Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Sep 1;66(3):586–608. doi: 10.1083/jcb.66.3.586

Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex

PMCID: PMC2109446  PMID: 125760

Abstract

A cytochemical method for the light and electron microscope localization of the K- and Mg-dependent phosphatase component of the Na- K-ATPase complex was applied to rat kidney cortex, utilizing p- nitrophenylphosphate (NPP) as substrate. Localization of K-N-ATPase activity in kidneys fixed by perfusion with 1% paraformaldehyde -0.25% glutaraldehyde demonstrated that distal tubules are the major cortical site for this sodium transport enzyme. Cortical collecting tubules were moderately reactive, whereas activity in proximal tubules was resolved only after short fixation times and long incubations. In all cases, K-NPPase activity was restricted to the cytoplasmic side of the basolateral plasma membranes, which are characterized in these neplron segments by elaborate folding of the cell surface. Although the rat K- NPPase appeared almost completely insensitive to ouabain with this cytochemical medium, parallel studies with the more glycoside-sensitive rabbit kidney indicated that K-NPPase activity in these nephron segments is sensitive to this inhibitor. In addition to K-NPPase, nonspecific alkaline phosphatase also hydrolyzed NPP. The latter could be differentiated cytochemically from the specific phosphatase, since alkaline phosphatase was K-independent, insensitive to ouabain, and specifically inhibited by cysteine. Unlike K-NPPPase, alkaline phosphatase was localized primarily to the extracellular side of the microvillar border of proximal tubules. A small amount of cysteine- sensitive activity was resolved along peritubular surfaces of proximal tubules. Distal tubules were unreactive. In comparative studies, Mg- ATPase activity was localized along the extracellular side of the luminal and basolateral surfaces of proximal and distal tubules and the basolateral membranes of collecting tubules.

Full Text

The Full Text of this article is available as a PDF (8.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWORTH C. T., LUIBEL F. J., STEWART S. C. The fine structural localization of adenosine triphosphatase in the small intestine, kidney, and liver of the rat. J Cell Biol. 1963 Apr;17:1–18. doi: 10.1083/jcb.17.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albers R. W., Koval G. J. Sodium-potassium-activated adenosine triphosphatase. VII. Concurrent inhibition of NA + -K + -adenosine triphosphatase and activation K + -nitrophenylphosphatase activities. J Biol Chem. 1972 May 25;247(10):3088–3092. [PubMed] [Google Scholar]
  3. Allen J. C., Schwartz A. A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides. J Pharmacol Exp Ther. 1969 Jul;168(1):42–46. [PubMed] [Google Scholar]
  4. Barratt L. J., Rector F. C., Jr, Kokko J. P., Seldin D. W. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest. 1974 Feb;53(2):454–464. doi: 10.1172/JCI107579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burg M., Stoner L. Sodium transport in the distal nephron. Fed Proc. 1974 Jan;33(1):31–36. [PubMed] [Google Scholar]
  6. Diamond J. M., Bossert W. H. Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia. J Cell Biol. 1968 Jun;37(3):694–702. doi: 10.1083/jcb.37.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis R. A., Goertemiller C. C., Jr Cytological effects of salt-stress and localization of transport adenosine triphosphatase in the lateral nasal glands of the desert iguana, Dipsosaurus dorsalis. Anat Rec. 1974 Oct;180(2):285–297. doi: 10.1002/ar.1091800204. [DOI] [PubMed] [Google Scholar]
  9. Ernst S. A., Philpott C. W. Pservation of Na-K-activated and Mg-activated adenosine triphosphatase activities of avian salt gland and teleost gill with formaldehyde as fixative. J Histochem Cytochem. 1970 Apr;18(4):251–263. doi: 10.1177/18.4.251. [DOI] [PubMed] [Google Scholar]
  10. Ernst S. A. Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):13–22. doi: 10.1177/20.1.13. [DOI] [PubMed] [Google Scholar]
  11. Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
  12. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Firth J. A. Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase in mammalian renal tubules. J Histochem Cytochem. 1974 Dec;22(12):1163–1168. doi: 10.1177/22.12.1163. [DOI] [PubMed] [Google Scholar]
  14. Fujita M., Nakao T., Tashima Y., Mizuno N., Nagano K., Nakao M. Potassium-ion stimulated p-nitrophenylphosphatase activity occurring in a highly specific adenosine triphosphatase preparation from rabbit brain. Biochim Biophys Acta. 1966 Mar 28;117(1):42–53. doi: 10.1016/0304-4165(66)90150-4. [DOI] [PubMed] [Google Scholar]
  15. GORDON J. J. The characterization and assay of enzymes in rat adrenal cortex. I. Esterase and phosphatase activities. Biochem J. 1952 Apr;51(1):97–103. doi: 10.1042/bj0510097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Giebisch G., Boulpaep E. L., Whittembury G. Electrolyte transport in kidney tubule cells. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):175–196. doi: 10.1098/rstb.1971.0088. [DOI] [PubMed] [Google Scholar]
  17. Gillis J. M., Page S. G. Localization of ATPase activity in striated muscle and probable sources of artifact. J Cell Sci. 1967 Mar;2(1):113–118. doi: 10.1242/jcs.2.1.113. [DOI] [PubMed] [Google Scholar]
  18. Grantham J. J., Kurg M. B., Obloff J. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J Clin Invest. 1970 Oct;49(10):1815–1826. doi: 10.1172/JCI106399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Griffith L. D., Bulger R. E., Trump B. F. Fine structure and staining of mucosubstances on "intercalated cells" from the rat distal convoluted tubule and collecting duct. Anat Rec. 1968 Mar;160(3):643–662. doi: 10.1002/ar.1091600313. [DOI] [PubMed] [Google Scholar]
  20. Guth L., Albers R. W. Histochemical demonstration of (Na+-K+)-activated adenosine triphosphatase. J Histochem Cytochem. 1974 May;22(5):320–326. doi: 10.1177/22.5.320. [DOI] [PubMed] [Google Scholar]
  21. Guth L. Fact and artifact in the histochemical procedure for myofibrillar ATPase. Exp Neurol. 1973 Nov;41(2):440–450. doi: 10.1016/0014-4886(73)90286-0. [DOI] [PubMed] [Google Scholar]
  22. Haussler M., Nagode L. A., Rasmussen H. Induction of intestinal brush border alkaline phosphatase by vitamin D and identity with ca-ATPase. Nature. 1970 Dec 19;228(5277):1199–1201. doi: 10.1038/2281199a0. [DOI] [PubMed] [Google Scholar]
  23. Hendler E. D., Torretti J., Epstein F. H. The distribution of sodium-potassium--activated adenosine triphosphatase in medulla and cortex of the kidney. J Clin Invest. 1971 Jun;50(6):1329–1337. doi: 10.1172/JCI106612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacobsen N. O., Jorgensen F. Ultrastructural observations on the pars descendens of the proximal tubule in the kidney of the male rat. Z Zellforsch Mikrosk Anat. 1973 Feb 6;136(4):479–499. doi: 10.1007/BF00307365. [DOI] [PubMed] [Google Scholar]
  25. Jacobsen N. O., Jorgensen P. L. A quantitative biochemical and histochemical study of the lead method for localization of adenosine triphosphate-hydrolyzing enzymes. J Histochem Cytochem. 1969 Jul;17(7):443–453. doi: 10.1177/17.7.443. [DOI] [PubMed] [Google Scholar]
  26. Jacobson N. O., Jorgensen F., Thomsen A. C. On the localization of some phosphatases in three different segments of the proximal tubules in the rat kidney. J Histochem Cytochem. 1967 Aug;15(8):456–469. doi: 10.1177/15.8.456. [DOI] [PubMed] [Google Scholar]
  27. Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leuenberger P. M., Novikoff A. B. Localization of transport adenosine triphosphatase in rat cornea. J Cell Biol. 1974 Mar;60(3):721–731. doi: 10.1083/jcb.60.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  30. Malnic G., Klose R. M., Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966 Sep;211(3):548–559. doi: 10.1152/ajplegacy.1966.211.3.548. [DOI] [PubMed] [Google Scholar]
  31. Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
  32. Martinez-Maldonado M., Allen J. C., Inagaki C., Tsaparas N., Schwartz A. Renal sodium-potassium-activated adenosine triphosphatase and sodium reabsorption. J Clin Invest. 1972 Oct;51(10):2544–2551. doi: 10.1172/JCI107070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  34. Maunsbach A. B. Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res. 1966 Oct;16(3):239–258. doi: 10.1016/s0022-5320(66)80060-6. [DOI] [PubMed] [Google Scholar]
  35. Maunsbach A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res. 1966 Jun;15(3):242–282. doi: 10.1016/s0022-5320(66)80109-0. [DOI] [PubMed] [Google Scholar]
  36. Mayer M., Avi-Dor Y. Interaction of solvents with membranal and soluble potassium ion-dependent enzymes. Biochem J. 1970 Jan;116(1):49–54. doi: 10.1042/bj1160049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. NOVIKOFF A. B., DRUCKER J., SHIN W. Y., GOLDFISCHER S. Further studies of the apparent adenosinetriphosphatase activity of cell membranes in formol-calcium-fixed tissues. J Histochem Cytochem. 1961 Jul;9:434–451. doi: 10.1177/9.4.434. [DOI] [PubMed] [Google Scholar]
  38. Novikoff A. B. Their phosphatase controversy: Love's labours lost. J Histochem Cytochem. 1970 Dec;18(12):916–917. doi: 10.1177/18.12.916. [DOI] [PubMed] [Google Scholar]
  39. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  40. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Reale E., Luciano L. Kritische elektronenmikroskopische Studien über die Lokalisation der Aktivität alkalischer Phosphatase im Hauptstück der Niere von Mäusen. Histochemie. 1967;8(3):302–314. doi: 10.1007/BF00306094. [DOI] [PubMed] [Google Scholar]
  42. Rosenthal A. S., Moses H. L., Ganote C. E. Interpretation of phosphatase cytochemical data. J Histochem Cytochem. 1970 Dec;18(12):915–915. doi: 10.1177/18.12.915. [DOI] [PubMed] [Google Scholar]
  43. SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
  44. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  45. Schmidt U., Dubach U. C. Activity of (Na+K+)-stimulated adenosintriphosphatase in the rat nephron. Pflugers Arch. 1969;306(3):219–226. doi: 10.1007/BF00592433. [DOI] [PubMed] [Google Scholar]
  46. Schmidt U., Dubach U. C. Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron. I. Alkaline phosphatase, (Mg++) ATPase and Na+K+) ATPase. Z Gesamte Exp Med. 1969;151(2):93–102. doi: 10.1007/BF02044665. [DOI] [PubMed] [Google Scholar]
  47. Schmidt U., Dubach U. C. Na K stimulated adenosinetriphosphatase: intracellular localisation within the proximal tubule of the rat nephron. Pflugers Arch. 1971;330(3):265–270. doi: 10.1007/BF00588617. [DOI] [PubMed] [Google Scholar]
  48. Silva P., Hayslett J. P., Epstein F. H. The role of Na-K-activated adenosine triphosphatase in potassium adaptation. Stimulation of enzymatic activity by potassium loading. J Clin Invest. 1973 Nov;52(11):2665–2671. doi: 10.1172/JCI107460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Specht S. C., Robinson J. D. Stimulation of the (Na + + K + )-dependent adenosine triphosphatase by amino acids and phosphatidylserine: chelation of trace metal inhibitors. Arch Biochem Biophys. 1973 Jan;154(1):314–323. doi: 10.1016/0003-9861(73)90063-5. [DOI] [PubMed] [Google Scholar]
  50. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  51. Tormey J. M. Significance of the histochemical demonstration of ATPase in epithelia noted for active transport. Nature. 1966 May 21;210(5038):820–822. doi: 10.1038/210820a0. [DOI] [PubMed] [Google Scholar]
  52. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  53. Whittembury G., Proverbio F. Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pflugers Arch. 1970;316(1):1–25. doi: 10.1007/BF00587893. [DOI] [PubMed] [Google Scholar]
  54. Yoshida H., Nagai K., Ohashi T., Nakagawa Y. K+ minus dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+. Biochim Biophys Acta. 1969 Jan 7;171(1):178–185. doi: 10.1016/0005-2744(69)90117-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES