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ABSTRACT Continuous segments of synaptic noise were
recorded in vivo from teleost Mauthner cells and were studied
with the methods of nonlinear analysis. As in many central
neurons, this ongoing activity is dominated by consecutive
inhibitory postsynaptic potentials. Recurrence plots and first
or third order Poincaré maps combined with surrogate shuf-
f ling revealed nonrandom patterns consistent with the notion
that synaptic noise is a continuously varying mixture of
periodic and chaotic phases. Chaos was further demonstrated
by the occurrence of unstable periodic orbits. The nonrandom
component of the noise is reproducibly and persistently
reduced when the level of background sound, a natural
stimulus for networks afferent to the Mauthner cell, is brief ly
elevated. These data are consistent with a model involving a
reciprocally connected inhibitory network, presynaptic to the
Mauthner cell and its intrinsic properties. The presence of
chaos in the inhibitory synaptic noise that regulates the
excitability of the Mauthner cell and its sensitivity to external
stimuli suggests that it modulates this neuron’s function,
namely to trigger a fast escape motor reaction following
unexpected sensory information.

The membrane potential of vertebrate central neurons fluc-
tuates constantly. Although this process, called synaptic noise,
is ubiquitous, its fine structure is poorly documented. Synaptic
noise is due to the postsynaptic actions of packets of neuro-
transmitters, or quanta, released from afferent synapses as a
consequence of intermittent firing of the parent neurons. It has
been suggested that these summed fluctuations reflect the
firing pattern of presynaptic networks, that they modulate the
inputyoutput relations of neurons (1–3), and that they are
necessary for the implementation of some theoretical neuronal
networks (4, 5).

Synaptic noise has been commonly considered to be sto-
chastic (2, 6, 7) and is often modelled as such (8, 9). However,
it is now possible to generate a refined description of its
structure with nonlinear dynamic analysis, which has been
particularly useful in various fields in which apparently random
phenomena have hidden specific structures that cannot be
resolved with linear tools (10). The question of the presence of
nonlinear dynamics in the brain (11–13), and particularly of
chaos, arises naturally in view of its properties (sensitivity to
initial conditions and ability to switch among many different
modes), which also characterize biological behaviors (13).

Despite the severe limitations in identifying chaos due to the
possible mixture of different dynamics (14), we have applied
this methodology to study the temporal structure of synaptic
noise recorded in vivo from a central neuron, namely the

Mauthner cell (M-cell) of teleosts. We show features of chaos
in this signal.

Synaptic Noise in the M-Cell

Spontaneous activity was recorded with KCl-filled microelec-
trodes in the proximal part of the M-cell lateral dendrite of
adult goldfish (Carassius auratus, n 5 5) and zebrafish (Brachy-
danio rerio, n 5 5) with similar results for both. Animals were
anaesthetized with 3-aminobenzoic ethyl ester acid (MS 222;
Sandoz Pharmaceutical), immobilized with Flaxedil (Rhône-
Poulenc) or pancuronium bromide, and continuously perfused
with water. As shown in Fig. 1A, this activity is generated by
two groups of glycinergic interneurons, one of which can be
driven by auditory inputs (15) and it consists, mainly (1), of
consecutive inhibitory postsynaptic potentials (IPSPs). With
Fourier analysis, most spectra were dominated by a noisy
broadband background, which could reflect either a stochastic
process or chaos (10). Thus, more sophisticated tools were
required to identify deterministic structures (such as periodic
andyor chaotic ones) that could otherwise be considered as
stochastic. For this purpose, synaptic noise was first digitized
at 24 kHz for visual inspection. To achieve a compromise
between computation time and sampling rate, the latter was
taken as 1.5 or 3 kHz for RPs and 3 kHz for Poincaré maps.
As shown in Fig. 1 A (Right) this rate was sufficient for
representing the whole signal, including its fast rising time to
peak and for studies of correlations between closely spaced
IPSPs. The analysis was done with homemade programs
written in Labview 4 for Macintosh Power Computers.

Evidence in RPs for Nonrandom Components
of Synaptic Noise

We first used RP analysis to locate recurring patterns and to
reveal dynamic behaviors possibly hidden in the biological
signal (16). For RPs, minimal size or stationarity, which are not
often observed in biological systems, are not necessary. RPs
portray the dynamics of the embedded signals in the form of
distinctive patterns of dots interspersed in a square matrix.
Plots were constructed (Appendix A) with a d-dimensional
signal using the method of time delays applied on 2-sec epochs
of activity (Fig. 1 B1 and C1). These plots already suggested the
existence of nonrandom motions. For example, they showed
dot organizations resembling chaos (Fig. 1 B1 and B2) or a
periodical activity, regular or intermittent, ranging from 20 to
80 Hz superimposed with aperiodic figures, also compatible
with nonlinear dynamics (Fig. 1 C1 and C2). A significant
variability of these patterns was apparent not only among
different preparations but also during the same experiment
(data not shown). In contrast, homogenous fillings indicative
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of a stochastic process, as exemplified in Fig. 1D, were never
observed in our RPs.

Two parameters were available to validate the conclusions
obtained with the visual inspection of the RPs (17). The first,

called ratio (R), is the number of dots included in upward
diagonal line segments, divided by the total number of points;
it quantifies the degree to which the signal is deterministic. The
second, or entropy (E), describes the distribution of the lengths

FIG. 1. Continuous variations of synaptic noise. (A Left) Representation of the M-cell’s (M) feed forward inhibitory networks (å, 2) and their
excitatory inputs (Ç, 1) issued by eighth nerve primary fibers (VIII n.). Two sets of inhibitory interneurons are shown: the commissural ones (Com.)
with their somata in the lateral vestibular nucleus (LVN) and the collateral cells (Coll.). Note the presence of reciprocal connections and feedback
loops. Thicker lines outline the connections incorporated in a model, which also includes a history-dependent postanodal firing of the interneurons
(Inset). Acoustic waves activate hair cells and induce repetitive discharges (vertical bars) in VIII n. fibers. (Right) Typical background activity with
inverted unitary IPSPs (arrows), sampled at 3 kHz (dots), and reference baseline (dashed). (B and C) Analysis of 2 sec of synaptic noise (sampling
rate 5 3 kHz). (B1 and C1) Digitized data (Upper) and corresponding recurrence plots (RPs; Lower) from two fish showing checkerboard structures
with a small scale background suggesting chaos (B1) and long lines parallel to the main diagonal indicating periodic activities embedded in aperiodic
ones (C1). (B2 and C2) Larger magnifications of the areas indicated by boxes in the B1 and C1. (D) Fragment of a homogeneous RP obtained
with a model of Gaussian series. For all plots, embedding dimensions 5 10; •j51

Ne Nj 5 2.5%Ne
2 6 2,500 dots; and lag 5 8.4, 5, and 0.66 msec for

B, C, and D, respectively.
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of the different line segments. Both terms are temporal
sequence-sensitive (Appendix A). They were used to assess the
statistical significance of the RPs with the help of surrogates
(Appendix B), i.e., of randomized representations of the
original data files according to random, Gaussian scaled (18),
and Fourier shuffle (19) algorithms. In this experimental
series, R and E were calculated on RPs obtained from series
of nonoverlapping 1-sec successive segments with the same
cutoff, r, in each experiment, a lag of 33 msec (first minimum
of the autocorrelation function), an embedding dimension of
5, and a sampling frequency Fe 5 1.5 kHz, and they were
compared with those obtained with n 5 100 Fourier shuffle
surrogates. The null hypothesis was rejected in 239y275 suc-
cessive 1-sec windows, extracted from the four experiments
that were tested.

Different Patterns of Noise Identified with Poincaré
Maps (PMs)

Several converging approaches are necessary to identify non-
linear patterns and avoid spurious identification of chaos.

Also, RPs treat signals as a whole, including instrumental
noise. Thus we converted the signals into sequences of events
(In, In11) to obtain PMs of interevent intervals (20). These
events were extracted from the raw data (Fig. 2A Left) using
the time derivative of the individual synaptic potentials (Fig.
2A Right), a procedure that allows the detection of IPSPs even
when they overlap. As the threshold T used for constructing
maps was lowered, the number of detected events increased,
and several typical patterns emerged, indicating that synaptic
noise can combine several dynamics. For example, PMs
changed from periodic, with constant intervals between points,
indicating a frequency of 35 Hz (Fig. 2B1, T1), to high
dimensional, i.e., without evidence of a typical structure (Fig.
2B1, T3). The transition between these extremes was marked
by a triangular motif, due presumably to the random occur-
rence of at most one event between each period (Fig. 2B1, T2).
Chaotic patterns characterized by extended structures that are
not sets of points could also be present at high thresholds (Fig.
2B2, T1), and they were progressively blurred at lower values

FIG. 2. Mixtures of dynamic behaviors revealed by first order PMs. (A) Sampled (3-kHz) synaptic noise (Left) and its first derivative (Right),
illustrating the threshold method; events detected above a given level (labeled T1, T2, and T3) were used to plot the nth interval against the previous
one. (B1 and B2) Resulting maps obtained from 30 sec of continuous recordings, in two different experiments. (B1) From the same data set as
that partially shown in A. As the threshold is lowered, the pattern initially periodic (Left, T1) becomes triangular (Center, T2). (B2) The return maps
show series of points which are not space filling and suggest chaos (Left) or attracting clusters centered around a period of 25 msec (Center). Note
that in both experiments, the return maps are high dimensional for the lowest values of T (T3, Right).
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of T (Fig. 2B2, T2 and T3). Finally, high dimensional organi-
zations could dominate in the return maps (not shown).

In retrospect, it was noted that the most effective thresholds
for distinguishing these contrasting patterns were those which
isolated the largest IPSPs, including composite ones (for T1
and T2) or which included all signals, except most monoquantal
IPSPs and small excitatory events propagated from the distal
dendrite (for T3).

Confirmation of Chaotic Patterns with Unstable Periodic
Orbits (UPOs)

We searched for UPOs (20–23), as an alternative to conven-
tional measures of chaos that yield equivocal results in living
tissues (20, 23, 24). UPOs found in PMs (Fig. 3 A and B) consist
of sequences of points approaching a fixed one on the identity
line with ever-decreasing separations, followed by a sequence
of points departing at ever-increasing distances (22). Evidence
that they obey the specific rules of unstable fixed point
behavior (20, 22, 23) is illustrated in Fig. 3C. The occurrence
of UPOs (.1 per 100 events) was more common in low
threshold maps. Their significance was tested with Fourier
shuffle surrogates (Appendix B) constructed for each thresh-
old series (n 5 500), with values of K $ 2.5 in six out nine fish
tested.

Sudden Sounds Modify Chaotic Patterns

To test whether this dynamic system is sensitive to environ-
mental changes, we investigated the effects of sensory stimuli
known to reach the M-cell. In all trials, sounds (100 msec, 500
Hz, 75–90 dB) initiated bursts of excitatory synaptic events
which, as expected (25) were in phase with the acoustic signal
and were at twice its frequency (data not shown). These were
accompanied by transient changes in the composition of the

inhibitory synaptic noise (Fig. 4A) consisting of an initial
increase followed by a longer lasting decrease in R (Fig. 4
B1–B3), a result found in 17 of 21 trials, in the four fish that
were tested. This persistent decrease was due to changes in
noise pattern rather than in amplitude distribution, as con-
firmed by the stability of R derived from surrogates (Fig. 4C)
having the same mean and variance as the original data (P.
Rapp, personal communication). While a reduction in this
parameter indicates a corresponding decrement of the non-
random component, it does not allow one to distinguish the
relative shifts of the periodic and chaotic signals. Regardless,
its modifications persisted for at least 60 sec (Fig. 4D), even
though visually, synaptic noise had apparently returned to its
control state earlier.

Discussion

Taken together, our results suggest that the spike-evoked
components of synaptic noise are ‘‘deterministic’’ and con-
trolled by sensory inputs. Specifically, the revealed nonrandom
patterns represent nonstationary mixtures of periodic and
chaotic phases. These features are typical of biological systems
that do not allow the use of correlation dimensions and
Lyapunov exponents to further quantify chaos (10, 17, 27).

It is remarkable that inhibitory processes exhibit chaotic
properties in vivo, including a deterministic control by natural
stimuli, such as sound. The origin of this nonlinear dynamic is
unclear, but its most likely explanations must take into con-
sideration the organization of the networks that generate
synaptic noise in the M-cell. Fig. 1 A shows that primary
auditory fibers activate the commissural interneurons on each
side of the brain. The question then becomes whether a
reciprocal inhibitory circuit can undergo a sustained activity,
which is required for generating complex dynamics (28, 29).
We designed a numerical model (unpublished work) incorpo-

FIG. 3. UPOs in third order PMs. (A) A 15-sec segment of synaptic noise (digitized at 3 kHz) displayed at a slow sweep speed with the location
of UPOs (n 5 20) indicated by E. (B) Return plot showing the centers of the UPOs (F) signaled in A, and the mean of their stable (St.) and unstable
(Unst.) directions. Note that most centers are clustered, suggesting multiple approaches to the same fixed point, as expected from candidate UPOs.
(C) Examples of synaptic events (asterisks) selected with a value of T3 similar to that in Fig. 2B (Left), and reconstruction of the UPOs that they
generate (Right). The numbered dots indicate the corresponding interevent intervals and delineate almost parallel stable (arrows 1 and 2) and
unstable directions (arrows 2–4). Statistical tests indicated K values of 3.7, 2.82, and 2.72 for random, Gaussian scaled, and Fourier shuffle surrogates,
respectively. A, B, and C are from the same experiment.
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rating the VIII n. activated connections (outlined in Fig. 1 A),
with internal self-sustained excitatory reentries generated by
the postanodal excitations that always follow hyperpolariza-
tions in M-cell presynaptic interneurons (30). External drives
of the system were ‘‘spike activities’’ in the VIII n., designed to
include both stochastic and periodic discharges as demon-
strated experimentally (25, 31). This model showed that once
activated, the presynaptic networks produce most patterns
found in this study. As also noted elsewhere (32), ‘‘chaos’’ is
not observed when the postanodal rebounds are omitted.
Conversely, it is more conspicuous if large hyperpolarizations
generate bursts of action potentials rather than single spikes
(Fig. 1A Inset). It remains to be determined if additional
network features are necessary to account for dynamic mod-
ifications of R. For example, if other excitatory drives to the
inhibitory interneurons (Fig. 1 A) or learning properties of
inhibitory synapses (33) have a significant role.

In vivo studies should reveal comparable situations in higher
vertebrate structures, such as hippocampus, cerebellum, and

cortex (34), where synaptic noise is intense, and also predom-
inantly inhibitory, and neural connections include rhythmically
firing cells and oscillators.

It is difficult to envision the role of nonlinear dynamics at the
cellular level, but it is known that chaotic systems can be
controlled by external perturbations. Relevant here is that
inhibition guarantees that the M-cell-mediated escape reaction
is triggered by appropriate stimuli (15). Thus, inhibitory noise
is part of a process that, similar to that underlying attention in
higher vertebrates, filters improper information (35). Accord-
ingly, the M-cell’s adaptive motor function could be eased by
the stabilizing properties of UPOs (20, 22, 36), chaos also
favoring state transitions initiated by varying sensory cues (29).

Appendix A: RPs

Let X(i) be the ith point on an orbit describing the system in a
d-dimensional space. Then RPs are N p N arrays, in which a dot
is placed at (i, j) whenever X(i) is close to X(j). Given a voltage

FIG. 4. Modifications of dynamics by sensory stimuli. All data are from the same experiment. (A) Segments of synaptic noise (sampling rate
1.5 kHz) recorded before (Left) and 2 sec after (Right) a tone. Note the decrease in signal amplitude, despite similar membrane potential (not shown).
(B1–B3) Variations of the ratio, R, after sounds (B1). Superimposed plots of the R values versus time in a series of nine consecutive stimulations
(arrow) repeated every minute. Each trace was constructed using 46 windows (RPs) of 1 sec, overlapping each other by 2y3 of a second, embedding
dimension 5 5, lag 5 33 msec, and cutoff chosen so that 5 2.5%Ne

2 6 1,000 dots (this constant value compensates for changes in signal amplitude).
(B2) Mean biphasic change of R. (B3) Diagrams of normalized ratios of 10 epochs (R10, ordinate) before (bef.) and after (aft.) sounds, at times
signaled by horizontal bars in B1. Numbers on the right indicate the order of stimulus presentations. (C) Plots obtained in one trial, of R versus
time (F) and of its mean derived from surrogates (E, n 5 50 per point). (D) Persistence of R modifications. Probability density function of R values
obtained from consecutive windows of 1 sec each, for n 5 160 sec of control period, 20 sec and 40 sec after each sound (nonoverlapping, same
parameters as for B1). The probability density functions were estimated with a classical histogram (shown for the control) and with more accurate
nonparametric methods known as Parzen estimators (thick lines) (26). Kolmogorov Smirnov tests ruled out that the three histograms originated
from the same distribution (Qks , 1025).
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value V(i) at time iDt, the d-dimensional signal X(i) can be
obtained using the time delays method X(i) 5 (Vi, Vi1L, . . . ,
Vi1(d21)L), where d and L are the embedding dimension and the
lag, respectively. Each matrix contains Ne

2 points, where Ne is the
number of vectors. For this study, L was chosen as the first
minimum of the average mutual information function or of the
autocorrelation function. A dot was plotted at each point (i, j)
whenever X(i) and X(j) were located within a given radius, r. If Nj
is the number of vectors near X(j), there are •j51

Ne Nj
2 dots in the

RP. In this work, r was fixed (constant volume construction) and
determined so that •j51

Ne Nj
2 5 k, to allow comparisons between

successive plots. The ratio (R) and entropy (E) were calculated on
RPs using windows of 1 sec. This short duration guarantees a
minimal stationarity of the signal and allows R and E to be used
as sensitive detectors of minimal variations in dynamics. If Nl is
the number of dots that form upward diagonal line segments, R 5
Nly•j51

Ne Nj
2 and E 5 SPi log Pi, where Pi is the probability that an

upward diagonal line segment contains i dots (i [ [2, max
length]).

Appendix B: Surrogates

With a finite time series of noisy data, the problem of detecting
nonlinearity is a matter of statistical measure. Several ran-
domized representations of the original data can be used. This
method is known as that of the surrogate strategy (18). The
statistical significance of the derived values (ratio, entropy, and
number of UPOs) was assessed using K 5 (N 2 ^Ns&)ys, where
N is the value of the measure in the original series, and ^Ns& and
s are the mean and standard deviation, respectively, of these
parameters in surrogates. Assuming Gaussian statistics, the
probability Pg that Ns # N is given by Pg 5 P(Ns # N) 5 (1 1
erf(sy=2)). A limit of K 5 2.5 indicates a confidence level of
.99.4%.

We thank N. Ankri (our laboratory), Profs. D. S. Faber and P. Rapp
(Allegheny University, Philadelphia), and Prof. D. Ruelle (Institut des
Hautes Études Scientifiques, Paris) for valuable comments and kind
help during this work. This work was supported by Direction des
Recherches Etudes et Techniques Grant 951223 to P.F.

1. Burnod, Y. & Korn, H. (1989) Proc. Natl. Acad. Sci. USA 86,
352–356.

2. Softky, W. R. & Koch, C. (1993) J. Neurosci. 13, 334–350.
3. Holt, R. G., Softky, W. R., Koch, C. & Douglas, R. J. (1996)

J. Neurophysiol. 75, 1806–1814.

4. Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. USA 79, 2554–2558.
5. Buhmann, J. & Schulten, K. (1987) Biol. Cybern. 56, 313–327.
6. Calvin, W. & Stevens, C. (1967) Science 155, 842–844.
7. Shadlen, M. N. & Newsome, W. T. (1994) Curr. Opin. Neurobiol.

4, 569–579.
8. Mainen, Z. F. & Sejnowski, T. J. (1995) Science 268, 1503–1506.
9. van Vreeswijk, C. & Sompolinsky, H. (1996) Science 274, 1724–

1726.
10. Eckmann, J. P. & Ruelle, D. (1985) Rev. Mod. Phys. 57, 617–656.
11. Babloyantz, A. & Destexhe, A. (1986) Proc. Natl. Acad. Sci. USA

83, 3513–3517.
12. Skarda, C. A. & Freeman, W. J. (1987) Behav. Brain Sci. 10,

161–195.
13. Elbert, T., Ray, W. J., Kowalik, Z. J., Skinner, J. E., Graf, K. E.

& Birbaumer, N. (1994) Physiol. Rev. 74, 1–47.
14. Theiler, J. & Rapp, P. E. (1996) Phys. Lett. A 196, 335–341.
15. Faber, D. S. & Korn, H. (1978) Neurobiology of the Mauthner Cell

(Raven, New York).
16. Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. (1987) Europhys.

Lett. 4, 973–977.
17. Webber, C. L. & Zbilut, J. P. (1994) J. Appl. Physiol. 76, 965–973.
18. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer,

J. D. (1992) Physica D 58, 77–94.
19. Schiff, S. J., Jerger, K., Chang, T., Sauer, T. & Aitken, P. G.

(1994) Biophy. J. 67, 684–691.
20. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. (1992)

Science 257, 1230–1235.
21. Ott, E., Grebogi, C. & Yorke, J. A. (1990) Phys. Rev. Lett. 64,

1196–1199.
22. Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L. &

Ditto, L. W. (1994) Nature (London) 370, 615–620.
23. Pei, X. & Moss, F. (1996) Nature (London) 379, 618–621.
24. Rapp, P. E. (1993) Biologist (London) 40, 89–94.
25. Furukawa, T. & Ishii, Y. (1967) J. Neurophysiol. 30, 1377–1403.
26. Parzen, E. (1962) Ann. Math. Stat. 33, 1065–1076.
27. Eckmann, J. P. & Ruelle, D. (1992) Physica D 56, 185–187.
28. Mackey, M. C. & Milton, J. G. (1987) Ann. N.Y. Acad. Sci. 504,

16–32.
29. Freeman, W. J. & Barrie, J. M. (1994) in Temporal Coding in the

Brain, ed. Buzsaki, G. (Springer, Berlin).
30. Faber, D. S. & Korn, H. (1983) Nature (London) 305, 802–804.
31. Fay, R. R. (1978) J. Acoust. Soc. Am. 63, 136–146.
32. Coombes, S. & Dool, S. H. (1996) Dyn. Stab. Syst. 11, 193–217.
33. Korn, H., Oda, Y. & Faber, D. S. (1992) Proc. Natl. Acad. Sci.

USA 89, 440–443.
34. Otis, T. S., Staley, K. J. & Mody, I. (1991) Brain Res. 545,

142–150.
35. Moran, J. & Desimone, R. (1985) Science 229, 782–784.
36. Babloyantz, A. & Lourenco, C. (1994) Proc. Natl. Acad. Sci. USA

91, 9027–9031.

Neurobiology: Faure and Korn Proc. Natl. Acad. Sci. USA 94 (1997) 6511


