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Kin recognition is important in animal social
systems. However, though plants often compete
with kin, there has been as yet no direct
evidence that plants recognize kin in competitive
interactions. Here we show in the annual plant
Cakile edentula, allocation to roots increased
when groups of strangers shared a common pot,
but not when groups of siblings shared a pot.
Our results demonstrate that plants can
discriminate kin in competitive interactions and
indicate that the root interactions may provide
the cue for kin recognition. Because greater root
allocation is argued to increase below-ground
competitive ability, the results are consistent
with kin selection.
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1. INTRODUCTION
The predominant social interaction among plants,

other than mating, is competition (Kelly 1996) for

light, water and nutrients. Vegetative reproduction

and self-fertilization can cause groups of plants to be

more closely related than groups of animals (Wade

1980), increasing the potential for kin selection. Kin

selection theory recognizes that individuals increase

their inclusive fitness through behaviour that increases

the fitness of related individuals (Hamilton 1964).

While Hamilton’s rule is usually invoked to explain

altruism, it also applies to competition. If kin compete

less with each other, individuals increase their direct

fitness by not spending resources on competition, and

their indirect fitness by not reducing the fitness of

neighbouring relatives (Axelrod & Hamilton 1981).

Kin selection is facilitated by kin recognition, which

allows organisms to favour relatives preferentially over

strangers, reducing the costs of positive interactions

(Waldman 1988). Kin and other multilevel selection

has been demonstrated in plants (Donohue 2003,

2004; Goodnight 1985; Stevens et al. 1995; Kelly

1996), and self-incompatibility systems allow plants

to discriminate against relatives in mating (Waldman

1988). To our knowledge, however, no studies have

yet tested directly for kin recognition in plants.

Plants sense the presence of other plants and

respond by producing more competitive phenotypes

(Callaway 2002). Phytochrome-mediated stem

elongation in response to the red to far-red ratio

(R : FR) increases competitive ability in high density
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(Dudley & Schmitt 1996). However, the lowered
R : FR cue resulting from the light absorbance by
chlorophyll (Smith 1995) does not convey additional
information about the neighbour. Plants increase root
allocation in the presence of neighbour roots (Gersani
et al. 1998, 2001; Maina et al. 2002; Falik et al. 2003;
O’Brien et al. 2005; Murphy & Dudley 2007) increas-
ing below-ground competitive ability (Gersani et al.
2001). Considerable specificity appears to be con-
veyed by roots: the growth patterns of roots have
shown to depend on neighbour genotype (Mahall &
Callaway 1996; Holzapfel & Alpert 2003), neighbour
species (Huber-Sannwald et al. 1996), whether neigh-
bouring roots are self- or non-self (Mahall &
Callaway 1992) or connected by stolons (Holzapfel &
Alpert 2003), even in genetically identical individuals
(Falik et al. 2003; Gruntman & Novoplansky 2004).
Here we ask if the root allocation response to the roots
of neighbours depends on relatedness.
2. MATERIAL AND METHODS
Cakile edentula var. lacustris (Brassicaceae), the Great Lakes sea
rocket, is a self-fertilizing annual found along dunes and beaches of
the Great Lakes (Rodman 1974). Its fruit structure results in seed
dispersal into solitary individual, groups of strangers and groups of
siblings (Donohue 2003). Sibling groups have been shown to have
higher fitness than groups of strangers in the field (Donohue
2003). On 4 October 2005, collected field-pollinated maternal
sibships (hereafter, families) were sampled randomly from one
population at Confederation Park in Hamilton, Ontario.

The experimental units were groups of four plants, arranged
randomly into six 30!30 cm trays of 64 plants. Density was high
(689 plants mK2, or 3.81 cm apart), comparable with clumps in
the field. In the solitary treatment, the four plants were planted
singly in small pots (3.8!3.8!35.56 cm). In the root neighbours
treatment, the four plants were planted together in a large pot
(7.6!7.6!35.56 cm). The groups were either kin (from the same
family) or strangers (from four different families). Each tray had a
different subset of four from the eight families used. Families were
equally represented in the root and kin treatments within each
tray. We used rectangular, open-ended, bleach-board pots (Zipset
Plant Bands, Stuewe and Sons, Corvallis) so that density, average
resources per plant, soil depth and soil volume were kept
constant. Variation in above-ground competition could result
in confounding effects of stem elongation on root allocation
(Cipollini & Schultz 1999).

On 22 November 2005, the seeds were planted in three parts
coarse sand and one part Turface (Profile Products LLC, Buffalo
Grove, IL) in a growth room under fluorescent and incandescent
lighting. The plants were watered daily and fertilized weekly with
200 ppm 15–15–30 NPK. We harvested early in reproduction at
eight weeks, so that root allocation during rapid vegetative growth
could be estimated. Plants were partitioned into coarse roots, fine
roots, stems, leaves and reproductive tissues (seeds, fruits, and
supporting stems and pedicels).

(a) Statistical analysis

All statistical tests were performed with SAS software, v. 8.02, for
Windows. The data were transformed f (x)Z(log(xC1)), so that the
residual variance was homoscedastic and the distribution of the
residuals did not differ significantly from normality. Parameters are
presented untransformed for clarity. Because roots in large pots
could not be separated, for total mass and root allocation the
observation is the group of four (nZ96). For reproductive allo-
cation, the observation is the individual (nZ332).

Effects of treatments on biomass allocation were compared
for least square means (LSMEANS option of PROC GLM)
from analysis of covariance (ANCOVA; Gedroc et al. 1996;
McConnaughay & Coleman 1999). Kin and stranger means were
compared within each root neighbour treatment, which also avoids
potential pot-size biases (Hess & De Kroon 2007). For root
allocation, fine root mass was the dependent variable, and leaf mass
the covariate (table 1). These traits are most appropriate because
they function in above-ground and below-ground resource acqui-
sition (Givnish 1986), but root: shoot mass showed the same
results. For reproductive allocation, flower mass was the dependent
variable and aboveground vegetative mass was the covariate, with a
second-order term included.
This journal is q 2007 The Royal Society
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Table 1. Analysis of covariance for the derivation of root allocation, with log (fine root mass C1) as the dependent variable,
and kin treatment (sibling or stranger), root treatment (neighbours or solitary) and kin!root as main effects. Log (leaf mass
C1) was the covariate, and all leaf mass by main effects were estimated. The observation is the biomass of the group of four
plants (nZ96).

source d.f. sums of squares mean square F p

log leaf 1 1.173 1.173 484 0.0000
root 1 0.0076 0.0076 3.13 0.0808
logleaf!root 1 0.0107 0.0107 4.44 0.0381
kin 1 0.021 0.021 8.68 0.0042
logleaf!kin 1 0.014 0.014 5.98 0.0166
root!kin 1 0.000 0.000 0.01 0.9042
logleaf!root!kin 1 0.0005 0.0005 0.21 0.6456
tray 5 0.093 0.0187 7.75 0.0000
error 83 0.200 0.0024
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Figure 1. (a) Root allocation and (b) total mass for groups of four C. edentula plants grown either in single pots (solitary) or
in one larger shared pot (root neighbours). The groups were either siblings (kin) or from four different maternal families
(strangers). Root allocation is the least square mean from an ANCOVA with fine root mass as the dependent variable and
leaf mass as the covariate (nZ96). Bars indicate 1 s.e.

0.6

0.4

0.2

0 1 2 3 4

root neighbours

solitary

aboveground vegetative biomass (g)

re
pr

od
uc

tiv
e 

bi
om

as
s 

(g
)

Figure 2. Scatter plot of reproductive mass versus above-
ground vegetative mass for single plants of C. edentula.
Lines indicate second-order regressions of reproductive
mass on vegetative mass for each root treatment. No
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3. RESULTS
Fine root mass was positively associated with leaf mass.
The root treatment affected the slope of the relation
between fine root mass and leaf mass, and kin treatment
affected both the slope and the y-intercept (table 1).
Comparisons of root allocation (figure 1), showed that
kin groups allocated less to their fine root mass than
did stranger groups in shared pots (nZ96, tZ2.71,
p!0.0081; figure 1a). For those groups in solitary pots,
kin and stranger root allocation did not differ (nZ96,
tZ0.00, p!0.9961; figure 1a).

Total biomass was greater in root neighbour pots
(figure 1b; nZ96, F1,87Z31.7, p!0.0001), but was
not affected by relatedness (F1,87Z1.26, p!0.2649)
nor was there a neighbour!relatedness interaction
(F1,87Z1.29, p!0.2585). Allocation to reproduction
responded to the presence of root neighbours
(figure 2) but not to relatedness, with the greatest
flowering allocation in solitary plants (least square
means for individual plants: root neighboursZ0.053,
solitary plants 0.073; nZ332, tZ31.7, p!0.0013).
significant kin or kin!root effects were found. nZ332.
4. DISCUSSION
We found that kin groups allocated less to their fine
root mass than did stranger groups when they
competed below ground, indicating that these plants
Biol. Lett. (2007)
could discriminate relatives. Root allocation did not
differ between kin and stranger groups grown in
isolated pots, indicating that the cues for kin recog-
nition lie in root interactions. Siblings were less
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competitive than strangers, which is consistent with
kin selection.

We found plasticity to kin versus strangers only for
root competitive ability. Our experimental design did
not allow us to assess lifetime fitness, but we did
measure total biomass and allocation to reproduction
at early reproduction. Neither demonstrated plasticity
to kin, though both responded to the presence of
neighbours. Previous studies of root allocation
responses to neighbours have found that plants in
shared pots also had reduced fitness (Gersani et al.
2001; Maina et al. 2002; O’Brien et al. 2005; though
see Murphy & Dudley 2007), indicating a cost to
increased root allocation. Because sibling groups
avoided this potential cost, these results agree with
the greater fitness of sibling groups in C. edentula
found by Donohue (2003). However, we saw no
direct trade-off between root allocation and
reproduction.

If kin discrimination via root–root interactions
proves widespread, it will profoundly change how we
view competition in plants. Our results, because we
used maternal sibships, indicate a genetic or mater-
nally derived mechanism for kin recognition involving
root communication. However, the mechanism is
probably different from the self/non-self mechanism,
because plants recognize genetically identical individ-
uals as non-self (Falik et al. 2003; Gruntman &
Novoplansky 2004). Having found kin discrimination
once, we expect to find kin discrimination elsewhere
in plants, since variable dispersal, variable competitive
situations, and increases in fitness when competing
with kin, are found in other plants. Other competitive
traits, such as stem elongation and apical dominance,
are the most probable candidates to exhibit plastic
responses contingent on kinship of neighbours.
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