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ABSTRACT 

Models for the spatial distribution of protein, lipid and water in gap junction 
structures have been constructed from the results of the analysis of X-ray diffrac- 
tion data described here and the electron microscope and chemical data presented 
in the preceding paper (Caspar, D. L. D.,  D. A. Goodenough,  L. Makowski, 
and W. C. Phillips. 1977. 74:605-628).  The continuous intensity distribution 
on the meridian of the X-ray diffraction pattern was measured, and corrected for 
the effects of the partially ordered stacking and partial orientation of the junctions 
in the X-ray specimens. The electron density distribution in the direction perpen- 
dicular to the plane of the junction was calculated from the meridional intensity 
data. Determination of the interference function for the stacking of the junctions 
improved the accuracy of the electron density profile. The pair-correlation func- 
tion, which provides information about the packing of junctions in the specimen, 
was calculated from the interference function. The intensities of the hexagonal 
lattice reflections on the equator of the X-ray pattern were used in coordination 
with the electron microscope data to calculate the two-dimensional electron 
density projection onto the plane of the membrane.  Differences in the structure of 
the connexons as seen in the meridional profiles and equatorial projections were 
shown to be correlated to changes in lattice constant. The parts of the junction 
structure which are variable have been distinguished from the invariant parts by 
comparison of X-ray data from different specimens. The combination of these 
results with electron microscope and chemical data provides low-resolution three- 
dimensional representations of the structures of gap junctions. 

The structural variations detailed in the preceding 
paper (5) establish that we are looking at not one 
structure of the gap junction, but at a family of 
structures. By observing closely related states of a 
molecular assembly, it is often possible to infer 
something about the way that transitions occur 
between states. These molecular rearrangements 

may be significant in the functional activity of the 
structure. Furthermore, polymorphism provides a 
constraint on the interpretation of the diffraction 
patterns. For example, the connexon structure is 
likely to be similar in arrays with different lattice 
constants, although the intensities in the X-ray 
patterns may be quite different. 

TItE JOURNAL OF CELL BIOLOGY �9 VOLUME 74, 1977 �9 pages 629-645 629 



From analysis of the X-ray intensity measure- 
ments, the distribution of scattering density within 
the gap junction can be determined. Protein, lipid, 
and water have distinguishable scattering densi- 
ties. The electron density of hydrated protein and 
lipid polar groups is about 0.40 e/,~ 3 (electrons per 
cubic angstrom), that of lipid hydrocarbons is 
about 0.27 e//~ 3, and that of water is 0.33 e/]k 3. It 
is, therefore, possible to use scattering density 
maps to distinguish the spatial distribution of the 
principal chemical constituents within the junc- 
tion. In this way, the diffracted X-ray intensity 
measurements can be used to relate the morpho- 
logical features observed in the electron micro- 
graphs to the chemical composition of the .junc- 
tions. 

Disorder in the gap .junction lattice limits the 
structural detail that can be seen by crystallo- 
graphic analysis of X-ray diffraction patterns or 
electron micrographs. Averaging over many iden- 
tical units results in images that are blurred by 
disorder. The effect of disorder in any periodic 
array on its X-ray or electron diffraction pattern or 
on the optical diffraction from an electron micro- 
graph is to reduce the intensity of higher-angle 
reflections. Beyond some limiting resolution de- 
termined by the average distance that the units are 
irregularly displaced, reflections disappear into 
the diffuse scattering background from the disor- 
dered structure. Since each reflection may be con- 
sidered a piece of information about the structure, 
a reduction in the number of observed reflections 
corresponds to a loss of information about the 
structure. 

Electron microscope images of individual mac- 
romolecular units can be obtained, but only at a 
radiation dose that destroys the biological struc- 
ture. What is usually looked at in an electron 
micrograph is a stained fossil or a cast of the 
structure. With low electron doses which yield 
very faint, noisy micrographs, Unwin and Hender- 
son (14) obtained high-resolution images of the 
protein in the two dimensionally crystalline purple 
membrane by averaging over many units as is 
done with X-ray crystallography. They obtained 
the phase information that is lost in a diffraction 
pattem from the averaged image of the ordered 
structure. Electron diffraction patterns that we 
have recorded from gap junctions under low dose 
conditions do not, however, extend to the resolu- 
tion of the X-ray diffraction patterns; no more 
than two or three reflections were observed. The 
X-ray diffraction patterns presented in the preced- 

ing paper provide the highest-resolution structural 
information that we have been able to obtain 
about the arrangement of protein and lipid in the 
gap junction. 

Lack of phase information in the X-ray diffrac- 
tion patterns themselves does not present a signifi- 
cant problem in the analysis of the gap junction 
structure. At  the resolution at which we are work- 
ing, sufficient information can be obtained from a 
combination of electron microscopy and a priori 
knowledge of bilayer structure to reliably phase 
the data. The principal reason why a phase prob- 
lem does not arise is the small amount of data. All 
possible phase choices can be used to calculate 
structures which can then be checked for consist- 
ency with the electron microscope images. The 
major problem in the data analysis is the measure- 
ment of the diffracted intensity. In order to extract 
the signal from the noise in the X-ray patterns and 
to reliably separate meridional and equatorial dif- 
fraction, methods were used which were devel- 
oped originally for image analysis of electron mi- 
crographs and for signal processing in electrical 
engineering. These methods provided a way of 
extracting information about the structure from 
diffraction patterns of disoriented gap junction 
specimens in which there is a significant amount of 
disorder. 

The use of results from X-ray diffraction, elec- 
tron microscopy, and chemical analysis together to 
characterize the structure provides more informa- 
tion than simply adding up conclusions derived 
independently from the different techniques. The 
X-ray scattering density maps, calculated using 
constraints from electron micrographs, imply a 
distribution of lipid and protein that must be there 
in the proportions indicated by the chemical analy- 
ses. Requiring that the interpretations of the dif- 
ferent bits of information about the structure be 
self-consistent reduces the ambiguities inherent in 
the separate observations. 

MATERIALS AND METHODS 
Isolation of gap junctions from mouse liver, electron 
microscopy, and X-ray diffraction were carried out as 
reported in the preceding paper (5). 

The X-ray photographs were densitometered with an 
Optronics rotating drum scanner (Optronics Interna- 
tional, Inc., Chelmsford, Mass.). Optical densities were 
usually measured on a 100 ~m raster, although a 25 ~m 
raster was occasionally used. The resulting square grid of 
optical density measurements was averaged over 10 ~ arcs 
at constant radius from the center of the diffraction 
patterns, producing a set of data on a polar grid. Back- 
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ground was estimated from the optical density measured 
at the positions of the zeros of meridional diffraction. 
When overlap of meridian and equator was significant, 
contributions from the two could often be separated by 
recognition of the distinctive peak shapes of the two 
sources of diffracted intensity. Where ambiguities in 
background determination arose, the optical densities at 
a given radius from the center of the diffraction pattern 
were analyzed as a function of angle about the center of 
the pattern. Angular deconvolution of the data for a 
disorientation function was occasionally used, but could 
provide reliable background determination only on the 
very best oriented specimens. 

After background subtraction, the continuous diffrac- 
tion on the meridian was corrected for disorientation and 
the Lorentz factor by multiplying the measured intensi- 
ties by the square of the reciprocal space radius R = 2 
sinS/h, where 20 is the angle of scattering and ~. is the 
wavelength of the X rays used (1.54/~). The absolute 
value of the continuous transform was obtained by taking 
the square root of the resultant, 

where I(R) is the background corrected signal. The struc- 
ture factors for the equatorial reflections were obtained 
in a similar manner, first correcting the reflections for 
multiplicity (ah,), as well as disorientation and the Lor- 
entz factor (R~), 

f F~kl = X / m ~ / ~ ,  

where ahk is the multiplicity correction for the reflection 
(h, k), 

lwhenh = 0ork  = 0orh  = k  
ahk = ]. 1/2 Otherwise 

In these equations, one factor of R is due to disorienta- 
tion, and one is the Lorentz factor. 

ANALYSIS OF X-RAY DATA 

Meridional Diffraction 

Meridional diffraction is due to electron density 
fluctuations perpendicular to the plane of the gap 
junction, and complete analysis of this diffraction 
leads to the calculation of the one-dimensional 
electron density distribution along this direction. 
Some diffraction photographs were of sufficient 
quality to allow the calculation of the interference 
function and the pair-correlation function of the 
junctions stacked in the sample. As mentioned in 
the preceding paper (5), significant differences in 
meridional diffraction were observed among dif- 
ferent specimens. In this section, the complete 
analysis of the meridional diffraction from speci- 

men E153 is described. In later sections, the me- 
ridional diffraction from different specimens will 
be compared. 

A densitometer trace of the meridional diffrac- 
tion from specimen E153 is shown in Fig. 1. The 
modulus of the continuous transform, 11~, is deter- 
mined by subtraction of background and correc- 
tion for geometric factors. In order to calculate the 
electron density profile from this function, the 
continuous transform must be phased, and its 
value at very small diffraction angles must be 
determined. More accurate calculation of the elec- 
tron density profile can be made by correcting the 
data for interference effects due to the stacking of 
junctions in the specimen. This correction also 
leads to an estimate of the pair-correlation func- 
tion for the junctions in the specimen. 

The background was subtracted by assuming 
that the minima of the meridional diffraction are 
nodes of the transform. That this is, in fact, the 
case can be shown by the minimum wavelength 
principle as discussed below. Only two ambiguities 
arise in this procedure. Assuming that the mini- 
mum of about 0.04 A -1 is a zero leads to an 
unexpected "bump" in an otherwise monotoni- 
cally decreasing background. By plotting the opti- 
cal density (which has been measured on a polar 
grid relative to the center of the diffraction pat- 
tern) as a function of angle at this radius on the 
diffraction photograph, it was found that both the 
meridian and equator were minima of optical den- 
sity. The maximum at this radius corresponds to 
the position of a lattice line associated with the 
(1,0) or (2,0) reflection. The bump can be seen in 
the background on both meridional and equatorial 
densitometer traces and is clearly due to an off- 
equatorial diffraction peak. The presence of this 
off-equatorial peak lowers the reliability of the 
background subtraction in its neighborhood, but 
since its profile must be smooth and its magnitude 
is relatively low, the errors related to its presence 
are not likely to be too great. The other ambiguity 
in background subtraction is in the region of very 
low intensity centered at 0.06 A-1. Here, the 
noise in the data is comparable to the diffracted 
intensity and choice of background may be in 
error by an amount corresponding to the esti- 
mated signal. The question as to how many nodes 
there are in this region of the diffraction pattern 
presents the only ambiguity in phasing, and the 
phase choices could be biased by the way the 
background is subtracted. 

Choosing phases for the meridional diffraction 
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FIGURE 1 Densitometer trace of the meridian of the X-ray diffraction pattern from specimen E153 
shown in Fig. 10a of the preceding paper. The reciprocal space coordinate R is defined in terms of the 
scattering angle 28, and the wavelength h of the X-rays used which was 1.54 ,~. At small scattering angles, 
the distance, R, is simply proportional to distance measured on the film. The optical densities were 
measured on a 100-/zm grid for Film 1 and a 25-p,m grid for Film 4, and then averaged on arcs -*5 ~ from 
the meridian. Four films were exposed simultaneously. Since each film absorbs about 30% of the incident 
radiation, Film 1 receives about 27 times the exposure of Film 4. This allows measurement of a wide range 
of intensities with a single exposure. Traces taken from Film 4 and Film 1 are shown. In order to show the 
high-angle detail, the intensity scale on the tracing from Film 1 is magnified (• 5) in the third trace shown. 
The broken line represents the background drawn to connect the minima identified as zeros of the junction 
transform. 

once the background is subtracted is relatively 
straightforward. Since the gap junction is centro- 
symmetric, the transform must be a real function, 
and the phase choice is reduced to a sign choice. 
The minimum wavelength principle (3) is suffi- 
cient to determine the sign relations among adja- 
cent peaks. According to this principle, two adja- 
cent peaks in the diffraction from a centrosymme- 
tric structure of lateral extent, d, in real space 
must be of opposite sign if the peak separation in 
reciprocal space is less than 2/d. Electron micro- 
graphs of gap junctions show that the width is 
about 150/~;  therefore, any two diffraction peaks 
closer than (1/75) ,~-1 to each other must be of 
opposite sign. This condition requires a sign 
change at all observed minima in the intensity 
except the region of low intensity about 0.06 ~-1.  
There is clearly a zero at about 0.052 /~--1 Be- 
tween 0.058 ~-~ and 0 .062/k  -~ there may be one 
or two zeros. Close inspection of the densitometer 
traces suggests that two is most likely. However. 

since the magnitude of the noise in this region is 
comparable to the intensity of diffraction, a more 
reliable demonstration is necessary. The number  
of zeros in this region is important since it will 
affect the assignment of signs for the last two 
diffraction fringes. These fringes contribute signif- 
icant high-resolution detail to the calculated den- 
sity profile. 

Knowledge of the width of the junction was 
used to resolve the ambiguity about the number  of 
zeros in the region about 0 .06/~-1 in the diffrac- 
tion pattern. The electron density profiles for the 
two possible choices of signs were calculated. 
These profiles were truncated at -+90/~ from the 
center since the maximum thickness of the junc- 
tion is definitely less than 180/k .  The diffraction 
pattern was recalculated from the truncated pro- 
files. The truncation removes the contribution of 
high spatial frequency noise and interference ef- 
fects in the diffraction pattern. Comparison of the 
recalculated intensity with that measured showed 
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that the structure corresponding to only one zero 
in this region would give rise to diffraction much 
stronger than that actually detected at spacings of 
about 0.06 A -~. Only the choice of two zeros 
was consistent with the observed intensity. Neither 
the uncertainties in measurement of background 
nor the presence of interference effects substan- 
tially affect this analysis. In this region of the 
pattern, diffracted intensity is hardly greater than 
background; thus background is accurately mea- 
sured. Interference is a multiplicative effect which 
is negligible in regions of low intensity. We con- 
dude from this analysis that there are two zeros 
between 0.058 and 0.062/~-1. 

The central maximum must be positive since the 
density of the gap junction is greater than that of 
water. All phase relationships between adjacent 
peaks have therefore been established out to a 
spacing of 0.1 ~,-]. The phasing of the meridio- 
hal diffraction determined by these methods is 
shown in Fig. 2. 

The central maximum was measured into a spac- 
ing of 0.0042 A -~ using a long camera (300 mm 
specimen-to-film distance). The central maximum 
was then extrapolated into zero angle using the 
Shannon sampling theorem (11). Care was taken 
to insure that the interference effects discussed be- 
low did not affect this estimate. With the sign 
choice in Fig. 2, the electron density profile shown 
in Fig. 3 was calculated using the extrapolated 
central maximum. 

The measured X-ray diffraction intensity is, in 
general, the product of a term containing informa- 
tion about the structure of the scattering unit and a 
term due to interference of diffraction from differ- 
ent scattering units in the specimen. The proper- 
ties of the interference function are discussed in 
the appendix. Interference introduces higher spa- 
tial frequencies into the diffraction pattern than 
would be present in diffraction from a single unit. 
Examination of the electron density profile in Fig. 
3 shows that significant ripple is present at dis- 
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FIGURE 2 Meridional diffraction amplitude and Fourier transform of the membrane electron density 
profile corrected for interference effects. The open circles in the top graph are measured from the 
densitometer traces from specimen E153 (Fig. 1) and phased as described in the text. The solid line is the 
continuous transform corrected for the interference effects due to stacking of the junctions. This curve is 
the Fourier transform of the electron density profile in solid line in Fig. 3. The bottom graph, T(R), is a plot 
of the square root of the interference function as defined in the Appendix. This function is the ratio of the 
data points and continuous curve plotted above. The open circles indicate T(R) as experimentally 
determined. The continuous curve is the T(R) calculated from the pair-correlation function shown in Fig. 4. 
Since the experimental error in T(R) is inversely proportional to the magnitude of F(R), data points near 
the zeros of F(R) are indeterminant and have been omitted from this graph. 
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FIGURE 3 Electron density profile of gap junctions. The continuous curve is the electron density profile 
corrected for the interference function. The high density peaks in the electron density profile correspond 
to the positions of the polar groups of the bilayer lipids. The polar groups are separated by 42/~. across the 
bilayers and 45 A across the gap. The low density minimum in the center of the bilayer is occupied mainly 
by lipid hydrocarbon and protein. The electron density of this region is much higher than would be ex- 
pected for pure lipid hydrocarbons. There must be a significant protein content in this region to raise the 
average electron density to nearly that of water. The center of the gap has an electron density considerably 
greater than that of water, indicating that a significant fraction of the gap must also be occupied by pro- 
tein. The electron density profile calculated directly from the data from specimen E153 is shown by 
the broken line. This curve differs from the corrected electron density profile only at distances greater 
than the thickness of the junction. The difference between these two curves is the only information 
available for the calculation of the interference function which is the reason for the high experimental error 
involved in its determination. The ripple beyond the junction boundary represents an averaged density 
projection of the neighboring junction units. If the stacking arrangement of junctions were crystalline, 
the projection of the neighboring unit would be a mirror image of the junction shown in the solid line. 

tances greater than 90 .~ from the center of sym- 
metry of the junction. Some of this ripple is due to 
experimental error, but most of it is due to inter- 
ference effects. By correcting the diffraction data 
for this effect, a more accurate electron density 
distribution may be obtained and the pair-correla- 
tion function calculated. 

The interference function may be determined 
from electron micrographs of X-ray specimens us- 
ing optical diffraction as reported in the preceding 
paper (5). In this study, the optical transforms 
were used only as a guide to aid in the evaluation 
of the X-ray results. In the optical transform of the 
tracings shown in the preceding paper, the diffrac- 
tion fringes due to interference have a wavelength 
of about 150 A. The interference damps out 
slowly, with eight or more fringes visible in 
strongly exposed patterns. As will be shown be- 
low, these properties are completely consistent 
with the interference function determined from 
the X-ray data. 

The interference function was estimated from 
the X-ray data by assuming that all calculated 
electron density greater than 90 A from the center 

of symmetry of the junction was due to interfer- 
ence effects as discussed in the Appendix. The 
electron density profile was then refined using the 
real space constraint that the pair-correlation func- 
tion must be zero inside the interval _+140 
about the origin. This is due to the fact that iunc- 
tions, which appear to be about 150/~ across from 
the electron microscopy, cannot come closer than 
150 /~ from each other, center-to-center. The 
value of 140 ~ was chosen for the refinement to 
allow for possible interleaving of the junctions and 
to allow for the finite resolution of the data. The 
refinement has little effect on the electron density 
profile as shown in Fig. 3. However, it results in 
the calculation of the interference function shown 
in Fig. 2 and the pair-correlation function shown 
in Fig. 4. 

The electron density profile in Fig. 3 shows that 
the gap junction exhibits a typical lipid bilayer 
profile with the electron density elevated by a 
large amount of protein which spans the bilayer. 
The high electron density in the gap region is also 
indicative of high protein content in the space 
between membrane bilayers. 
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The pair-correlation function shown in Fig. 4 is 
sharply peaked between 150-160 /~. This indi- 
cates that the junctions in the pellet are capable of 

I J I I I 

I 00  Z O O  3 0 0  4 0 0  SO0 

Pair-correlation function corresponding to FmURE 4 
the interference function shown in Fig. 2. The uncer- 
tainty in its determination is relatively high, but the 
general features are likely to be correct. The high peak at 
150-170/~ indicates that pairing of junctions is a highly 
favored interaction. Integration of this peak shows that 
about 26% of junctions have a nearest neighbor between 
150 and 170/~ from their center. The asymptotic value 
of the pair-correlation function is the number density of 
the specimen which is equal to 0.0014/~-1. To convert 
this to volume fraction, it is multiplied by the extent of 
the junctions (about 180 A) to obtain a volume fraction 
of about 0.25. 

interleaving by 20 -30 /~  since the maximum ex- 
tent of a single junction from the corrected density 
profile (Fig. 3) is about 180/~,. The value of the 
pair-correlation function at large distances from 
the origin should equal the number density of the 
junctions in the specimen. Converting this to 
volume density, the derived pair-correlation func- 
tion indicates that about 25% of the specimen 
volume is occupied by gap junctions. This is con- 
sistent with the estimated water content of the 
centrifuge pellets. 

Equatorial Diffraction 
A densitometer trace of the equatorial diffrac- 

tion is shown in Fig. 5. The hexagonal lattice of 
connexons in the gap .junction gives rise to lattice 
sampling of the diffraction on the equator. The 
first four reflections indexed as (1,0), (1,1), (2,0), 
and (2,1) are much stronger than any of the 
others. The (1,1) and (2,0) are superimposed on 
a strong contribution from the meridian. The (2,1) 
reflection is broader than the other reflections, 
and shifted to a higher radius than would be ex- 
pected from the positions of the other equatorial 
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FIGURE 5 Densitometer traces of the equator of diffraction pattern from specimen E153. Optical 
densities were averaged on 10 ~ arcs. Vertical bars mark the calculated positions for crystalline reflections 
from a hexagonal lattice with lattice constant of 86.7 A.  The background indicated by the broken line 
defines the crystalline diffraction maxima. The background is higher than that for the meridian due to the 
presence of a monochromator streak. Significant contribution of meridonal diffraction to the optical 
density on the equator can be seen under the (1,1) and (2,0) reflections. Although the first four orders of 
diffraction are easily observed, the lattice reflections at higher angles are indistinct, being replaced by a 
broad continuous diffraction centered at about 0.1 .~-k The position of the (2,1) deviates slightly from 
that calculated due to a significant off-equatorial contribution to the reflection. 
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reflections. This was a consistent property of all 
diffraction patterns measured, and is most proba- 
bly due to strong diffraction falling slightly off the 
equator on the lattice line corresponding to the 
(2,1) reflection. A slight "bump" in the back- 
ground between the (2,1) and (3,0) reflections 
comes from off-equatorial diffraction as discussed 
in the analysis of the meridional diffraction. Be- 
yond the (3,0), the reflections are very weak and 
only estimates of their intensity can be made. The 
observed intensities from specimens E153 and F38 
are plotted in Fig. 6. For the very weak, higher 
index reflections, an estimate of the maximum 
possible intensity consistent with the observed 
data is given. Note, however, that the intensities 
of some of these reflections are not significantly 
different from background. The minimum inten- 
sity for these reflections is zero, and the maximum 
is set by the noise level which determines the 
uncertainty in the background. 

At  higher angles the sampled diffraction is re- 
placed by a broad band of continuous diffraction 
centered at about 10 ,~ spacing on the equator. 
This continuous diffraction is typical of diffraction 
from a-helices. Measurement of the optical den- 
sity as a function of angle about the center of the 
diffraction pattern shows that the disorientation of 
this band is approximately the same as that from 
other reflections. This suggests that the band of 
intensity is coming from a-helices oriented within 
20 ~ of the perpendicular to the plane of the junc- 
tion. 

An analysis of the hexagonal lattice reflections 
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FIGURE 6 Magnitude of the structure factors of equa- 
torial lattice reflections for specimens E153 (�9 and F38 
(A). The lattice constant of E153 is 86.7/~, and of F38, 
82 A, thus the F38 reflections occur at larger spacings. 

leads to the calculation of the projection of the 
electron density onto the plane of the junction. 
Electron microscopy provides a guide in the 
choices of phases for the equatorial diffraction. As 
discussed in the preceding paper, electron micro- 
scope and biochemical evidence shows that the 
connexon, about 30 ~ in radius, is centered on the 
sixfold axis of the unit cell. Most of the rest of the 
unit cell must be made up of junction lipid. The 
meridional data indicate that the lipid is in a bi- 
layer arrangement. The equatorial projection of a 
lipid bilayer is expected to be flat since no large- 
scale lateral order which could produce significant 
density fluctuation is likely in the lipid packing. 
The projected lipid density will be significantly less 
than that of protein. These facts provide con- 
straints on the form of the electron density projec- 
tion. It must be relatively flat outside 35/~ radius 
from the sixfold axis with much higher density 
inside that radius. Finding a phase choice that 
satisfies these constraints demonstrates that the 
equatorial X-ray pattern is consistent with other 
information about the structure. Furthermore, 
having determined the phases, the X-ray data pro- 
vide information about the distribution of protein 
within the connexon. 

The P6m symmetry of the junction in projection 
constrains the equatorial reflections to be real. As 
for the meridian, the phase choice is reduced to a 
sign choice, and only a few electron density pro- 
jections need to be examined. For the first five 
reflections, all possible electron density projec- 
tions were calculated. Those with unacceptable 
features, such as a peak on the threefold axis, 
were discarded, and only one phase choice was 
found to be consistent with all the structural con- 
straints of the electron microscope data. The pro- 
jections calculated for specimens E153 and F38 
using this phase choice are shown in Fig. 7. Phase 
assignments for higher-order reflections were am- 
biguous. However, because of the very low inten- 
sities of these reflections, the projections calcu- 
lated including the higher resolution data are simi- 
lar to the general form of those shown in Fig. 7. 

Several important features of these electron 
density projections are worth pointing out. First, 
the very low electron density at the sixfold axis 
was not presumed from the microscope data. It is 
a consistent feature of projections which satisfy 
the necessary constraints of the electron micro- 
graphs. Low density near the sixfold axis suggests 
that the protein does not fill the center of the 
connexon. Second, the diameter of the high den- 
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FmURE 7 Electron density projections of specimens E153 and F38. The low-resolution projections of 
E153 (a) and F38 (b) were calculated from the first five reflections of the equatorial data using the phase 
combination (+ . . . .  ). This is the only phase combination which produced electron density projections 
consistent with the structural information obtained from electron microscopy. The lattice constant of E153 
is 86.7 A; that of F38 is 82.0/~. The data used to calculate these projections extended out to a spacing of 
25 A,. In these projections, the connexons appear circularly symmetric with a diameter of about 50 A, and a 
low electron density core about 20 A in radius. 

sity region in these projections is less than that of 
the stain-excluding regions seen in micrographs. 
This may indicate that the diameter of the con- 
nexon in the gap region is greater than that of the 
portion extending through the bilayer. Finally, 
there is some difference between the projections 
from E153 and F38, suggesting a slightly different 
structure for the two specimens which may be 
correlated with the difference in lattice constant. 
This is particularly evident between 30 and 40 A 
from the sixfold axis, where the electron density of 
F38 is greater than that for E153. This is more 
clearly illustrated in the cross sections of these 
projections shown in Fig. 10. 

INTERPRETATION OF THE RESULTS 

The Structure 

The electron density profile and equatorial pro- 
jection provide an accurate, low-resolution image 
of the gap junction ultrastructure. The profile in 
Fig. 3 was calculated using X-ray data extending 
to a spacing of about 10 A.  It shows a distribution 
of scattering density typical of that expected for a 

pair of lipid bilayers with their average electron 
density elevated relative to the solvent density by 
protein which extends through both bilayers and 
the extracellular gap. The high density peaks of 
the lipid polar head groups are separated by 45 ,~ 
across the gap and 42 ,~ across the bilayer. The 
shape of the membrane profile is very similar to 
that determined for pure lipid bilayers. This 
means that the contribution from protein to the 
average scattering density must be nearly constant 
across the width of the bilayers. The gap junction 
bilayer profile is asymmetric. Between the polar 
head group peak and hydrocarbon minimum there 
is a step in the electron density distribution. In the 
extracellular half of the bilayer, this "step" is 
much higher than that in the cytoplasmic half. This 
asymmetry may be due to a non-uniform protein 
distribution. However, it corresponds closely to a 
similar asymmetry in myelin (6) which has been 
attributed to an asymmetric cholesterol distribu- 
tion. The higher density step in myelin is also in 
the extracellular half of the bilayer. 

The width of the polar peak on the cytoplasmic 
side of the bilayer is significantly greater than that 
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on the extracellular surface. This suggests that 
additional protein may be associated with this in- 
ner surface of the membrane. The pair-correlation 
function shows that isolated junctions can pack 
with a separation of 150-160/~.  Protein on the 
cytoplasmic surface of the junction must be capa- 
ble of interleaving with protein on adjacent junc- 
tions to make this close packing possible. 

The electron density projections in Fig. 7 were 
calculated using data which extended to a spacing 
of 25 A,. In these projections, darker shading 
corresponds to higher average scattering density. 
A lipid bilayer will have a low electron density in 
these projections, only slightly greater than that of 
solvent. Thus, the dark areas are an image of the 
protein distribution. This image is somewhat dif- 
ferent from the one provided by the electron mi- 
crographs of negatively stained gap .junctions pre- 
sented in the preceding paper (5). In the filtered 
images in Figs. 2 and 3 of that paper, lightly 
shaded areas are stain-excluding regions, and 
these were interpreted to correspond to the distri- 
bution of protein within the extracellular gap. 
These stain-excluding regions appear to occupy a 
much larger portion of the unit cell than the aver- 
age protein distribution seen in the equatorial pro- 
jections. 

This combination of results from electron 
microscopy and X-ray diffraction suggests that the 
protein within the gap occupies a larger fraction of 
the unit cell area than it does within the bilayer. 
The dimensions of the protein within the gap can 
be estimated from the electron micrographs of 
negatively stained specimens. The mean diameter 
of the connexon spanning the bilayer can be esti- 
mated from the end on projection calculated from 
the equatorial diffraction data. The diameter of 
the connexon within the gap is 60-70 A, (Figs. 2 
and 3 of the preceeding paper [5]); whereas the 
mean projected diameter is 50-55 A, (Fig. 7). 

The end on electron density projections of the 
connexon have a region of low density about 20 A, 
in diameter centered on the sixfold axis. This 
corresponds to a heavily staining region in micro- 
graphs of negatively stained gap junctions. From 
its lower electron density, there can be little pro- 
tein here. The high electron density region be- 
tween 10 ~ and 25 A, from the sixfold axis must 
contain most of the junction protein. A substantial 
fraction of this protein is within the lipid bilayer. 
Beyond 25 A from the sixfold axis, the electron 
density continues to decrease to a minimum at the 
threefold axis. There is relatively little protein on 

the threefold axis, and the observed electron den- 
sity there is probably mainly due to lipid and 
solvent. The chemical interpretation of these pro- 
jections will be discussed further below. 

Structural Variations 

Although all the electron density profiles and 
projections calculated are similar, there are some 
significant differences. Figure 8 shows one exam- 
ple of these differences. This figure compares the 
low-resolution electron density profiles of speci- 
mens E153 and F38. Although the width of the 
bilayers in the two specimens is about the same, 
the F38 bilayer is 4 A closer to the center of the 
gap than that of E153. The electron density at the 
middle of the bilayer is substantially larger in F38, 
suggesting that the protein to lipid ratio within the 
bilayer is greater in this specimen. F38 has a much 
smaller lattice constant than E153 (82 A, com- 
pared to 87 ~ for E153). A larger protein to lipid 
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FIGURE 8 Low-resolution electron density profiles cal- 
culated from the meridians of specimens E153 and F38. 
The peak positions of the polar head groups are marked. 
Although the bilayer thickness is the same for the two 
specimens, the distance of the bilayer from the center of 
the gap is about 4 ,~ less for F38. The electron density at 
the center of the bilayer is higher in F38. This is a result 
of the smaller lattice constant in this specimen which is 
associated with a lower lipid to protein ratio in 
specimen F38 compared to E153. 
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ratio results because a decrease in lattice constant 
corresponds to a decrease in the lipid content of 
the junction if the cross-sectional area of the pro- 
tein is invariant. F38 also has substantially higher 
electron density in the center of the gap. 

By making assumptions about the electron 
densities of protein, lipid hydrocarbon and water, 
the amount of protein in the center of the gap and 
in the bilayer can be calculated. The electron 
densities assumed are 0.40 e//~ a for hydrated pro- 
tein, 0.27 e/A 3 for lipid hydrocarbon, and 0.33 e/ 
A 3 for water. Assuming that the center of the 
bilayer is occupied by protein and lipid hydrocar- 
bon only, the protein content there is calculated to 
correspond to a protein cylinder with a radius of 
26 A, for E153 and 28/~ for F38. This is consist- 
ent with the protein distributions shown in the 
equatorial projections in Fig. 7, and shows that, to 
within experimental error, the amount of protein 
within the bilayers of these two specimens is the 
same. 

Assuming that only protein and water occupy 
the center of the gap, the same calculation can be 
made for this portion of the junction. The protein 
content in the gap corresponds to a protein cylin- 
der about 30 A in radius for E153 and about 39 ,~, 
in radius for F38. Examination of the electron 
density projection for F38 in Fig. 7, or the cross 
sections of this projection plotted in Fig. 10, shows 
that there is a high density region extending out to 
about 40 A from the sixfold axis which is less 
pronounced in the E153 projection. The electron 
density profiles localize this extra density observed 
in the projection to the gap between bilayers. It 
appears that when the gap decreases in width, the 
protein and lipid move towards the gap as a unit 
and the extra protein in the gap spreads out occupy- 
ing a considerably larger fraction of the gap area. 
The volume of protein within the gap, however, 
appears to remain the same. 

Our X-ray diffraction measurements show that 
there is a strong correlation between the width of 
the extracellular gap and the lattice constant. In 
Fig. 9 the positions of the second, third, and 
fourth meridional zeros are plotted vs. lattice con- 
stant for 33 specimens. When the lattice constant 
decreases there will be an increase in the protein to 
lipid ratio in the junction lattice. However, this 
will have very little effect on the positions of the 
meridional zeros unless the width of the junction 
changes. A series of model calculations were done 
which indicated that the change in the positions of 
the meridional zeros is due to a change in the gap 
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FIGURE 9 A plot of the positions of meridional zeros 
vs. lattice constant for thirty-three specimens. The 
solid lines are the results of a model building calculation 
described in the text. Several partiaUy dried specimens 
were examined which had very low values for the posi- 
tion of the first meridional zero measured. These speci- 
mens are included in the figure and are responsible for 
the relatively broad scatter in the observed values of the 
position of this zero. 

width. This was consistent with several electron 
density profiles which were calculated for speci- 
mens with different lattice constants. In the model 
which most satisfactorily reproduced the positions 
of the meridional zeros, the gap width decreased 
by 1 ,~ for every 1.3 /~ decrease in lattice con- 
stant. For this model the bilayer profile was held 
invariant and, as the gap was narrowed, the vol- 
ume of protein within the gap was maintained con- 
stant as suggested by the comparison of the E153 
and F38 profiles in Fig. 8. The positions of the 
zeros predicted by this model are plotted in Fig. 9. 
There is, however, considerable scatter in the in- 
dividual measurements. For example, comparing 
specimen F38 with E153 there is an 8 ~, decrease 
in gap width correlated with only a 5 A decrease 
in lattice constant. 

Structural Models  

From the X-ray diffraction, electron microscope 
and chemical data, models for the spatial distribu- 
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tion of the protein, lipid, and water in gap junction 
structures were constructed. The models derived 
for specimens E153 and F38 are shown in Fig. 10. 

The chemical models were derived in the fol- 
lowing way. The meridional profiles were put on 
an absolute scale by assuming that the electron 
density of the polar head group peak is 0.40 e/~ 3 
and that that of solvent is 0.33 e//~ 3. The amount 
of protein in the gap and in the bilayer was deter- 

mined by assuming that the gap contained only 
protein and water, and that the center of the 
bilayer contained only protein and lipid hydrocar- 
bon. The similarity of the bilayer profile to previ- 
ously derived profiles in pure lipid systems sup- 
ports the assumption that the distribution of pro- 
tein in the bilayer is relatively uniform across its 
width. Electron density extending into the cyto- 
plasm from the bilayer surface was attributed to 
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additional protein. The total protein volume was 
calculated to be in the range of 180-200,000 A 3 
for both specimens E153 and F38. 

Similar calculations were made for the equato- 
rial projections by assuming that the center of the 
connexon has the electron density of solvent and 
that the peak located 17-18 /~ from the sixfold 
axis has the electron density of protein. At  low 
resolution, cylindrically symmetric models are 
consistent with the electron density projections. 
The protein volume calculated from the equatorial 
projections from E153 and F38 fall in the range of 
190-210,000 A3, consistent with that derived 
from the meridian.  

The meridional and equatorial models were 
tested for consistency by comparing the total pro- 
tein and total lipid volumes derived. Details of the 
two projections were also compared. For instance, 
from a comparison of meridional profiles, it was 
found that the electron density in the gap region of 
specimen F38 is much higher than that of E153. 
This difference corresponds to a difference in the 
equatorial projections of these two specimens 30-  
40 A from the center of the connexon.  The corre- 

spondence between these two observations pre- 
sents an image of the variability of the protein 
distribution within the gap. 

The meridional models also explain the differ- 
ence in the images of the connexon in the equato- 
rial projections and in the filtered images of nega- 
tively stained junctions. Protein occupies a larger 
fraction of the area in the gap than in the bilayer. 
The variability in the staining properties of isolated 
junctions (5) also appears consistent with these 
models. For example, there would be much less 
room for stain to accumulate within the gap of the 
junctions in specimen F38 than in specimen E153. 

The protein to lipid ratio can also be calcu- 
lated from the chemical models. In the models 
for specimen E153, the junction is 52% protein by 
weight and in F38 it is 57% by weight. This is 
consistent with the 1:1 weight ratio of protein to 
lipid estimated from the nitrogen and phosphorus 
content and the buoyant  density of isolated gap 
junctions as reported in the preceding paper (5). 
The mol wt of protein in a connexon as estimated 
from these models is in the range of 140-170,000.  
If the connexon is a hexamer, it is made up of 

FIGURE 10 Diagram representing the relative positions of the chemical components of gap junctions. 
The distribution of protein, lipid, and water perpendicular to the plane of the junctions is represented by 
block diagrams for specimens E153 (A) and F38 (B). The electron density profiles resulting from these 
distributions are superimposed on the low-resolution electron density profiles for these two specimens. The 
distance coordinate, r, in (A) and (B) is distance from the center of the gap measured normal to the junc- 
tion plane. The elecron density of the profiles is built up from the partial areas of protein, lipid, and water 
for the two specimens. The absolute electron density males are based on setting the electron density of water 
to 0.33 e/A. a, of hydrated lipid polar groups and protein to 0.4 e/.~ a, and of lipid hydrocarbons to 0.27 
e/,~ a. The lipids in the step regions include contribution from cholesterol and have somewhat higher elec- 
tron densities. The protein content of the two specimens is the same, but the lipid content of F38 is lower 
because of the decrease in the area per unit cell with smaller lattice constant. In (C) and (D), the dis- 
tribution of protein lipid, and water parallel to the plane of the junctions is represented by block diagrams 
of the chemical distribution along a line extending out from the center of a connexon. The distance coordi- 
nate, r, in (C) and (D) is radius from the sixfold axis. For simplicity, a circularly symmetric model has been 
constructed. The electron density projections for specimen E153 (C) and F38 (D) are built up from the 
partial thicknesses of the components being projected. The electron densities calculated from the chemical 
distributions are compared to cross sections of the electron density projections shown in Fig. 7. The smooth 
solid line is the electron density along a line connecting two adjacent sixfold axes in these projections. The 
broken line is the electron density distribution along a line connecting a sixfold axis and a threefold axis. 
The volume of protein in the models for both meridional profiles and both equatorial projections is the 
same. Although its distribution is different in the two specimens, its distribution in the profile is consistent 
with its equatorial projection in the individual specimens. The lipid distributions postulated for the profiles 
are also consistent with the projections. There is more lipid in specimen E153 than F38 because of the 
difference in lattice constant. From these models, the weight ratio of protein to lipid in the gap junction is 
about 1:1, protein accounting for 52% of the dry weight from the model for specimen E153 and 57% of 
the dry weight from the model for specimen F38. Thus, the distribution of chemical constituents as defined 
by these models is consistent with the results from measurements of nitrogen and phosphorus compositions 
and buoyant density reported in the preceding paper (5). 
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protein units with a mol wt of 23-28,000.  
The structural models constructed in this way 

are consistent with the X-ray diffraction, electron 
microscope, and chemical data. Many of the con- 
clusions of this study are summarized in Fig. 11, 
which is a drawing of the gap junction structures. 
The morphological units are composed of a dimer 
of hexamers of the connexin molecule; one hex- 
amer is associated with each membrane.  The hex- 
amers form a protein tube with an outer  radius of 
about 26 A and an inner radius of about 10 ~ .  An  
aqueous channel extends most or all of the way 
through the connexon formed by the six protein 
molecules. The hexamers are surrounded by the 
lipids of the membrane bilayers. Each connexon is 
connected across the gap to a second hexamer, the 
pair making up a single morphological unit. 

The protein within the gap has been observed in 
significantly different configurations as repre- 
sented by the two drawings in Fig. 11. The pro- 
tein in the gap is capable of maintaining the con- 
nection between cells over differences in gap width 
of at least 8 A. The changes in gap width are cor- 
related with changes in the average distance be- 
tween connexons in the lattice. 

D I S C U S S I O N  

There are two key facts about the gap junctions 
which must be considered in any structural study. 
The first is the proposed function of these struc- 
tures as a pathway for intercellular communica- 

tion. The second is their existence as a differen- 
tiated region of membrane which maintains chem- 
ical homogeneity and structural integrity in the 
fluid, heterogeneous environment  of cell plasma 
membranes.  

All evidence from physiology, electron micro- 
scopy, and X-ray diffraction is consistent with the 
existence of an aqueous channel extending 
through the connexons. Physiological experiments 
indicate that these channels are open to passage of 
small molecules between cytoplasms, but that the 
channels can close in response to changes in the 
cell environment  (1). Indeed,  it seems necessary 
for the survival of the organism that the junctions 
be able to seal in response to changes in cytoplas- 
mic conditions, e.g.,  the death of one of the ad- 
joining cells. Electron microscopy and X-ray dif- 
fraction data indicate that the channel is 8-10 A in 
radius, but cannot demonstrate the continuity of 
the channel over  the entire width of the junction. 
Electron microscopy has revealed structural 
changes in the large subunit gap junctions of the 
crayfish that are correlated with the state of elec- 
trical coupling between cells (10). These studies 
show that when the junctions were subject to 
conditions which resulted in uncoupling, the gap 
width and lattice constant of the junctions de- 
creased. This was accompanied by an increase in 
the curvature of the junction membranes.  The 
similarity between these observations and the 
structural variations observed by X-ray diffraction 

FIGURE 11 Gap junction structures. These drawings illustrate the variation in the junction structure 
revealed by X-ray diffraction studies. The upper drawing corresponds to specimen E153 with an 87-/~ 
lattice constant, and the lower to specimen F38 with an 82-/~ lattice constant. The 42/~ dimension for the 
membrane bilayer thickness corresponds to the separation of the peaks in the electron density profiles, 
which mark the mean positions of the lipid polar groups. The overall thickness of the bilayer is about 10/~ 
greater. The gap in F38 is 8/~, smaller than that in E153 as measured from the electron density profiles. 
The 60-/~ diameter connexons are hexamers of a protein molecule about 80/~ long and 20/~ wide. The 
protein subunits of each connexon are arrayed to form an axial channel with a maximum diameter of about 
20/1~. The sectioned view of the connexon indicates that the portion of the protein traversing the bilayer is 
somewhat narrower than the ends of the molecule on the cytoplasmic and extracellular sides. Cooperative 
variations in the side-to-side distances between connexons in the lattice are linked to changes in the gap 
separation. Conformational changes appear to occur in the part of the protein spanning the gap while the 
interior portions of the connexon molecule seem to be relatively invariant. Changes in lattice constant of 5 
/k and more require either highly flexible links between the protein molecules or indirect coupling through 
the lipid phase. Protein-protein contacts have not been illustrated since there is no direct evidence for such 
interactions. The connexon units which traverse the pair of membranes are shown floating in the two- 
dimensional lipid layers. This representation of the gap junction membrane structure can be viewed as a 
liquid crystalline version of the fluid mosaic model for cell membranes. The bilayer structure in the gap 
junction is very similar to that seen by X-ray diffraction in other membranes. The coordinated conforma- 
tional changes in the connexon at the level of the gap, schematically illustrated in the drawings, could be 
related to the regulation of intercellular communication. 
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is striking. In spite of the very different size of the 
crayfish junctions and mouse liver junctions (the 
lattice constant and gap width of the crayfish junc- 
tions are about double those of mouse liver), they 
appear to undergo similar molecular rearrange- 
ments. 

The contraction of the lattice implies displace- 
ment of lipid from the junction. The lipid mole- 
cules appear to act much like water molecules in 
crystals of soluble proteins. It is often possible to 
change the lattice constants of protein crystals by 
variation of the water activity (see, e.g., refer- 
ences 2 and 3). The contraction of the gap junc- 
tion lattice requires the removal of lipid molecules 
from the array either by flow in the plane of the 
membrane or by movement out of the membrane. 
In isolated junctions where detergent is present at 
some stages of the isolation procedures, either 
process may be occurring. The movement of lipid 
out of the membrane when detergents are not 
present is energetically unfavorable, and, in the 
contraction of the crayfish junction lattice ob- 
served by electron microscopy, it seems likely that 
lipid removal occurs by movement within the 
plane. The coincident decrease in gap width and 
increase in membrane curvature complicates these 
considerations. For instance, it is not clear why a 
decrease in lattice constant should be correlated 
with a change in the connexon structure which 
results in a reduction in gap width. Nor is it clear 
why the action of trypsin should induce curvature 
in the mouse hepatocyte junction which is evi- 
dently a centrosymmetric structure. 

The very existence of gap junctions is an excep- 
tional case of membrane specialization. A large 
body of experimental evidence indicates that most 
membranes exist as fluid structures in which the 
membrane proteins are free to diffuse (e.g., refer- 
ences 4, 12, and 13), with perhaps only a few 
cytoplasmic strings attached (4, 7). The forces 
which maintain the junction lattice appear to be 
quite resilient, and during isolation survive deter- 
gent treatment which solubilizes most of the other 
membrane components of the liver. The simple 
fact that they can be isolated suggests that specific 
protein-protein interactions must be occurring be- 
tween the connexons. For this to occur in a hexag- 
onal lattice, the connexons must have sixfold sym- 
metry and be rotationally ordered in the lattice. 
Proof of the rotational ordering would be strong 
evidence for specific interactions among the con- 
nexon units. The disorder in the lattice is surpris- 
ingly large for the maintenance of a specific bond- 

ing pattern. However, the tenacity of the structures 
has been demonstrated over lattice constant varia- 
tions of 10% and gap width changes of at least 8 
A. 

The coordinated use of structural and chemical 
methods has revealed that the connexon is a cylin- 
drical assembly of connexin molecules delineating 
an axial aqueous channel, with a maximum diame- 
ter of about 20 ,~. Our studies have demonstrated 
cooperative variations in the center-to-center con- 
nexon spacing that are linked to changes in the 
width of the extracellular gap. The structural vari- 
ations are accompanied by conformational 
changes in the portions of the connexin molecules 
within the gap. These conformational changes 
could be related to the molecular mechanisms 
which regulate intercellular communication. 

APPENDIX 

The measured X-ray diffraction intensity I(R) is, in 
general, the intensity that would be observed for 
independently scattering units lu(R) multiplied by 
an interference function S(R) (see, e.g., references 
8 and 9): 

I(R) = I~(R) S (R). (1) 

The Fourier transform of (S(R) - 1) is the pair- 
correlation function 7/(r). ~l(r)dr is the conditional 
probability that, given that there is a scattering 
unit centered ar r = 0, there will be another one 
centered in the interval (r, r + dr). When the 
scattering unit has a spatial extent d, 7/(r) will, in 
general, be peaked at intervals equal to or slightly 
larger than d. For instance, for a perfect crystal, 
7/(r) will be a set of 8-functions at intervals of d. 
For disordered crystals and fluids, the modulation 
in ~/(r) is less pronounced, and for an ideal gas T/(r) 
is a constant equal to the number density. 

From Eq. 1, S(R) is a non-negative real func- 
tion. This allows consideration of the square root 
of Eq. 1, 

F(R) = F~, (R)T(R), (2) 

where T(R) = + ~ In real space, Eq. 2 
corresponds to: 

pc(r) = pu(r)*t(r), (3) 

where t(r) is the Fourier transform of T(R) ; pc(r), 
the electron density profile calculated from the 
observed intensities; p~(r), the electron density 
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profile of a single unit; and where the asterisk 
denotes convolution.  The interference effects thus 
distort the measured electron density profile by 
convolution with t(r). t(r) is the function, which 
when convoluted with itself will give (~(r) + 8(r)), 
where 8(r) is the Dirac delta function. As with 
,q(r), t(r) will be peaked at intervals of d. This will 
result in a distortion of p(r) which is principally 
confined outside the region +-d/2 about the origin. 

In the present study, T(R) was estimated by 
assuming that all calculated electron density falling 
outside the interval - 90 ,& was due to interfer- 
ence effects. The pair-correlation was assumed to 

be equal to zero inside +140  /~. The second 
constraint originates from the fact that the smallest 
center-to-center distance between junctions must 
be equal to the width of a single junction, or not 
less than 150 A,. A limit of 140 ~ was chosen to 
allow for some interleaving of the structures and 
the finite resolution of the data. The electron 
density profile and interference function were then 
refined by an iterative procedure.  The electron 
density profile was set to zero outside ---90 .& from 
the origin, and the Fourier  transform was calcu- 
lated. By comparison to the data, a pair-correla- 
tion function was calculated. It was set to zero 
inside -+140 ~ ,  and used to calculate back a new 
estimate of the electron density profile. If this 
profile contained significant ripple outside -+ 90 ,&, 
the procedure was repeated. The result of this 
refinement was an electron density profile p~(r) 
and a pair-correlation function "0(r), which, when 
combined,  reproduced the observed intensity to 
within experimental  error.  
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