Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Aug 1;38(2):437–446. doi: 10.1083/jcb.38.2.437

MICROTUBULES AND EARLY STAGES OF CELL-PLATE FORMATION IN THE ENDOSPERM OF HAEMANTHUS KATHERINAE BAKER

Peter K Hepler 1, William T Jackson 1
PMCID: PMC2107485  PMID: 5664211

Abstract

A fine structure study of the phragmoplast and developing cell plate has been made on glutaraldehyde-osmium tetroxide-fixed, dividing, cultured cells of the liquid endosperm of Haemanthus katherinae Baker. The phragmoplast arises between the telophase nuclei, usually in association with a remnant strand of spindle elements, and consists of an accumulation of microtubules oriented at right angles to the plane of the future cell plate. The microtubules, which are 200–240 A in diameter, occur in small clusters spaced at approximately 0.2–0.3 µ intervals along the plate. Short interconnections interpreted as "cross-bridges" have been observed between individual microtubules. Within each cluster there is an electron-opaque zone about 0.3 µ in width which can be attributed in part to an overlap of microtubules from both sides of the plate and in part to a local accumulation of an amorphous electron-opaque material. During development these dense zones become aligned in a plane which itself defines the plane of the plate. Vesicles, commonly observed in long files, are derived from a cytoplasmic matrix rich in elements of the endoplasmic reticulum and sparse in dictyosomes. They aggregate between the clusters of microtubules and eventually coalesce to form the cell plate.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAJER A. CINE MICROGRAPHIC ANALYSIS OF CELL PLATE FORMATION IN ENDOSPERM. Exp Cell Res. 1965 Feb;37:376–398. doi: 10.1016/0014-4827(65)90186-2. [DOI] [PubMed] [Google Scholar]
  2. Bajer A., Allen R. D. Role of phragmoplast filaments in cell-plate formation. J Cell Sci. 1966 Dec;1(4):455–462. doi: 10.1242/jcs.1.4.455. [DOI] [PubMed] [Google Scholar]
  3. Bajer A. Notes on ultrastructure and some properties of transport within the living mitotic spindle. J Cell Biol. 1967 Jun;33(3):713–720. doi: 10.1083/jcb.33.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinkley B. R., Stubblefield E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 1966;19(1):28–43. doi: 10.1007/BF00332792. [DOI] [PubMed] [Google Scholar]
  5. Hepler P. K., Newcomb E. H. Fine structure of cell plate formation in the apical meristem of Phaseolus roots. J Ultrastruct Res. 1967 Aug 30;19(5):498–513. doi: 10.1016/s0022-5320(67)80076-5. [DOI] [PubMed] [Google Scholar]
  6. INOUE S., BAJER A. Birefringence in endosperm mitosis. Chromosoma. 1961;12:48–63. doi: 10.1007/BF00328913. [DOI] [PubMed] [Google Scholar]
  7. PORTER K. R., MACHADO R. D. Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J Biophys Biochem Cytol. 1960 Feb;7:167–180. doi: 10.1083/jcb.7.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Paweletz N. Zur Funktion des "Flemming-Körpers" bei der Teilung tierischer Zellen. Naturwissenschaften. 1967 Oct;54(20):533–535. doi: 10.1007/BF00627210. [DOI] [PubMed] [Google Scholar]
  9. Pickett-Heaps J. D. Further observations on the Golgi apparatus and its functions in cells of the wheat seedling. J Ultrastruct Res. 1967 May;18(3):287–303. doi: 10.1016/s0022-5320(67)80119-9. [DOI] [PubMed] [Google Scholar]
  10. Pickett-Heaps J. D., Northcote D. H. Cell division in the formation of the stomatal complex of the young leaves of wheat. J Cell Sci. 1966 Mar;1(1):121–128. doi: 10.1242/jcs.1.1.121. [DOI] [PubMed] [Google Scholar]
  11. Pickett-Heaps J. D., Northcote D. H. Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci. 1966 Mar;1(1):109–120. doi: 10.1242/jcs.1.1.109. [DOI] [PubMed] [Google Scholar]
  12. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stockinger L., Cireli E. Eine bisher unbekannte Art der Zentriolenvermehrung. Z Zellforsch Mikrosk Anat. 1965 Dec 10;68(5):733–740. [PubMed] [Google Scholar]
  14. WHALEY W. G., MOLLENHAUER H. H. The Golgi apparatus and cell plate formation--a postulate. J Cell Biol. 1963 Apr;17:216–221. doi: 10.1083/jcb.17.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whaley W. G., Dauwalder M., Kephart J. E. The Golgi apparatus and an early stage in cell plate formation. J Ultrastruct Res. 1966 Apr;15(1):169–180. doi: 10.1016/s0022-5320(66)80102-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES