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ABSTRACT

Potassium pyroantimonate was used to localize sites of bound cations in human
neutrophils under conditions of random migration, stimulated random migration
(chemokinesis), and directed migration (chemotaxis) . The cells were placed in a
standard chamber in which 0.45-ym micropore filters separated the cells from the
stimulus (buffer, Escherichia coli endotoxin-activated serum or the synthetic
chemotactic peptide N-formyl-Met-Leu-Phe) . The small pore filters permitted
pseudopod formation but impeded cell migration through the filter. Cells exam-
ined under all conditions had electron-dense precipitates of antimonate salts in
some granules . However, antimonate deposits were localized in the condensed
chromatin of the nucleus during random migration and associated to a large
extent with the uncondensed nuclear chromatin during chemokinesis and chem-
otaxis . Under conditions of chemokinesis deposition of antimonate precipitates
appeared on the cytoplasmic side of the plasma membrane of neutrophils whereas
under conditions of chemotaxis cation deposits beneath the cell membrane were
localized to the pseudopods which were directed toward the chemoattractant. In
addition to endotoxin-activated serum, concentrations of N-formyl-Met-Leu-Phe
which caused neutrophil chemotaxis (10-8 M) also caused cation deposition
beneath the cell membrane at the leading end of the cell regardless of whether
albuminwas present in the incubation media. However, with higher concentrations
of the synthetic peptide (10-5 M) which caused granule release and were not
chemotactic, submembranous cation deposition was not seen . EDTA (10 mM)
and EGTA (10 mM) removed nuclear, granular, and submembranous cation
deposits from neutrophils examined under conditions of chemotaxis . X-ray micro-
probe analysis of antimonate deposits revealed the possible presence of calcium
but did not detect sodium or magnesium . The data indicate that chemotactic
factors induce submembranous deposition of cations, most likely Ca", which
localize to the leading edge of cells exposed to a gradient of chemoattractant.
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It is well known that cations are required for
granulocyte motility (3, 14), and studies with "Ca
have demonstrated a rapid calcium uptake (5, 20)
and release (14, 20) when chemotactic factors in-
teract with human neutrophils in suspension . In
addition, we have shown previously that interac-
tion of neutrophils with chemotactic factors sig-
nificantly decreases the cell negative surface
charge ( l2). As part of our studies to relate cations
to cell locomotion, we recently presented prelimi-
nary findings indicating that cations localize be-
neath the plasma membrane at the leading end of

neutrophils during chemotaxis but not during ran-
dom migration or activated random migration
(chemokinesis) (7, 8, 13). In this communication,
we describe these findings in detail, provide data
implicating the presence of calcium in the precip-
itates, and demonstrate that cells undergoing che-

mokinesis also accumulate cations beneath their
cell membrane although not localized to one re-
gion of cells as in chemotaxis. This phenomenon,
which is independent of the presence of albumin
in the incubation media, can be caused by more

than one chemotactic factor and is dependent on

the concentration of the chemoattractant.

MATERIALS AND METHODS

Preparation ofNeutrophils
Heparinized whole venous blood was obtained from

healthy, adult volunteers and separated into a granulo-
cyte-rich fraction by Hypaque (Winthrop Laboratories,
New York)-Ficoll (Pharmacia Fine Chemicals, Div. of
Pharmacia Inc., Piscataway, N. J.) and Dextran sedi-
mentation (Pharmacia) techniques (6). Residual eryth-
rocytes were eliminated by hypotonic lysis. This proce-
dure routinely resulted in a cell fraction containing >95%
neutrophils with 95% viability as determined by exclu-
sion of trypan blue dye (Grand Island Biological Co .,
Grand Island, N. Y.) (21) .

Neutrophils were suspended in Gey's balanced salt
solution containing 2% bovine serum albumin, penicillin,
and streptomycin (Gey's Medium, Microbiological As-
sociates, Walkersville, Md.) at 2.5 x 106 cells/ml before
use. In some experiments, cells were suspended in the
same media without albumin.

Chemotactic Factors
Endotoxin-activated serum was prepared by incuba-

ting 30 Wg of Escherichia coli endotoxin 0127 :138 lipo-
polysaccharide B (Difco Laboratories, Detroit, Mich .)
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with 0.1 ml of fresh serum in 0.9 ml veronal buffer (0.07
mM Ca", 0.5 mM Mg") for 1 h at 37°C . The solution
was then heated for 30 min at 56'C to terminate the
reaction and diluted 1 :1 with Gey's medium before use
(10) .

Synthetic chemotactic peptide N-formyl (f)-Met-Leu-
Phe (courtesy of Elliot Schiffmann, National Institute of
Dental Research, National Institutes of Health, Be-
thesda, Md.) was used in concentrations varying from
10 -' to l0-"' M in Gey's medium with and without
albumin.

Neutrophilfunction
Chemotaxis was evaluated using a 5'Cr (Amersham/

Searle Corp., Arlington Heights, Ill.) radioassay (1l) or
a morphologic assay (33) which measures the number of
cells migrating varying depths into a 3-gym cellulose
nitrate filter . Lysozyme activity, 13-glucuronidase, and
lactic dehydrogenase were all assayed as described pre-
viously (4, 27, 29, 31) in incubation media or in whole-
cell lysates prepared by cell disruption with 0.2% Triton
X-100 (Rohmand Hass Co ., Philadelphia, Pa .) .

Preparation of Cellsfor Cation Localization
by Electron Microscopy
The chemotactic chamber was divided into an upper

and lower compartment by a 13-mm 0.45-Im micropore
filter (Millipore Corp., Bedford, Mass .) . This filter allows
diffusion of soluble molecules and permits pseudopod
penetration and cell orientation under conditions of
chemotaxis but prevents cell migration through the filter
(17) . Neutrophils (0 .8 ml containing 2.3 x 106 neutro-
phils/ml) were added to the upper compartment and
incubated for 45 min at 37°C under conditions of ran-
dommigration (buffer in upper and lowercompartment),
chemokinesis (chemoattractant in upper and lower com-
partments), or directed migration (buffer in upper com-
partment, chemoattractant in lower compartment) . In
other experiments, the effect of length of incubation (5,
15, 30, 45, and 90 min) on chemotaxis, cell orientation,
and cation localization was investigated. In all cases,
experiments were repeated at least three times and, in
some cases (conditions of chemotaxis, incubation time
45 min), as many as 20 times. Within each experiment,

100-200 cells were examined .
Preliminary studies were performed to determine the

best fixation procedure for cation localization . At the
end ofthe incubation, the fluid was aspirated from both
compartments of the chemotactic chambers and imme-
diately replaced with fixative. The filters were then re-
moved and fixed for l h at room temperature or in the
cold (ice bath). The neutrophils were either fixed in 2%
osmium tetroxide (Electron Microscopy Sciences, Fort
Washington, Pa.) with 2% potassium pyroantimonate
(Lot No . 730312, Fisher Scientific Co ., Pittsburgh, Pa .
(pH 7.2-7 .8) (15, 16, 26) or prefixed, either in 2% glutar-
aldehyde (Electron Microscopy Sciences) in 0.1 M phos-



phate buffer (pH 7.3-7 .8) followed by a 0.1 Mphosphate
buffer wash (pH 7.3-7 .8) or in 2% glutaraldehyde in 0.1
M collidine buffer with 10 mM calcium (pH 7.3) and
then washed with 0.1 M collidine buffer containing 10
mM calcium (pH 7.3) . Neutrophils prefixed in glutaral-
dehyde, regardless of the buffer, its pH, or temperature,
contained fewer antimonate deposits than those fixed
directly in osmium-pyroantimonate . In addition, when
calcium was added to the collidine buffer, precipitate did,
not occur within secretory granules but did increase
nonspecifically on the cell membrane. Maximum precip-
itation of antimonate was obtained when cells were fixed
directly in alkaline (pH 7.8) osmium-pyroantimonate in
the cold (ice bath) . After fixation, cells were dehydrated
with ethanol, and propylene oxide was added slowly to
the ethanol (17) . This solution was replaced with pro-
pylene oxide, and the filters were transferred to embed-
ding molds and embedded in Epon 812. Thin sections
were cut on an LKB ultramicrotome III (LKB Instru-
ments, Inc., Rockville, Md.), and unstained sections or
those sections stained with uranyl acetate and lead citrate
were examined with a Philips 300 or a JEM 1000
electron microscope. In some experiments, the pyroan-
timonate technique did not form electron-dense deposits;
however, this was only seen when the shelf life of the
pyroantimonate exceeded 2 yr . Deposition of precipitates
in granules was used as a positive indicator that the
histochemical procedure worked . When this criterion
was met, the localization of cation deposits associated
with the cell membrane and nucleus within experimental
groups was always consistent and the overwhelming
majority of cells reacted identically .

Analysis of Cation Deposits
Grids containing unstained thin sections of neutro-

phils which were incubated under conditions of chemo-
taxis and then fixed with 2% osmium-2% pyroantimonate
(pH 7.8) were placed in a solution of 10 mM EDTA
(Fisher Scientific Co.) or 10 mM EGTA (Fisher Scien-
tific Co .) in 20 mM acetate buffer (pH 7.5) to determine
whether the electron-dense precipitates contained cal-
cium, magnesium, or sodium (26) . Control experiments
with 20 mM acetate buffer alone, pH 7.5, were also
undertaken to insure that removal of the precipitate was
a result of the chelating properties ofEDTA and EGTA .
After 3 h of agitating the solutions, the grids were
removed, dried, and examined with the electron micro-
scope.

In an effort to further characterize the cations in the
electron-dense precipitates which occur along the inside
of the pseudopod plasma membrane, x-ray microprobe
analysis was performed on these deposits . Unstained
100- to 200-nm thick sections mounted on Formvar
carbon-coated copper and nickel grids were probed at
JEOL Laboratories (Medford, Mass.) by Mr . David Har-
ling and at New York Medical College (Valhalla, N. Y.)
by Dr . Tamido Sato with a JEM 1000 in the stem mode,
in conjunction with a Kevex x-ray energy dispersive

spectrometer model 5100 (Kevex Corp., Foster City,
Calif.) . An accelerating voltage of 80 kV, a filament
current of 18 gA, and specimen tilt of 25° were used . In
both cases, the x-ray spectra were collected using the 0-
8 cV range for 100-300 s, using a spot (20 A) or square
probe (4,000 A) . The raw data were analyzed statistically
by background subtraction . Attempts were made to sep-
arate interfering peaks, such as antimony, at Dr . Sato's
laboratory.

RESULTS

Neutrophil Locomotion
Neutrophils in buffer (conditions of random

migration) appeared primarily round (Fig. 1), al-
though in some cells pseudopod formation was
observed. When these cells were processed for
cation localization, precipitates were found in the
condensed chromatin of the nucleus and associ-
ated with some of the lysosomal granules (Fig. 2) .
The granules containing antimonate deposits were
of varying sizes and shapes . Occasionally, deposits
were observed on the outside surface ofthe plasma
membrane .
Under conditions of chemokinesis, with equal

concentrations ofthe synthetic peptide f-Met-Leu-
Phe in the upper and lower compartments of the
chemotactic chambers, cells showed increased
asymmetry (Fig. 3) . Precipitates of antimonate
salts were observed in some granules and associ-
ated with some of the granule membranes. How-
ever, deposits were seen primarily in the uncon-
densed chromatin (Fig. 4, inset) and along the
inside surface of the cell membrane when cells
were incubated with 10 -9 or 10 -`° M concentra-
tions of synthetic peptide in both chambers (Fig.
4) . At higher concentrations of f-Met-Leu-Phe
(10-s-10-5 M), nuclear and cell membrane precip-
itate did not occur.
When cells were stimulated by a gradient of

chemotactic factor (chemotaxis), there was a
marked polarization of neutrophil morphology .
The neutrophils were oriented with their pseudo-
pods extending into the filter toward the chemoat-
tractant and with the nucleus toward the rear of
the cell (Fig . 5) . Beneath the cell membrane of the
pseudopods at the leading end of the cell, small
electron-dense deposits were observed (Fig. 6) .
These precipitates followed the contour of the
pseudopods and were associated with the cyto-
plasmic side of the plasmalemma (Fig . 6, inset) .
Precipitates of antimonate salts in the nuclei were
no longer associated primarily with condensed
chromatin as in random migration but were more
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FIGURES I and 2

	

Human neutrophils under in vitro conditions of random migration (Gey's balanced
salt solution in upper and lower compartments) fixed in osmium-antimonate. Under these conditions (Fig .
1), the cells appear rounded and either lie above or adhere to the surface ofa 0.45-pin micropore filter . In
an unstained section (Fig . 2), at higher magnification, electron-dense deposits of antimonate-cation
complexes are seen in the condensed chromatin (arrowheads), in some granules (G), and occasionally on
the outside of the plasma membrane . Fig. l, uranyl acetate and lead citrate, x 1,800. Fig. 2, unstained,
x 10,300. Bar, 1.0 ,um.

