Abstract
Histochemical tests, employing the Wachstein-Meisel medium, indicate that nucleoside triphosphatase activity is found predominantly in two areas of the frog skin epidermis: (1) in mitochondria, where activity is enhanced by dinitrophenol, Mg2+ dependent, but inhibited by fixation; and (2) apparently associated with cell membranes of the middle and outer portions of the epidermis, where activity is inhibited by Mg2+, unaffected by dinitrophenol, and only slightly reduced by fixation. Spectrophotometric analysis shows that Mg2+ in the medium does not increase spontaneous hydrolysis of ATP, thus obviating the possible explanation that changes in substrate concentrations in the medium lead to alterations in the "staining" distributions. It is postulated that perhaps the two enzymes differ in their requirements for substrate—one requiring the polyphosphate to be in complexed form with Mg2+, the other uncomplexed. Concentrations of Mg2+ required to inhibit cell membrane nucleoside triphosphatase activity also inhibit the electrical potential difference and short-circuit current of the frog skin. Although these observations might be taken as presumptive evidence of the cell membrane enzyme as a component of the ion pump system, because of certain dissimilarities with respect to the biochemists' "transport ATPase" and for other reasons discussed in the paper, any definite conclusions in this regard are premature.
Full Text
The Full Text of this article is available as a PDF (715.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N. Adenosine triphosphatase in the microsomal fraction from rat brain. Biochem J. 1962 Jun;83:527–533. doi: 10.1042/bj0830527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ASKARI A., FRATANTONI J. C. EFFECT OF MONOVALENT CATIONS ON THE ADENOSINETRIPHOSPHATASE OF SONICATED ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1964 Oct 23;92:132–141. doi: 10.1016/0926-6569(64)90277-9. [DOI] [PubMed] [Google Scholar]
- BONTING S. L., CARAVAGGIO L. L., HAWKINS N. M. Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys. 1962 Sep;98:413–419. doi: 10.1016/0003-9861(62)90206-0. [DOI] [PubMed] [Google Scholar]
- BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURRAN P. F., GILL J. R., Jr The effect of calcium on sodium transport by frog skin. J Gen Physiol. 1962 Mar;45:625–641. doi: 10.1085/jgp.45.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamura A., Takeda H., Sasaki N. The accumulation of sodium and calcium in a specific layer of frog skin. J Cell Physiol. 1965 Oct;66(2):221–225. doi: 10.1002/jcp.1030660208. [DOI] [PubMed] [Google Scholar]
- LIEBECQ C., JACQUEMOTTE-LOUIS M. Nucléotides de l'adénine. V. Mécanisme de l'hydrolyse non enzymatique de l'adénosine triphosphate. Bull Soc Chim Biol (Paris) 1958;40(5-6):759–765. [PubMed] [Google Scholar]
- Lecocq J., Inesi G. Determination of inorganic phosphate in the presence of adenosine triphosphate by the molybdo-vanadate method. Anal Biochem. 1966 Apr;15(1):160–163. doi: 10.1016/0003-2697(66)90260-0. [DOI] [PubMed] [Google Scholar]
- NOVIKOFF A. B., DRUCKER J., SHIN W. Y., GOLDFISCHER S. Further studies of the apparent adenosinetriphosphatase activity of cell membranes in formol-calcium-fixed tissues. J Histochem Cytochem. 1961 Jul;9:434–451. doi: 10.1177/9.4.434. [DOI] [PubMed] [Google Scholar]
- Novikoff A. B., Quintana N., Villaverde H., Forschirm R. Nucleoside phosphatase and cholinesterase activities in dorsal root ganglia and peripheral nerve. J Cell Biol. 1966 Jun;29(3):525–545. doi: 10.1083/jcb.29.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PADYKULA H. A., GAUTHIER G. F. Cytochemical studies of adenosine triphosphatases in skeletal muscle fibers. J Cell Biol. 1963 Jul;18:87–107. doi: 10.1083/jcb.18.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Taylor R. E., Jr, Taylor H. C., Barker S. B. Chemical and morphological studies on inorganic phosphate deposits in Rana catesbeiana skin. J Exp Zool. 1966 Mar;161(2):271–285. doi: 10.1002/jez.1401610210. [DOI] [PubMed] [Google Scholar]
- USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]