Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Jul 1;82(1):212–226. doi: 10.1083/jcb.82.1.212

Actin in triton-treated cortical preparations of unfertilized and fertilized sea urchin eggs

PMCID: PMC2110418  PMID: 573270

Abstract

Triton-treated cortical fragments of unfertilized and fertilized sea urchin eggs prepared in the presence of greater than or equal to 5 mM EGTA contain 15-30% of the total egg actin. However, actin filaments are not readily apparent by electron microscopy on the cortical fragments of unfertilized eggs but are numerous on those of fertilized eggs. The majority of the actin associated with cortical fragments of unfertilized eggs is solubilized by dialysis against a low ionic strength buffer at pH 7.5. This soluble actin preparation (less than 50% pure actin) does not form proper filaments in 0.1 M KCl and 3 mM MgCl2, whereas actin purified from this preparation does, as judged by electron microscopy. Optical diffraction analysis reveals that these purified actin filaments have helical parameters very similar to those of muscle actin. Furthermore, the properties of the purified actin with regard to activation of myosin ATPase are similar to those of actin from other cell types. The possibility that actin is maintained in a nonfilamentous form on the inner surface of the unfertilized egg plasma membrane and is induced to assemble upon fertilization is discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  4. Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
  5. Burgess D. R., Schroeder T. E. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol. 1977 Sep;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
  8. Eddy E. M., Shapiro B. M. Changes in the topography of the sea urchin egg after fertilization. J Cell Biol. 1976 Oct;71(1):35–48. doi: 10.1083/jcb.71.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epel D., Weaver A. M., Mazia D. Methods for revoval of the vitelline membrane of sea urchin eggs. I. Use of dithiothreitol (Cleland Reagent). Exp Cell Res. 1970 Jul;61(1):64–68. doi: 10.1016/0014-4827(70)90257-0. [DOI] [PubMed] [Google Scholar]
  10. Harris P. Cortical fibers in fertilized eggs of the sea urchin Strongylocentrotus purpuratus. Exp Cell Res. 1968 Oct;52(2):677–681. doi: 10.1016/0014-4827(68)90509-0. [DOI] [PubMed] [Google Scholar]
  11. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  12. Hatano S., Kondo H., Miki-Noumura T. Purification of sea urchin egg actin. Exp Cell Res. 1969 May;55(2):275–277. doi: 10.1016/0014-4827(69)90492-3. [DOI] [PubMed] [Google Scholar]
  13. Hiramoto Y. Rheological properties of sea urchin eggs. Biorheology. 1970 Jan;6(3):201–234. doi: 10.3233/bir-1970-6306. [DOI] [PubMed] [Google Scholar]
  14. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  15. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lopo A., Vacquier V. D. The rise and fall of intracellular pH of sea urchin eggs after fertilisation. Nature. 1977 Oct 13;269(5629):590–592. doi: 10.1038/269590a0. [DOI] [PubMed] [Google Scholar]
  20. MERCER E. H., WOLPERT L. An electron microscope study of the cortex of the sea urchin (Psammechinus miliaris) egg. Exp Cell Res. 1962 Jun;27:1–13. doi: 10.1016/0014-4827(62)90037-x. [DOI] [PubMed] [Google Scholar]
  21. Miki-Noumura T. An actin-like protein of the sea urchin eggs. II. Direct isolation procedure. Dev Growth Differ. 1969 Dec;11(3):219–231. doi: 10.1111/j.1440-169x.1969.00219.x. [DOI] [PubMed] [Google Scholar]
  22. Miki-Noumura T., Kondo H. Polymerization of actin from sea urchin eggs. Exp Cell Res. 1970 Jul;61(1):31–41. doi: 10.1016/0014-4827(70)90254-5. [DOI] [PubMed] [Google Scholar]
  23. Miki-Noumura T., Oosawa F. An actin-like protein of the sea urchin eggs. I. Its interaction with myosin from rabbit striated muscle. Exp Cell Res. 1969 Aug;56(2):224–232. doi: 10.1016/0014-4827(69)90006-8. [DOI] [PubMed] [Google Scholar]
  24. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  25. Rebhun L. I., Rosenbaum J., Lefebvre P., Smith G. Reversible restoration of the birefringence of cold-treated, isolated mitotic apparatus of surf clam eggs with chick brain tubulin. Nature. 1974 May 10;249(453):113–115. doi: 10.1038/249113a0. [DOI] [PubMed] [Google Scholar]
  26. Rubenstein P. A., Spudich J. A. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. doi: 10.1073/pnas.74.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Runnström J. The vitelline membrane and cortical particles in sea urchin eggs and their function in maturation and fertilization. Adv Morphog. 1966;5:221–325. doi: 10.1016/b978-1-4831-9952-8.50010-9. [DOI] [PubMed] [Google Scholar]
  28. SAKAI H. Studies on sulfhydryl groups during cell division of sea urchin egg. II. Mass isolation of the egg cortex and change in its--SH groups during cell division. J Biophys Biochem Cytol. 1960 Dec;8:603–607. doi: 10.1083/jcb.8.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schroeder T. E. Microvilli on sea urchin eggs: a second burst of elongation. Dev Biol. 1978 Jun;64(2):342–346. doi: 10.1016/0012-1606(78)90085-4. [DOI] [PubMed] [Google Scholar]
  31. Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
  32. Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1974 Sep 25;249(18):6013–6020. [PubMed] [Google Scholar]
  33. Spudich J. A., Clarke M. The contractile proteins of Dictyostelium discoideum. J Supramol Struct. 1974;2(2-4):150–162. doi: 10.1002/jss.400020209. [DOI] [PubMed] [Google Scholar]
  34. Spudich J. A., Huxley H. E., Finch J. T. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J Mol Biol. 1972 Dec 30;72(3):619–632. doi: 10.1016/0022-2836(72)90180-5. [DOI] [PubMed] [Google Scholar]
  35. Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Uyemura D. G., Brown S. S., Spudich J. A. Biochemical and structural characterization of actin from Dictyostelium discoideum. J Biol Chem. 1978 Dec 25;253(24):9088–9096. [PubMed] [Google Scholar]
  37. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES