Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Dec 1;47(3):711–733. doi: 10.1083/jcb.47.3.711

A CYTOLOGICAL STUDY OF THE CENTRIFUGED WHOLE, HALF, AND QUARTER EGGS OF THE SEA URCHIN ARBACIA PUNCTULATA

Everett Anderson 1
PMCID: PMC2108151  PMID: 5497548

Abstract

While the ooplasmic components of centrifuged eggs of Arbacia punctulata do not stratify in homogeneous layers, we have obtained the following strata beginning with the centripetal end: lipid droplets, pronucleus, clear zone, mitochondria, yolk, and pigment. Whereas mitochondria may be found mingled with yolk bodies, we have never observed lipid droplets nor pigment bodies among any of the other inclusions. The so-called clear zone contains a heterogeneous population of inclusions: annulate lamellae, heavy bodies, Golgi complexes, and rod-containing vacuoles. The peripheral cortical granules of immature (germinal vesicle stage) and of mature eggs are not dislodged from the cortical ooplasm with the centrifugal force utilized. When the eggs are treated with urethane, prior to centrifugation, the cortical granules of mature eggs abandon their peripheral position. Further centrifugation of the initially stratified eggs produces nucleated and nonnucleated halves and the centrifugation of the halves results in quarters. The cytology of the halves and quarters is discussed. The halves and quarters have been activated with either sperm or hypertonic sea water. With the exception of the nucleated halves, we were unable to obtain plutei larvae from the other fractions (red halves and quarters). We believe that the lack of development of the various fragments is a function of the balance of particular inclusions necessary for differentiation.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN R. D. Isolation of cortical material from sea urchin eggs by centrifugation. J Cell Physiol. 1957 Jun;49(3):379–394. doi: 10.1002/jcp.1030490303. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold J. M. The role of the egg cortex in cephalopod development. Dev Biol. 1968 Aug;18(2):180–197. doi: 10.1016/0012-1606(68)90042-0. [DOI] [PubMed] [Google Scholar]
  4. Beams H. W., King R. L. SURVIVAL OF ASCARIS EGGS AFTER CENTRIFUGING. Science. 1936 Aug 7;84(2171):138–138. doi: 10.1126/science.84.2171.138. [DOI] [PubMed] [Google Scholar]
  5. Brachet J. Protein synthesis in the absence of the nucleus. Nature. 1967 Feb 18;213(5077):650–655. doi: 10.1038/213650a0. [DOI] [PubMed] [Google Scholar]
  6. CURTIS A. S. Cortical grafting in Xenopus laevis. J Embryol Exp Morphol. 1960 Jun;8:163–173. [PubMed] [Google Scholar]
  7. Craig S. P. Synthesis of RNA in non-nucleate fragments of sea urchin eggs. J Mol Biol. 1970 Feb 14;47(3):615–618. doi: 10.1016/0022-2836(70)90331-1. [DOI] [PubMed] [Google Scholar]
  8. GROSS P. R., PHILPOTT D. E., NASS S. Electron microscopy of the centrifuged sea urchin egg, with a note on the structure of the ground cytoplasm. J Biophys Biochem Cytol. 1960 Feb;7:135–142. doi: 10.1083/jcb.7.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUMPHREYS W. J. Electron microscope studies on eggs of Mytilus edulis. J Ultrastruct Res. 1962 Dec;7:467–487. doi: 10.1016/s0022-5320(62)90041-2. [DOI] [PubMed] [Google Scholar]
  10. Harvey E. N., Loomis A. L. A MICROSCOPE-CENTRIFUGE. Science. 1930 Jul 11;72(1854):42–44. doi: 10.1126/science.72.1854.42. [DOI] [PubMed] [Google Scholar]
  11. Hörstadius S., Josefsson L., Runnström J. Morphogenetic agents from unfertilized eggs of the sea urchin Paracentratus lividus. Dev Biol. 1967 Aug;16(2):189–202. doi: 10.1016/0012-1606(67)90023-1. [DOI] [PubMed] [Google Scholar]
  12. ITO S., WINCHESTER R. J. The fine structure of the gastric mucosa in the bat. J Cell Biol. 1963 Mar;16:541–577. doi: 10.1083/jcb.16.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Josefsson L., Hörstadius S. Morphogenetic substances from sea urchin eggs. Isolation of animalizing and vegetalizing substances from unfertilized eggs of Paracentrotus lividus. Dev Biol. 1969 Dec;20(6):481–500. doi: 10.1016/0012-1606(69)90029-3. [DOI] [PubMed] [Google Scholar]
  14. PASTEELS J. J., CASTIAUX P., VANDER-MEERSSCHE G. Cytochemical localisations and ultrastructure in the fertilized unsegmented egg of Paracentrotus lividus. J Biophys Biochem Cytol. 1958 Sep 25;4(5):575–577. doi: 10.1083/jcb.4.5.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sachs M. I., Anderson E. A cytological study of artificial parthenogenesis in the sea urchin Arbacia punctulata. J Cell Biol. 1970 Oct;47(1):140–158. doi: 10.1083/jcb.47.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tilney L. G., Marsland D. A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J Cell Biol. 1969 Jul;42(1):170–184. doi: 10.1083/jcb.42.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES