Abstract
It is well known that ouabain, a specific inhibitor of Na-K ATPase-dependent transport, interferes with renal tubular salt reabsorption. In this study, we employed radiochemical methods to measure the kinetics of [3H]ouabain binding to slices of rabbit renal medulla and high resolution quantitative autoradiography to determine the location and number of cellular binding sites. The kinetics obeyed a simple bimolecular reaction with an association constant of 2.86 +/- 0.63 SD x 10(3) M-1 min-1 and a dissociation constant of 1.46 x 10(-3) min-1, yielding an equilibrium binding constant of 0.51 x 10(-6) M. Binding was highly dependent upon temperature. At a concentration of 10(-6) M, the rate of accumulation between 25 degrees C and 35 degrees C exhibited a Q10 of 1.8. At 0 degree C the rate of ouabain dissociation was negligible. The specificity of binding was demonstrated with increasing potassium concentrations. At a concentration of 1 microM, 6 mM, and 50 mM K+ produced a 2.5- and 7-fold decrease, respectively, in the rate of ouabain accumulation observed at zero K+. Binding was completely inhibited by 1 mM strophanthin K. The major site of ouabain binding was the thick ascending limb; little or no binding was observed in thin limbs and collecting ducts. Moreover, binding was confined to the basolateral membranes. From autoradiographic grain density measurements, it was estimated that each cell contains over 4 x 10(6) ouabain binding sites or Na-K ATPase molecules. These results taken together with physiological and biochemical observations suggest that Na-K ATPase plays a key role in salt reabsorption by this segment.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akera T., Brody T. M. Membrane adenosine triphosphatase. The effect of potassium on the formation and dissociation of the ouabain-enzyme complex. J Pharmacol Exp Ther. 1971 Mar;176(3):545–557. [PubMed] [Google Scholar]
- Allen J. C., Schwartz A. Effects of potassium, temperature and time on ouabain interaction with the cardiac Na+, K+-ATPase: further evidence supporting an allosteric site. J Mol Cell Cardiol. 1970 Mar;1(1):39–45. doi: 10.1016/0022-2828(70)90027-1. [DOI] [PubMed] [Google Scholar]
- Almendares J. A., Kleinzeller A. The ouabain inhibition of sugar transport in kidney cortex cells. Arch Biochem Biophys. 1971 Aug;145(2):511–519. doi: 10.1016/s0003-9861(71)80011-5. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berliner R. W. The concentrating mechanism in the renal medulla. Kidney Int. 1976 Feb;9(2):214–222. doi: 10.1038/ki.1976.22. [DOI] [PubMed] [Google Scholar]
- Biedenbach M. A., Beuerman R. W., Brown A. C. Graphic-digitizer analysis of axon spectra in ethmoidal and lingual branches of the trigeminal nerve. Cell Tissue Res. 1975;157(3):341–352. doi: 10.1007/BF00225525. [DOI] [PubMed] [Google Scholar]
- Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
- Dunham P. B., Hoffman J. F. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J Gen Physiol. 1971 Jul;58(1):94–116. doi: 10.1085/jgp.58.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutta S., Marks B. H. Factors that regulate ouabain-H3 accumulation by the isolated guinea-pig heart. J Pharmacol Exp Ther. 1969 Dec;170(2):318–325. [PubMed] [Google Scholar]
- Ebel H., Aulbert E., Merker H. J. Isolation of the basal and lateral plasma membranes of rat kidney tubule cells. Biochim Biophys Acta. 1976 May 21;433(3):531–546. doi: 10.1016/0005-2736(76)90279-0. [DOI] [PubMed] [Google Scholar]
- Ellis R. A., Goertemiller C. C., Jr Cytological effects of salt-stress and localization of transport adenosine triphosphatase in the lateral nasal glands of the desert iguana, Dipsosaurus dorsalis. Anat Rec. 1974 Oct;180(2):285–297. doi: 10.1002/ar.1091800204. [DOI] [PubMed] [Google Scholar]
- Epstein F. H., Silva P. Role of sodium, potassium-ATPase in renal function. Ann N Y Acad Sci. 1974;242(0):519–526. doi: 10.1111/j.1749-6632.1974.tb19114.x. [DOI] [PubMed] [Google Scholar]
- Erdmann E., Schoner W. Ouabain-receptor interactions in (Na + +K + )-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta. 1973 May 11;307(2):386–398. doi: 10.1016/0005-2736(73)90104-1. [DOI] [PubMed] [Google Scholar]
- Ernst S. A., Ellis R. A. The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J Cell Biol. 1969 Feb;40(2):305–321. doi: 10.1083/jcb.40.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst S. A., Mills J. W. Basolateral plasma membrane localiztion of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol. 1977 Oct;75(1):74–94. doi: 10.1083/jcb.75.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst S. A., Philpott C. W. Pservation of Na-K-activated and Mg-activated adenosine triphosphatase activities of avian salt gland and teleost gill with formaldehyde as fixative. J Histochem Cytochem. 1970 Apr;18(4):251–263. doi: 10.1177/18.4.251. [DOI] [PubMed] [Google Scholar]
- Ernst S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex. J Cell Biol. 1975 Sep;66(3):586–608. doi: 10.1083/jcb.66.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
- George S. G., Kenny J. Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J. 1973 May;134(1):43–57. doi: 10.1042/bj1340043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldin S. M., Tong S. W. Reconstitution of active transport catalyzed by the purified sodium and potassium ion-stimulated adenosine triphosphatase from canine renal medulla. J Biol Chem. 1974 Sep 25;249(18):5907–5915. [PubMed] [Google Scholar]
- Grantham J. J., Kurg M. B., Obloff J. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J Clin Invest. 1970 Oct;49(10):1815–1826. doi: 10.1172/JCI106399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross J. B., Imai M., Kokko J. P. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest. 1975 Jun;55(6):1284–1294. doi: 10.1172/JCI108048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen O. The relationship between G-strophanthin-binding capacity and ATPase activity in plasma-membrane fragments from ox brain. Biochim Biophys Acta. 1971 Mar 9;233(1):122–132. doi: 10.1016/0005-2736(71)90364-6. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Isolation and characterization of the components of the sodium pump. Q Rev Biophys. 1974 May;7(2):239–274. doi: 10.1017/s0033583500001426. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L., Skou J. C. Preparation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidney. Biochem Biophys Res Commun. 1969 Sep 24;37(1):39–46. doi: 10.1016/0006-291x(69)90877-8. [DOI] [PubMed] [Google Scholar]
- Karnaky K. J., Jr, Kinter L. B., Kinter W. B., Stirling C. E. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol. 1976 Jul;70(1):157–177. doi: 10.1083/jcb.70.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J Cell Biol. 1976 Feb;68(2):287–303. doi: 10.1083/jcb.68.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol. 1976 Feb;68(2):304–318. doi: 10.1083/jcb.68.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
- Mills J. W., Ernst S. A., DiBona D. R. Localization of Na+-pump sites in frog skin. J Cell Biol. 1977 Apr;73(1):88–110. doi: 10.1083/jcb.73.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills J. W., Ernst S. A. Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta. 1975 Jan 28;375(2):268–273. doi: 10.1016/0005-2736(75)90194-7. [DOI] [PubMed] [Google Scholar]
- Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
- Nechay B. R., Nelson J. A., Contreras R. R., Sarles H. E., Remmers A. R., Jr, beathard G. A., Jr, fish J. C., Lindley J. D., Brady J. M., Lerman M. J. Ouabain-sensitive adenosine triphosphatase from human kidneys. J Pharmacol Exp Ther. 1975 Feb;192(2):303–309. [PubMed] [Google Scholar]
- Overton J., Eichholz A., Crane R. K. STUDIES ON THE ORGANIZATION OF THE BRUSH BORDER IN INTESTINAL EPITHELIAL CELLS : II. Fine Structure of Fractions of Tris-Disrupted Hamster Brush Borders. J Cell Biol. 1965 Sep 1;26(3):693–706. doi: 10.1083/jcb.26.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinton P. M., Tormey J. M. Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: a question to the role of the enzyme in secretion. J Membr Biol. 1976 Nov 29;29(4):383–399. doi: 10.1007/BF01868972. [DOI] [PubMed] [Google Scholar]
- Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Renfro J. L., Miller D. S., Karnaky K. J., Jr, Kinter W. B. Na-K-ATPase localization in teleost urinary bladder by [3H]ouabain autoradiography. Am J Physiol. 1976 Dec;231(6):1735–1743. doi: 10.1152/ajplegacy.1976.231.6.1735. [DOI] [PubMed] [Google Scholar]
- Rocha A. S., Kokko J. P. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973 Mar;52(3):612–623. doi: 10.1172/JCI107223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Dubach U. C. Na K stimulated adenosinetriphosphatase: intracellular localisation within the proximal tubule of the rat nephron. Pflugers Arch. 1971;330(3):265–270. doi: 10.1007/BF00588617. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
- Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoner L. C., Burg M. B., Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974 Aug;227(2):453–459. doi: 10.1152/ajplegacy.1974.227.2.453. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J., Goldin S. M. Reconstitution of active ion transport by the sodium and potassium ion-stimulated adenosine triphosphatase from canine brain. J Biol Chem. 1975 May 25;250(10):4022–4024. [PubMed] [Google Scholar]
- Tobin T., Sen A. K. Stability and ligand sensitivity of (3H)ouabain binding to (Na+ + K+)ATPase. Biochim Biophys Acta. 1970 Jan 14;198(1):120–131. doi: 10.1016/0005-2744(70)90040-9. [DOI] [PubMed] [Google Scholar]
- WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINDHAGER E. E. ELECTROPHYSIOLOGICAL STUDY OF RENAL PAPILLA OF GOLDEN HAMSTERS. Am J Physiol. 1964 Apr;206:694–700. doi: 10.1152/ajplegacy.1964.206.4.694. [DOI] [PubMed] [Google Scholar]