Abstract
Histone and DNA syntheses have been studied in synchronously dividing Tetrahymena pyriformis GL. During the heat treatment necessary to synchronize cultures of this amicronucleate protozoan, the DNA content of the already polyploid macronucleus increases. When the cells begin synchronous division, their DNA content is reduced in a stepwise process which is closely paralleled by reduction of macronuclear histone content. During cell division, the contents of DNA and histone decrease by slightly more than twofold, and in the subsequent S phase, DNA and histone increase simultaneously to 85% of the values expected if all chromosomes were to double. The first step in the process of reduction of DNA and histone contents is their decrease in excess of twofold, and this is accomplished by removal of extrusion bodies from the nuclei of dividing cells. The second step is a mechanism which allows, in effect, only 70% of the chromatin in the average nucleus to duplicate. Such partial duplication suggests that both histone and DNA syntheses in synchronous Tetrahymena depend upon a regulatory mechanism, the mediating elements of which are localized in only certain chromosomes.
Full Text
The Full Text of this article is available as a PDF (659.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOCH D. P., GODMAN G. C. A microphotometric study of the syntheses of desoxyribonucleic acid and nuclear histone. J Biophys Biochem Cytol. 1955 Jan;1(1):17–28. doi: 10.1083/jcb.1.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUTLER J. A., COHN P. Studies on histones. 6. Observations on the biosynthesis of histones and other proteins in regenerating rat liver. Biochem J. 1963 May;87:330–334. doi: 10.1042/bj0870330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAMERON I. L., STONE G. E. RELATION BETWEEN THE AMOUNT OF DNA PER CELL AND THE DURATION OF DNA SYNTHESIS IN THREE STRAINS OF TETRAHYMENA PYRIFORMIS. Exp Cell Res. 1964 Dec;36:510–514. doi: 10.1016/0014-4827(64)90307-6. [DOI] [PubMed] [Google Scholar]
- CERRONI R. E., ZEUTHEN E. Asynchrony of nuclear incorporation of tritiated thymidine into Tetrahymena cells synchronized for division. C R Trav Lab Carlsberg. 1962;32:499–511. [PubMed] [Google Scholar]
- CHIH R., HUANG C., BONNER J., MURRAY K. PHYSICAL AND BIOLOGICAL PROPERTIES OF SOLUBLE NUCLEOHISTONES. J Mol Biol. 1964 Jan;8:54–64. doi: 10.1016/s0022-2836(64)80148-0. [DOI] [PubMed] [Google Scholar]
- Cahn R. D., Cahn M. B. Heritability of cellular differentiation: clonal growth and expression of differentiation in retinal pigment cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):106–114. doi: 10.1073/pnas.55.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRENSTER J. H., ALLFREY V. G., MIRSKY A. E. REPRESSED AND ACTIVE CHROMATIN ISOLATED FROM INTERPHASE LYMPHOCYTES. Proc Natl Acad Sci U S A. 1963 Dec;50:1026–1032. doi: 10.1073/pnas.50.6.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALL J. G. Macronuclear duplication in the ciliated protozoan Euplotes. J Biophys Biochem Cytol. 1959 Mar 25;5(2):295–308. doi: 10.1083/jcb.5.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALVORSON H. O. GENETIC CONTROL OF ENZYME SYNTHESIS. J Exp Zool. 1964 Oct;157:63–77. doi: 10.1002/jez.1401570111. [DOI] [PubMed] [Google Scholar]
- HUANG R. C., BONNER J. Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1216–1222. doi: 10.1073/pnas.48.7.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauschka S. D., Konigsberg I. R. The influence of collagen on the development of muscle clones. Proc Natl Acad Sci U S A. 1966 Jan;55(1):119–126. doi: 10.1073/pnas.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IVERSON R. M., GIESE A. C. Nucleic acid content and ultraviolet susceptibility of Tetrahymena pyriformis. Exp Cell Res. 1957 Oct;13(2):213–223. doi: 10.1016/0014-4827(57)90001-0. [DOI] [PubMed] [Google Scholar]
- Iwai K., Shiomi H., Ando T., Mita T. The isolation of histone from Tetrahymena. J Biochem. 1965 Sep;58(3):312–314. doi: 10.1093/oxfordjournals.jbchem.a128206. [DOI] [PubMed] [Google Scholar]
- Lee Y. C., Scherbaum O. H. Nucleohistone composition in stationary and division synchronized Tetrahymena cultures. Biochemistry. 1966 Jun;5(6):2067–2075. doi: 10.1021/bi00870a039. [DOI] [PubMed] [Google Scholar]
- Lindsay D. T. Electrophoretically identical histones from ribosomes and chromosomes of chicken liver. Arch Biochem Biophys. 1966 Mar;113(3):687–694. doi: 10.1016/0003-9861(66)90249-9. [DOI] [PubMed] [Google Scholar]
- NEELIN J. M., CALLAHAN P. X., LAMB D. C., MURRAY K. THE HISTONES OF CHICKEN ERYTHROCYTE NUCLEI. Can J Biochem. 1964 Dec;42:1743–1752. doi: 10.1139/o64-185. [DOI] [PubMed] [Google Scholar]
- Niehaus W. G., Jr, Barnum C. P. Incorporation of radioisotope, in vivo, into ribonucleic acid and histone of a fraction of nuclei preparing for mitosis. Exp Cell Res. 1965 Sep;39(2):435–442. doi: 10.1016/0014-4827(65)90046-7. [DOI] [PubMed] [Google Scholar]
- PRESCOTT D. M., KIMBALL R. F. Relation between RNA, DNA, and protein syntheses in the replicating nucleus of Euplotes. Proc Natl Acad Sci U S A. 1961 May 15;47:686–693. doi: 10.1073/pnas.47.5.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RASCH E., WOODARD J. W. Basic proteins of plant nuclei during normal and pathological cell growth. J Biophys Biochem Cytol. 1959 Oct;6:263–276. doi: 10.1083/jcb.6.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
- SCHERBAUM O. H., LOUDERBACK A. L., JAHN T. L. DNA synthesis, phosphate content and growth in mass and volume in synchronously dividing cells. Exp Cell Res. 1959 Aug;18:150–166. doi: 10.1016/0014-4827(59)90298-8. [DOI] [PubMed] [Google Scholar]
- SCHERBAUM O., ZEUTHEN E. Temperature-induced synchronous divisions in the ciliate protozoon Tetrahymena pyriformis growing in synthetic and proteose-peptone media. Exp Cell Res. 1955;(Suppl 3):312–325. [PubMed] [Google Scholar]
- SHEPARD D. C. PRODUCTION AND ELIMINATION OF EXCESS DNA IN ULTRAVIOLET-IRRADIATED TETRAHYMENA. Exp Cell Res. 1965 Jun;38:570–579. doi: 10.1016/0014-4827(65)90380-0. [DOI] [PubMed] [Google Scholar]
- STONE G. E., PRESCOTT D. M. CELL DIVISION AND DNA SYNTHESIS IN TETRAHYMENA PYRIFORMIS DEPRIVED OF ESSENTIAL AMINO ACIDS. J Cell Biol. 1964 May;21:275–281. doi: 10.1083/jcb.21.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
