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The mutS gene product of Escherichia coli and SalmoneUa typhimurium is one of at least four proteins
required for methyl-directed mismatch repair in these organisms. A functionaBy similar repair system in
Streptococcus pneumoniae requires the hex genes. We have sequenced the S. typhimurium mutS gene, showing
that it encodes a 96-kilodalton protein. Amino-terminal amino acid sequencing of purified S. typhimurium MutS
protein confirmed the initial portion of the deduced amino acid sequence. The S. typhimurium MutS protein is
homologous to the S. pneumoniae HexA protein, suggesting that they arose from a common ancestor before the
gram-negative and gram-positive bacteria diverged. Overall, approximately 36% of the amino acids of the two
proteins are identical when the sequences are optimally aligned, including regions of stronger homology which
are of particular interest. One such region is close to the amino terminus. Another, located closer to the carboxy
terminus, includes homology to a consensus sequence thought to be diagnostic of nucleotide-binding sites. A
third one, adjacent to the second, is homologous to the consensus sequence for the helix-turn-helix motif found
in many DNA-binding proteins. We found that the S. typhimurium MutS protein can substitute for the E. coli
MutS protein in vitro as it can in vivo, but we have not yet been able to demonstrate a similar in vitro
complementation by the S. pneumoniae HexA protein.

Mismatched base pairs can arise during homologous re-
combination of allelic genes, by chemical modification of
DNA, or from errors made by DNA polymerase. Repair of
mismatched DNA base pairs has been invoked to explain a
variety of genetic phenomena, including gene conversion in
Neurospora spp. and other fungi (25, 38), postmeiotic seg-
regation in Saccharomyces cerevisiae (49), high negative
interference and gene conversion in lambda phage crosses
(28, 47, 48), and the existence of high- and low-efficiency
transforming markers in Streptococcus pneumoniae (8, 18).
Mismatch repair has been studied most intensively in Esch-
erichia coli, Salmonella typhimurium, and S. pneumoniae.
Several reviews of mismatch repair have been published
recently or will be published in the near future (5, 26, 35; M.
Meselson, In K. B. Low, ed., The Recombination of Ge-
netic Material, in press).
Extending the suggestion of Tiraby and Fox (42) that

mismatch repair reduces the mutation rate by correcting
replication errors, Wagner and Meselson (45) suggested that
repair might be targeted to the nascent strand by some
special condition, such as undermethylation. E. coli and S.
typhimurium mutS, mutL, mutH, and uvrD (mutU) mutants
as well as S. pneumoniae hexA and hexB mutants, all of
which are defective in mismatch repair, exhibit an elevated
spontaneous mutation frequency (6, 19, 40, 42, 43). The
mismatch repair systems of both E. coli and S. pneumoniae
repair transition mismatches much more efficiently than
transversions (7, 15, 19, 44). However, the two systems
appear to differ in their method of recognizing the daughter
strand. A significant component of this recognition in E. coli
appears to be based on the state of AV6-adenine methylation
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at d(G-A-T-C) sites. The strongest in vivo evidence for
methyl-directed repair has come from transfection experi-
ments with hemimethylated lambda heteroduplexes, in
which repair occurs preferentially on the unmethylated
strand (34, 36). This repair requires the products of the
mutS, mutL, mutH, and uvrD (mutU) genes. In contrast,
methylation appears unlikely to direct strand discrimination
in S. pneumoniae, since the prototypic Hex' strain does not
methylate its d(G-A-T-C) sites, and transforming DNA is
mature with respect to methylation (5). Instead, it has been
suggested that, in S. pneumoniae, single-strand breaks direct
repair to the donor strand in transformation and to the
nascent strand in replication (12).
An in vitro repair system has been developed which

monitors the conversion of a mismatch in a hemimethylated
bacteriophage fd heteroduplex to restriction endonuclease
sensitivity (22, 23). Consistent with in vivo results, the
products of the mutS, mutL, mutH, and uvrD genes are
required for repair in this system.
Although the mechanism of methyl-directed mismatch

repair in E. coli is not yet fully understood, biochemical
activities have been ascribed to several of the components of
the system. DNA mismatches are bound by purified MutS
protein (41), and single-stranded DNA is bound both by
MutS in crude extracts and by purified MutS (30; Haber,
Pang, and Walker, unpublished data). In vivo and in vitro
experiments have suggested that the MutH protein is in-
volved in strand discrimination (15, 26). The uvrD gene
product has been identified as helicase II (14, 16, 17). To
date, no activity has been reported for the MutL protein.
As a protein that binds to mismatched DNA base pairs,

MutS would be expected to play a central role in mismatch
correction. Indeed, MutS appears to participate in at least
three different repair strategies. Besides the repair system
directed by Dam-mediated methylation of d(G-A-T-C) sites,
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MutS is also required for two other, less efficient, mismatch
repair processes. One of these processes acts on symmetri-
cally methylated DNA and may serve to repair mismatches
produced during recombination (9, 10). Another mismatch
repair system corrects C-to-T transitions at the internal C of
the Dcm methylase sequence d(C-C-A/T-G-G) or subsets
thereof (20) and also requires mutL+ and dcm' (20, 35).
Thus, once a mismatch is recognized by MutS, an E. coli cell
can repair it by one of several different methods, depending
on the status of the DNA, the mismatch involved, and the
surrounding sequence.

In this paper, we report the sequence of the S. typhimu-
rium mutS gene and show that significant homology exists
between it and the S. pneumoniae hexA gene. Although
these two organisms use different methods of strand discrim-
ination, other elements of their mismatch repair processes
may show mechanistic similarities. We were able to show
that the S. typhimurium MutS protein can substitute for the
E. coli MutS protein in vitro as it can in vivo, but we were
not able to demonstrate a similar in vitro complementation
by the S. pneumoniae HexA protein.

MATERIALS AND METHODS

Bacteriophage strains and plasmids. The wild-type E. coli
strain used for the in vitro assay was MM294A, which has
the genotype pro-82 thi-1 endAl hsdRJ7 supE44. The
mutS201::TnS or mutS2J5::TnlO mutations were transduced
into MM294 by P1 transduction. Bacteriophage M13mp8
was purchased from New England Biolabs, and M13mp8
containing a G-to-A transition in the unique PstI site was
provided by J. Essigman (21). The cloning of the mutS gene
into pGW1811 has been described (30). pGW1825 is a BglII
deletion of pGW1811 which overproduces MutS protein
(unpublished data).
Nudeotide sequence determination. The 1.1-kilobase ClaI-

PstI, 2.2-kilobase PstI-SalI, and 2.5-kilobase PstI-SmaI
fragments of pGW1811 were isolated. Each fragment was
then digested with Sau3AI, AluI, and HaeIII, and the
resulting fragments were shotgun cloned into M13mpll. The
DNA sequence was determined by using the dideoxynucleo-
tide termination method (39). Additional clones which
crossed the PstI sites were isolated and sequenced (Fig. 1).

Purification and sequencing of MutS protein. MutS protein
overproduced by the plasmid pGW1825 was purified by the
method of Su and Modrich (41). The amino-terminal se-
quence was determined on 800 pmol ofpure MutS protein by
using an Applied Biosystems gas phase microsequencer.

In vitro mismatch repair assay. Heteroduplexes were pre-
pared by the method of Kramer et al. (15) from linear duplex
M13mp8 DNA which had been fully methylated in vitro and
single-stranded circular DNA from an M13mp8 mutant con-

taining a G-to-A transition in the unique PstI site (21). The
resulting hemimethylated heteroduplex contained a G/T mis-
match, with a methylated wild-type strand. Cell extracts
were prepared and the mismatch repair assay was performed
essentially as described by Lu et al. (22).

RESULTS

Amino acid sequence of the MutS protein. The nucleotide
sequence of the S. typhimurium mutS gene contains one
continuous reading frame of 2,559 base pairs and potentially
encodes a protein with a calculated molecular weight of
95,650 (Fig. 2). This value is in agreement with previous
reports that the S. typhimurium mutS protein has an Mr of
98,000 (30, 31), and the E. coli protein has an Mr of 97,000
(41), both as determined by sodium dodecyl sulfate-poly-
acrylamide electrophoresis. Both in vivo (30, 31) and in vitro
(see below) complementation experiments have shown that
the E. coli and S. typhimurium mutS genes are functionally
equivalent. We identified the correct initiator methionine
and confirmed the initial portion of the deduced amino acid
sequence by amino-terminal amino acid sequencing of puri-
fied S. typhimurium MutS protein (Fig. 2).
The MutS protein is relatively rare and has been estimated

to be present at only about 10 to 20 molecules per cell on the
basis of mutS'-1acZ' fusions (M. Radman, personal commu-
nication). However, MutS protein can be extensively over-
produced by placing the mutS gene under control of the PL
promoter (41; Pang, Haber, and Walker, unpublished data).
This is consistent with the absence of any strong homology
to promoter consensus sequences immediately upstream of
the mutS coding region (37).

Since we have found that the MutS protein binds to
single-stranded DNA (30; Haber, Pang, and Walker, unpub-
lished data), we compared its sequence with that of known
single-strand binding proteins. No significant homology was
found between the MutS protein and the E. coli ssb protein
or the bacteriophage T4 single-strand binding protein, gp32.
This failure to see homology is not surprising, since it is
known that the single-strand binding proteins characterized
to date do not all have related primary structures. For
example, the E. coli ssb protein and T4 gp32 do not share
any obvious sequence homology (3).
Homologous MutS and HexA gene products. Certain simi-

larities between the E. coli mutS gene and the S. pneumo-
niae hexA gene had prompted speculation as to whether the
two genes were related (5). Inactivation of either gene results
in an elevated spontaneous mutation frequency in its respec-
tive organism. Also, the molecular weight of the hexA gene
product had been reported as 86,000 to 94,000 (2, 24), close
to the 96,000 molecular weight of the mutS gene product.
The nucleotide sequence of the S. pneumoniae hexA gene
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FIG. 1. Sequencing strategy of the mutS gene. Horizontal arrows show the direction and extent of sequences determined. The direction
of transcription (30) and deduced coding region of the mutS gene are shown. The hatched line indicates a sequence from phage lambda. kb,
Kilobase.
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FIG. 2. Nucleotide and deduced amino acid sequence of the S. typhimurium mutS gene. Underlined amino acids are those identical to the
corresponding residues in the S. pneumoniae HexA protein when the sequences have been aligned optimally. The sequence of the boxed
amino acids was confirmed by amino-terminal sequencing of purified MutS protein.
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FIG. 3. Regions of strong homology between the MutS protein and the HexA protein. Identical residues are indicated by colons.

has been determined (33), and the prediction that HexA has
an Mr of 95,000 brings the molecular weight of the protein
even closer to that of MutS than was previously reported.
We and Priebe et al. (33) compared the deduced amino acid
sequences of the MutS and HexA proteins and found that
the'y are approximately 36% homologous overall. This ho-
mology extends throughout the entire length of the two
proteins and requires only a few small gaps for optimal
alignment, although the greatest similarity is at the amino
and carboxyl termini (Fig. 2).

Alignments of the MutS and HexA sequences in the two
regions where they are most similar are presented in Fig. 3.
Region I is near the amino terminus and consists of a stretch
of 109 amino acids that are 54% homologous at the amino
acid level and 58% homologous at the nucleotide level. A
stretch of 10 amino acids is conserved exactly between the
two proteins, suggesting that this region'may have particular
functional importance.

Region II is near the carboxyl terminus and contains 122
amino acids. The amino acid sequences within this region
are 62% homologous, and the nucleotide sequences are 60%
homologous. This region con'tains two stretches of high
homology, one starting at amino acid 612 ofMutS and having
13 of 14 exact amino acid matches and the other starting at
amino acid 657 of MutS and having 15 of 17 exact amino acid
matches. The first highly homologous stretch is also homol-
ogous with a consensus nucleotide-binding site, which is
found in many ATPases (1, 11, 46) (Fig. 4A).
A number of DNA-binding proteins contain a helix-turn-

helix motif tlhat has been implicated in protein-DNA inter-
actions (29). Both the MutS and HexA sequences contain
homology to the consensus sequence for this motif, starting
at amino acid residues 771 and 760 of MutS and HexA,
respectively (Fig. 4B). Secondary structure analysis of the
sequence by the method ofChou and Fasman (4) predicts the
appropriate structures. The amino acid sequences of HexA
and MutS are 40% homologous for this section, which falls
37 amino acids to the carboxyl-terminal side of region II.
The deduced amino acid sequences indicate that both

MutS and HexA are highly charged proteins. MutS protein
has an excess of 14 acidic residues (Asp and Glu minus Arg
and Lys), and HexA has an excess of 34 acidic residues.
Both the acidic and basic residues are distributed throughout
the two proteins, and no region contains a concentration of
basic residues.

In vitro mismatch repair assay. Our in vitro mismatch

repair assay is conceptually similar to the one described by
Lu et al. (22) but uses as the DNA substrate a hemimethyl-
ated M13mp8 heteroduplex containing a G/T mismatch. As
expected, we were able to repeat their key results: (i)
extracts from wild-type E. coli cells repaired the unmethyl-
ated strand almost 100% of the time, and (ii) extracts of E.
coli mutS, mutL, and mutH mutants were repair incompe-
tent but could complement each other completely. We also
found that an extract of an E. coli mutS215: :TnJO strain was
fully complemented both by crude extracts of an E. coli
mutS strain, which contains the cloned S. typhimurium
mutS+ gene, and by purified S. typhimurium MutS protein
(data not shown). In contrast, to date we have been unable to
detect complementation (<5%) of E. coli mutS extracts with
extracts prepared by several different methods from either
hex' S. pneumoniae or S. pneumoniae containing the hexA+
gene on a low-copy-number plasmid. However, our ability to
detect this repair is limited, due to inhibition of repair of
wild-type E. coli extracts by our S. pneumoniae extracts.
Repair was inhibited 30% in an assay mix containing 20% S.
pneumoniae protein, and increasing amounts of S. pneumo-
niae extract increased the amount of inhibition.
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FIG. 4. MutS and HexA homology to consensus sequences. (A)
Homology to the nucleotide-binding site consensus first reported by
Walker et al. (46), as shown by Gill et al. (11). (B) Homology to
helix-turn-helix consensus (1, 29). Uppercase letters indicate virtu-
ally invariant residues, lowercase letters indicate conserved resi-
dues (>60% of sites cited), and X's indicate variable residues.
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DISCUSSION

We have determined the sequence of the S. typhimurium
mutS gene and confirmed both the start site and the pre-
dicted initial protein sequence by determining the amino-
terminal sequence of the purified protein. The MutS protein
from the gram-negative bacterium S. typhimurium is approx-
imately 36% homologous to the HexA protein from the
gram-positive bacterium S. pneumoniae. The finding that
MutS and HexA are homologous raises the possibility that,
like MutS, HexA also binds mismatched DNA base pairs
and single-stranded DNA. However, in spite of the similarity
between the MutS and HexA proteins, the repair systems of
which they are a part must differ significantly, due to their
differing mechanisms of strand discrimination. A need to
interact with other components of their respective repair
systems might require the MutS and HexA proteins to differ
in certain respects.
Our failure to observe in vitro complementation of an E.

coli mutS::TnJO extract by hexA+ S. pneumoniae extracts
could be due to our inability to identify appropriate condi-
tions for preparing the S. pneumoniae extracts, or it may

indeed be due to an inability of HexA to substitute for MutS.
Such a failure to substitute could be due to an inability of the
S. pneumoniae HexA protein to interact with other compo-

nents of the E. coli mismatch repair system; regions where
the MutS and HexA proteins show little homology could be
involved in such interactions. Alternatively, a failure to

substitute could be due to inherent differences in the funda-
mental biochemical activities of the two proteins. However,
given the overall homology between the two proteins, we

consider this possibility less likely.
We found two regions of over 50% amino acid homology

between the two proteins. The finding that the carboxy
terminus contains the helix-turn-helix motif that is found in
many proteins that bind double-stranded DNA (29) raises the
possibility that this region plays a role in the recognition of
mismatched base pairs. Most of the proteins containing this
motif recognize a specific sequence. However, both the
UvrB protein and the product of the alkA+ gene, 3-methy-
ladenine-DNA glycosylase II, also appear to contain this
motif (1). Like MutS, these two proteins are involved in
repair systems that can process several different DNA
structures. The AlkA glycosylase recognizes several dif-
ferent alkylated bases, whereas the UvrABC excinuclease,
of which UvrB is a component, recognizes a variety of bulky
adducts. Interestingly, the carboxyl-terminal region of the
MutS protein also includes homology to a consensus se-
quence thought to be diagnostic of nucleotide-binding sites
(1, 11, 46). Whereas exogenous ATP is required for the in
vitro repair reaction of Lu et al. (22, 23), it is not needed for
MutS to bind mismatches or single-stranded DNA (41;
Haber, Pang, and Walker, unpublished data). However,
binding or hydrolysis of ATP or another nucleotide by MutS
might be required for another step in the repair process.
TnlOOO insertions close to the carboxyl terminus of the MutS
protein produced truncated proteins that were inactive in
mismatch repair (30), suggesting that at least the carboxyl-
terminal region of MutS is required for mismatch repair. One
could speculate that if the carboxyl-terminal region were to
be involved in the recognition of mismatches, then the
amino-terminal region might be involved in binding single-
stranded DNA.
The sequence similarity between mutS and hexA suggests

that they arose from a common ancestor gene that evolved
before the gram-positive and gram-negative bacteria di-

verged. Because the sequence similarity stretches over the
entire length of the corresponding proteins, and only a few
small gaps are necessary for optimal alignment, it is unlikely
that the similarities arose by convergent evolution. This
suggests that a system for mismatch correction arose early in
evolution, a conclusion not too surprising considering that
mismatch repair-deficient cells, at least in the case of E. coli,
S. typhimurium, and S. pneumoniae, have a spontaneous
mutation frequency increased by 10 to 1,000 (6, 19, 30, 40,
42, 43). Our observations and those of Priebe et al. (33) raise
the possibility that proteins evolutionarily related to MutS
and HexA might exist in widely diverged organisms, includ-
ing eucaryotes. The recent isolation of S. cerevisiae mutants
which may be defective in heteroduplex repair (49) and the
development of both a cell-free S. cerevisiae mismatch
repair system (27) and a mammalian in vivo mismatch repair
assay (13) will help address such questions. It will also be
interesting to determine whether any other components of
the mismatch repair systems of E. coli and S. typhimurium
have counterparts in S. pneumoniae. For example, the
reported molecular weights of the S. typhimurium MutL
protein and the S. pneumoniae HexB protein are sufficiently
close to raise the possibility that they are related (30, 32).
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