Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Nov 1;39(2):339–368. doi: 10.1083/jcb.39.2.339

THE FINE STRUCTURE OF PRONUCLEAR DEVELOPMENT AND FUSION IN THE SEA URCHIN, ARBACIA PUNCTULATA

Frank J Longo 1, Everett Anderson 1
PMCID: PMC2107533  PMID: 5677969

Abstract

Fertilization events following coalescence of the gamete plasma membranes and culminating in the formation of the zygote nucleus were investigated by light and electron microscopy in the sea urchin, Arbacia punctulata. Shortly after the spermatozoon passes through the fertilization cone, it rotates approximately 180° and comes to rest lateral to its point of entrance. Concomitantly, the nonperforated nuclear envelope of the sperm nucleus undergoes degeneration followed by dispersal of the sperm chromatin and development of the pronuclear envelope. During this reorganization of the sperm nucleus, the sperm aster is formed. The latter is composed of ooplasmic lamellar structures and fasciles of microtubules. The male pronucleus, sperm mitochondrion, and flagellum accompany the sperm aster during its migration. As the pronuclei encounter one another, the surface of the female pronucleus proximal to the advancing male pronucleus becomes highly convoluted. Subsequently, the formation of the zygote nucleus commences with the fusion of the outer and the inner membranes of the pronuclear envelopes, thereby producing a small internuclear bridge and one continuous, perforated zygote nuclear envelope.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALFERT M. A cytochemical study of oogenesis and cleavage in the mouse. J Cell Physiol. 1950 Dec;36(3):381–409. doi: 10.1002/jcp.1030360306. [DOI] [PubMed] [Google Scholar]
  2. ALLEN R. D. Fertilization and activation of sea urchin eggs in glass capillaries. I. Membrane elevation and nuclear movements in totally and partially fertilized eggs. Exp Cell Res. 1954 May;6(2):403–424. doi: 10.1016/0014-4827(54)90188-3. [DOI] [PubMed] [Google Scholar]
  3. AUSTIN C. R., BISHOP M. W. Differential fluorescence in living rat eggs treated with acridine orange. Exp Cell Res. 1959 Apr;17(1):35–43. doi: 10.1016/0014-4827(59)90150-8. [DOI] [PubMed] [Google Scholar]
  4. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BRADEN A. W., AUSTIN C. R. The distribution of nucleic acids in rat eggs in fertilization and early segmentation. Aust J Biol Sci. 1953 Nov;6(4):665–673. [PubMed] [Google Scholar]
  6. BUCHER N. L., MAZIA D. Deoxyribonucleic acid synthesis in relation to duplication of centers in dividing eggs of the sea urchin, Strongylocentrotus purpouratus. J Biophys Biochem Cytol. 1960 Jul;7:651–655. doi: 10.1083/jcb.7.4.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BUCK R. C. Lamellae in the spindle of mitotic cells of Walker 256 carcinoma. J Biophys Biochem Cytol. 1961 Oct;11:227–236. doi: 10.1083/jcb.11.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barros C., Bedford J. M., Franklin L. E., Austin C. R. Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol. 1967 Sep;34(3):C1–C5. doi: 10.1083/jcb.34.3.c1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burton P. R. Fine structure of the reproductive system of a frog lung fluke. II. Penetration of the ovum by a spermatozoon. J Parasitol. 1967 Oct;53(5):994–999. [PubMed] [Google Scholar]
  10. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marsland D. Anti-mitotic effects of colchicine and hydrostatic pressure; synergistic action on the cleaving eggs of Lytechinus variegatus. J Cell Physiol. 1966 Apr;67(2):333–338. doi: 10.1002/jcp.1040670213. [DOI] [PubMed] [Google Scholar]
  12. Marston J. H., Chang M. C. The morphology and timing of fertilization and early cleavage in the Mongolian gerbil and Deer mouse. J Embryol Exp Morphol. 1966 Apr;15(2):169–191. [PubMed] [Google Scholar]
  13. PASTEELS J., LISON L. Desoxyribonucleic acid content of the egg of Sabellaria during maturation and fertilization. Nature. 1951 Jun 9;167(4258):948–949. doi: 10.1038/167948a0. [DOI] [PubMed] [Google Scholar]
  14. Pasteels J. J. Aspects structuraux de la fécondation vus au microscope électronique. Arch Biol (Liege) 1965;76(2):463–509. [PubMed] [Google Scholar]
  15. REBHUN L. I. Aster-associated particles in the cleavage of marine invertebrate eggs. Ann N Y Acad Sci. 1960 Oct 7;90:357–380. doi: 10.1111/j.1749-6632.1960.tb23257.x. [DOI] [PubMed] [Google Scholar]
  16. REBHUN L. I. Electron microscope studies on the vitelline membrane of the surf clam, Spisula solidissima. J Ultrastruct Res. 1962 Feb;6:107–122. doi: 10.1016/s0022-5320(62)90064-3. [DOI] [PubMed] [Google Scholar]
  17. ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROTH L. E., DANIELS E. W. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J Cell Biol. 1962 Jan;12:57–78. doi: 10.1083/jcb.12.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SZOLLOSI D. G., RIS H. Observations on sperm penetration in the rat. J Biophys Biochem Cytol. 1961 Jun;10:275–283. doi: 10.1083/jcb.10.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Szollosi D. Extrusion of nucleoli from pronuclei of the rat. J Cell Biol. 1965 Jun;25(3):545–562. doi: 10.1083/jcb.25.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Szollosi D. The fate of sperm middle-piece mitochondria in the rat egg. J Exp Zool. 1965 Aug;159(3):367–377. doi: 10.1002/jez.1401590309. [DOI] [PubMed] [Google Scholar]
  24. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]
  26. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zamboni L., Mishell D. R., Jr, Bell J. H., Baca M. Fine structure of the human ovum in the pronuclear stage. J Cell Biol. 1966 Sep;30(3):579–600. doi: 10.1083/jcb.30.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zimmerman A. M., Zimmerman S. Action of colcemid in sea urchin eggs. J Cell Biol. 1967 Aug;34(2):483–488. doi: 10.1083/jcb.34.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES