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ABSTRACT 

Recent  data indicate that the chromatoid body typical of rat spermatogenesis may 
contain R N A  synthesized in early spermatids by the haploid genome. Analyses of 
living step-1 and step-3 spermatids by time-lapse cinephotomicrography have 
shown that the chromatoid body moves in relation to the nuclear envelope in two 
different ways. Predominantly in step 1, the chromatoid body moves along the 
nuclear envelope on a wide area surrounding the Golgi complex and has frequent 
transient contacts with the latter organelle, In step 3, the chromatoid body was 
shown to move perpendicular to the nuclear envelope. It was seen located very 
transiently at the top of prominent outpocketings of  the nuclear envelope with 
apparent  material continuities through nuclear pore complexes to intranuclear 
particles. 

The rapid movements  of the chromatoid body are suggested to play a role in 
the transport of  haploid gene products in the early spermatids, including probably 
nucleocytoplasmic R N A  transport. 
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A considerable amount of new information has 
recently been accumulated about the origin, rela- 
tionships, and chemical composition of the chro- 
matoid body in mammalian spermatogenesis. The 
chromatoid body has been demonstrated to first 
appear in pachytene spermatocytes at stage VIII 
(9) of the rat seminiferous epithelial cycle (19). 
During the pachytene and diplotene stages of 
meiotic prophase it grows, and specific intranu- 
clear membrane modifications may be involved in 
the transport of material from the nucleus to the 
chromatoid body (18). During meiotic reduction 
divisions, the chromatoid body has been found to 
be dispersed in the cytoplasm as small 30-nm 
particles (19), while its condensation into the 

definite shape typical of spermiogenesis takes 
place during step 1 of spermiogenesis (25). The 
chromatoid body has its most prominent structure 
during early spermiogenesis in round-nucleated 
spermatids (26). In these cells, the chromatoid 
body is apparently dependent on the function of 
the haploid genome (14, 21) which continues up 
to that stage of spermiogenesis in which the chro- 
matin begins to condense (4, 6, 7, 10, 11, 22, 
27). Radioactivity derived from tritiated uridine is 
incorporated into the chromatoid body clearly 
after the nuclear labeling, thus suggesting that 
RNA synthesized in the haploid nucleus is trans- 
ported to this organelle (24). The mechanisms of 
this transport have not been analyzed in detail, 
although an increased occurrence of nuclear pore 
complexes has been reported on an area adjacent 
to the chromatoid body (2, 5, 17). Previous 
studies (13, 23) have led us to assume that the 
rapid nonrandom movements of the chromatoid 
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body on the nuclear surface during early spermi- 
ogenesis may play a role in the transport  of 
material be tween the nucleus and the chromatoid 
body. 

M A T E R I A L S  A N D  M E T H O D S  

Living Cell Preparations 
and Cinephotornicrography 

Young adult male Sprague-Dawley rats were used in 
the experiments. After killing the animals, the testes 

were freed and the tunica albuginea was removed. The 
tubules were isolated from the interstitial tissue in Krebs- 
Ringer's solution by a technique described by Christen- 
sen and Mason (3), and subjected to transmitted light in 
a stereomicroscope. A characteristic variation in the 
light absorption of the isolated tubules allows the recog- 
nition of the stages of the seminiferous epithelial cycle 
(16). Stages I and III (9) were chosen for further analysis 
by phasc-contrast microscope. Short segments (0.5-1 
mm) were isolated and squeezed between glass slides to 
produce slightly flattened monolayers (12, 25). Time- 
lapse cinephotomicrographic analyses were performed 

FIGURE 1 A series of Super-8 film frames of a living step-1 rat spermatid at selected time intervals after 
the situation depicted in flame A. The chromatoid body (cb, thin arrows) moves rapidly parallel to the 
nuclear (n) envelope. It has transient contacts with the Golgi complex (G, thick arrows). The time 
intervals and organelle situations are as follows: (A) 0, cb on right side of G; (B) 44 s, cb comes nearer G; 
(C) 1 rain 36 s, cb is very close to G; (D) 2 rain 12 s, cb has a contact with G; (E) 4 rain 52 s, cb is 
superimposed by G; (F) 5 rain 42 s, cb moves away from G on its left side; (G) 9 min 00 s, cb is located 
farthest away from G; (H) 11 min 16 s, cb has again come close to G; (I) 13 rain 00 s, cb has a contact 
with G. During the excursions of the cb, the position of G remains relatively constant. During projection 
of the film, the intranuclear dense particles seem to follow the movements of the cb to some extent. • 
2,100. 
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for 1 h after killing the animal, with a Beaulieu 4,008 
ZM camera (Maison Brandt Fr~res, Charenton-le-Pont, 
France), Super-8 film (Kodachrome 40), and an auto- 
matic timer (Chinon Interval Timer, Chinon Interval 
Corp., Tokyo) that exposed the frames in 2-s intervals. 
Individual frames with specific information were selected 
and marked by using a viewer (Erno E-700 8-mm editor 
viewer, Sansei Koki Co., LTD, Goko, Japan) for pho- 
tographic reproduction and serial analysis. 

Electron Microscopy 

Stages I and III were recognized in the living, freshly 
isolated, unstained condition by a combined transillumi- 
nation-phase-contrast-microscopic technique (15, 22). 
The tubular segments were fixed in 2.5 % glutaraldehyde 
in cacodylate buffer, pH 7.2, for 3 h at 4~ They were 
postfixed in osmium tetroxide, embedded in Epon, and 
sectioned at 70 nm with a LKB-Huxley ultramierotome 
(LKB Instruments, Rockville, Md.). The sections were 
stained with uranyl acetate and lead citrate, and obser- 
vations were made with a JEOL-JEM-T8 electron micro- 
scope. 

RESULTS 

At step 1 of spermiogenesis, a spermatid showing 
typical extensive movements of the chromatoid 
body on a wide area of nuclear envelope on both 
sides of the Golgi complex was selected for the 
first film analysis (Fig. 1). The chromatoid body 
in - 7 0 %  of all step-1 spermatids moves to an 
extent similar to that of this cell, while in others 
the movements are slower and not so extensive. 
The chromatoid body has typically frequent con- 
tacts with the Golgi complex, which is distin- 
guished morphologically from the chromatoid 
body by its larger size, more solid structure, and 
its association with the acrosomic system. The 
chromatoid body moves three-dimensionally and 
principally over the hemisphere of the nucleus in 
which the Golgi complex and the early acrosomic 
system are located. The series of frames in Fig. 1 
shows how the chromatoid body (thin arrows) is 
first located on the right side of the Golgi complex 
(thick arrows) on the nuclear (n) surface (Fig. 
1A) ,  then moves towards the Golgi complex 
(Figs. 1 B and C) and has contact with it after 2 
min 12 s (Fig. 1D).  In Fig. 1E,  the chromatoid 
body is superimposed, and possibly still in contact, 
with the Golgi complex. Then, the chromatoid 
body again appears in the plane of focus and is 
located on the left side of the Golgi complex (Fig. 
1F) .  The distance between these organelles is 
largest in Fig. 1 G, after which the chromatoid 
body again moves towards the Golgi complex and 
has contact with it (Fig. 1 I ) .  

Another type of chromatoid body rapid move- 
ment was typical in step 3 of spermiogenesis (Fig. 
2); this was directed perpendicular to the nuclear 
envelope. During these excursions, the chroma- 
toid body is seen in nuclear-envelope inpushings 
(Fig. 2 A, E, F, H, K, R, and T), at the level of 
the nuclear envelope (Fig. 2B, C, J ,  N, P,  and 
Q),  or above the nuclear envelope (Fig. 2 D, G, 
I,  L,  M, O, and S). When the film was projected 
on the screen, both rapid and slow components of 
the movements were distinguished. Outpocketings 
of the nuclear envelope at the proximity of the 
chromatoid body are rapid and transient phenom- 
ena, lasting only for a few seconds (Fig. 2I) .  
During its excursions, the chromatoid body has 
continuously changing relationships with small 
particles which are mainly of cytoplasmic, but also 
of intranuclear, origin. 

The ultrastructural analyses were focused on 
the transient outpocketing phenomenon of the 
nuclear envelope. Figs. 3 and 4 show a step-3 
spermatid in which a nuclear outpushing in the 
vicinity of the chromatoid body has an apparent 
material continuity with the body through a nu- 
clear pore complex. In the outpocketing, several 
20-nm particles are seen. There may also be a 20- 
nm particle in the central part of the nuclear pore 
complex. 

DISCUSSION 

Time-lapse cinephotomicrography of living cells 
has proven to be a valuable tool in directing 
ultrastructural analyses to organelle constellations 
which because of their transiency in vivo are rarely 
seen but which probably have significance for the 
functions of the haploid genome and the chroma- 
toid body. Although the continuous interaction 
between the nucleus and the chromatoid body was 
also observed in our previous films (13), the main 
attention was focused on the rapidly changing 
relationships of the chromatoid body and the 
Golgi complex during steps 1 and 2, and the 
perpendicular movement was not observed be- 
cause it is typically found in step 3 of spermio- 
genesis. 

Numerous recent investigations support the 
view that the chromatoid body has several func- 
tions during spermiogenesis. There is evidence of 
its role in the early formation of the acrosomic 
system through contacts with the Golgi complex 
(1, 2, 13, 17, 23) and in the formation of a 
subacrosomal rodlike structure which possibly has 
a function in oocyte activation (17). 
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P e r h a p s  t he  m o s t  i n t e r e s t i ng  f u n c t i o n  o f  the  

c h r o m a t o i d  b o d y ,  h o w e v e r ,  is its pa r t i c ipa t ion  in 

the  R N A  m e t a b o l i s m  o f  d e v e l o p i n g  ma le  g e r m  

cells.  D u r i n g  ea r ly  s p e r m i o g e n e s i s ,  t he  n u c l e a r  

po re  c o m p l e x e s  in the  vicini ty  o f  t he  c h r o m a t o i d  
b o d y  are  m o r e  n u m e r o u s  t h a n  e l s e w h e r e  (2, 5) ,  

and  m a t e r i a l  c o n t i n u i t i e s  t h r o u g h  t h e m  in to  the  

i n t r a n u c l e a r  o r g a n e l l e s  h a v e  b e e n  d e m o n s t r a t e d  
(23) .  R a d i o a c t i v i t y  de r i ved  f r o m  t r i t ia ted  u r id ine ,  

wh ich  was  first  i n c o r p o r a t e d  into the  s p e r m a t i d  

n u c l e u s ,  h a s  b e e n  s h o w n  to i n c o r p o r a t e  la ter  into 

the  c h r o m a t o i d  b o d y  (24) .  T h e  i n t r a n u c l e a r  par t i -  

cles wi th  an  a p p a r e n t  ma t e r i a l  c o n t i n u i t y  t h r o u g h  

n u c l e a r  po re  c o m p l e x e s  to the  c h r o m a t o i d  b o d y  

have  a d i a m e t e r  o f  20  r im, wh i ch  c o r r e s p o n d s  to 

the  size o f  n u c l e a r  i n f o r m o f e r s  (20) .  T h e s e  s t ruc-  

t u r e s  h a v e  b e e n  s h o w n  to be  i nvo lved  in the  

t r a n s p o r t  o f  R N A  f r o m  t he  nuc le i  o f  d r agon f ly  

o o c y t e s  to c y t o p l a s m i c  s t r u c t u r e s  a n a l o g o u s  to the  

c h r o m a t o i d  b o d y  (8).  
T h e  role  o f  the  c h r o m a t o i d  b o d y  in the  R N A  

m e t a b o l i s m  o f  s p e r m a t o g e n i c  cells is still fa r  f r o m  

clear ly  u n d e r s t o o d .  R e c e n t  d a t a  ind ica te  tha t  a 

c o n s i d e r a b l e  p r o p o r t i o n  o f  the  R N A  s y n t h e s i z e d  

in p a c h y t e n e  s p e r m a t o c y t e s  is p r e s e r v e d  t h r o u g h  

s p e r m a t i d  d e v e l o p m e n t  unt i l  la te  s p e r m i o g e n e s i s  

(6).  A n  i n t e r e s t i ng  poss ib i l i ty  is tha t  the  c h r o m a -  

toid b o d y  is a s to r ing  o rgane l l e  for  this  long- l ived  

R N A  wh i ch  is s u g g e s t e d  to d i rec t  the  p r o t e i n  

syn the s i s  d u r i n g  late s p e r m i o g e n e s i s  w h e n  the  

g e n o m e  o f  the  s p e r m a t i d  is inact ive  (11 ). C o n t i n -  

u e d  inves t iga t ion  is r e q u i r e d  to d e t e r m i n e  the  

s igni f icance  o f  t he  m o v e m e n t s  o f  the  c h r o m a t o i d  

b o d y  for  t he  m e t a b o l i s m  of  th is  R N A .  B e c a u s e  it 
is a c lear ly  vis ible  o rgane l l e  in the  l ight  mic ro-  

s cope ,  the  c h r o m a t o i d  b o d y  m a y  se rve  as a n e w  

aspec t  for  r e s e a r c h  o n  t he  g e n e r a l  m e c h a n i s m s  o f  

n u c l e o c y t o p l a s m i c  R N A  t r a n s p o r t .  
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shows that this phenomenon is a very transient one in vivo and therefore difficult to find in sectioned 
material. Bars, 1 tzm. 
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