts to diminish the influence of trapping on the rate, since the
weaker traps will be used in the crossing. At low temperatures,
once the thermodynamic barrier is small (‘‘downhill kinetics’’),
the entire folding kinetics will be nonexponential and reflect
the trap distribution directly. As in the kinetic partitioning
phenomenology (40, 41), a small fraction of protein molecules

can fold on a fast track, while the bulk of them will be trapped
in misfolded states.

Although the heterogeneity effects on trapping can allow a
small fraction of fast track folders, they also lead to a finite
fraction of very slow folding molecules. The capillarity picture
yields a roughly Gaussian form (except near DF 5 0) for the
distribution of escape barriers

P~DFÞ! 5
1

Î2pNDE2l
exp 2 SDFÞ 2 DFTrap

ÞRC

2NlDE2 D 2

[5]

so the distribution of long escape times is roughly log normal.
At TG, the most probable escape time scales as N1/2 as
discussed in the previous section, but the mean folding time is
dominated by the deepest traps. Averaging the escape time,
which depends exponentially on the barrier over the log
normal distribution, the apparent activation energy for the
slowest events then scales linearly in N, just as it does from
mean field theory. Bigger molecules can sample less and less
typical, deeper traps. The linear dependence of the longest
escape time was noted in recent simulations and may also be
due to topological constraints on motion (23). This wide
variance of escape times also was predicted at all temperatures
on the basis of the random energy model (2). It is interesting
that it persists below TG in the capillarity description as well.
The effects of native contact heterogeneity near TF and
trapping due to glassy dynamics near TG are very similar and
scale in the same way with N. The fluctuations away from the
ideal funnel free-energy profile will typically act to slow the
folding from the ideal profile result, because it is the big
barriers that count for a long, random walk in a one-
dimensional random potential (42). Below TG, folding times,
even of well designed proteins, will be quite sensitive to
sequence.

Both the fluctuational fine structure of the free-energy
profile and the broad distribution of trapping times from the
glassy dynamics suggest the largest proteins will fold near TG
by a highly intermittent, partially progressive escape from
traps, much like a Levy flight (42). This may be studied using
single-molecule detection techniques.

Discussion. The analysis presented here shows that the
energy landscape description of protein folding has much the
same mathematical structure within the capillarity approxi-
mation as when mean field theories are used. Just as in mean
field approaches, a folding funnel with a diffusive progress
coordinate can be defined. Folding kinetics reflects both the
free-energy profile of this coordinate and the reconfigura-
tional motions that depend on the nature of glassy dynamics
representing escape from local traps. The questions arise then
of what determines which limit, mean field or capillarity based,
is more appropriate for describing real proteins, and how can
we find this out?

The crossover between mean field-like and capillarity be-
havior for the funnel characteristics depends on the breadth of
the interface compared with the protein size. Even in the
simplest analyses, this breadth will be proportional to the range
of the interactions. For hydrophobic forces this range may be
as small as a water molecule’s diameter or as large as a
residue’s diameter. It still is longer for electrostatic forces.
Using the residue size range, much of a small protein ('60
residues) is at the surface, arguing for the mean field picture.
The breadth of the interface also increases with the hetero-
geneity of contact energies, eventually leading to disorder-
induced roughening of the interface. There is also the possi-
bility of interpolated, partially ordered phases (e.g., molten
globule) broadening the interface. The magnitude of these
effects is hard to estimate currently. One difficulty is that
database contact potentials still are rather too crude to be sure
of the size of heterogeneity effects. Also, the energetics of

†For concreteness, the exponent phenomenology for a random first-
order glass transition has been followed in this paper. More involved
phenomenologies in which the interface energy, randomness contri-
butions, and their distributions and even activation barriers have
anomalous exponents for size scaling are possible (see refs. 15 and 16).
These possibilities that allow the glass state to be a ‘‘chaotic’’ phase
(39) would give rise to considerations similar to those here but with
quantitative modification.
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detailed side-chain packing, which determines whether a pro-
tein ‘‘sublimes’’ or ‘‘melts,’’ remain uncertain.

Experimentally, recent studies using NMR of the progres-
sive denaturation of lactalbumin ('140 residues) by urea do
seem to indicate the disordering of the molecule by means of
a front moving across the structure (B. A. Shulman, P. S. Kim,
C. M. Dobson, and C. Redfield, personal communication).
This suggests there is a crossover to capillarity behavior, but
greater precision will be needed to pin down the interface
width. According to the one-dimensional funnel picture, the
equilibrium front should be closely tied to the landscape
relevant to kinetics, but if additional order parameters are
involved, this is less clear. The existence of a sharp, contiguous
front could be probed kinetically by protein engineering using
simultaneous mutations of contiguous sites, which could affect
the fine structure of the funnel.

The existence of fine structure fluctuations in the capillarity
picture has an impact on understanding the constraints faced
in the evolution of protein-folding energy landscapes. Al-
though the minimal frustration principle is still needed for
reliable folding without traps, the fine structure effects on
trapping apparently may allow a small fraction of the popu-
lation of a molecule with a long, random sequence to fold
quickly, even when the bulk of the population does not. Thus,
the minimal frustration constraint is more appropriately
thought of as one on yield rather than speed per se. Conversely,
to achieve very fast folding may require, in addition to the
minimal frustration constraint, that very stable contacts be
judiciously placed in the structure so that even the ideal
capillarity barrier is reduced. Such a feature may be correlated
with the existence of foldons or modules in the larger proteins
(36).
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