commonly observed associated with the uncon-
densed chromatin as in chemokinesis . As noted
with random migration and chemokinesis, elec-
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tron-dense precipitates were also associated with
some cytoplasmic granules (Fig . 6) . Neutrophils
which did not adhere to the filter remained round



FIGURES 3 and 4

	

Humanneutrophils under in vitro conditions of chemokinesis 10 -9 Msynthetic peptide,
f-Met-Leu-Phe, in upper and lower compartments) fixed in osmium-antimonate. Many cells appear
irregular with random pseudopod formation (Fig . 3) . In an unstained section at higher magnification (Fig .
4), electron-dense deposits of antimonate-cation complexes are seen in some granules (G), associated with
some granule membranes (small arrowheads) in the uncondensed chromatin (inset), and on the cytoplasmic
side of the plasma membrane ofthe neutrophil (large arrowheads). Fig. 3, uranyl acetate and lead citrate,
x 4,300 . Fig. 4, unstained, x 13,200; inset unstained, x 9,300. Bar, 1.0 ixm.
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and did not have cation deposits beneath the cell
membrane .
The ability of the neutrophils to orient in a

chemical gradient was time dependent. When the
neutrophils were incubated for 15-30 min, few
settled out of the medium and oriented on the
filter surface. Cells studied during these early time
periods showed only slight pseudopod formation
and no antimonate deposits beneath the plasma
membrane closest to the chemoattractant . How-
ever, cells incubated for 45 or 90 min were oriented
with pseudopods extending toward the chemoat-
tractant, and cation deposits were observed be-
neath the cell membrane of the pseudopods .

N-f-Met-Leu-Phe Stimulation of Chemotaxis
and Lysozyme Release

Various concentrations of the synthetic peptide,
N-f-Met-Leu-Phe, have been reported previously
to induce neutrophil chemotaxis and/or lysozyme
release from cells migrating into cellulose nitrate
filters (1, 2, 25). In our experiments, maximum
chemotaxis occurred with 10 -8 M N-f-Met-Leu-
Phe; no chemotaxis was detected with concentra-
tions below 10-1° M or above 10-6 M. Lysozyme
release occurred with higher concentrations of N-
f-Met-Leu-Phe with maximum release at 10 -5 M,
(Fig . 7) . These findings are similar to earlier stud-
ies in rabbit peritoneal exudate neutrophils (25) .
No lactate dehydrogenase and <10% total cellular
/3-glucuronidase were released under these condi-
tions .
Morphologic studies were performed to assess

antimonate deposition in neutrophils using con-
centrations of N-f-Met-Leu-Phe which were opti-
mal for chemotaxis (10-8 M) or lysozyme release
(10-5 M). Neutrophils stimulated with synthetic
peptide at concentrations of 10 -8 M had electron-
dense precipitates at the leading end of the cell on
the cytoplasmic side of the cell membrane of the

pseudopods (Fig. 8). In addition, antimonate de-
posits were again noted in the uncondensed chro-
matin of the nucleus and associated with some of
the granules . Both morphological orientation and
cation deposits occurred in the presence or absence
of bovine serum albumin in the incubation media.
When a higher concentration of synthetic peptide
(10-5 M) was used as the chemoattractant, granule
exocytosis was observed at the leading end of the
cell but precipitates of antimonate salts were no
longer seen beneath the pseudopod cell membrane
(Fig . 9). Granule exocytosis was observed only in
the region of the cell in contact with the micropore
filter .
The electron-dense deposits were removed from

the nucleus, granules, and pseudopod cell mem-
brane of neutrophils incubated under conditions
of chemotaxis by 10 mM EDTA and 10 mM
EGTA in acetate buffer at pH 7.5 (Fig . 6, inset) .
If the sections were washed in acetate buffer (pH
7 .5) alone, the precipitate was not removed.
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f-Met-Leu-Phe1M1

FIGURE 7

	

Effect of various concentrations of the syn-
thetic peptide, N-f-Met-Leu-Phe, on chemotaxis and se-
cretion oflysozyme from "Cr-labeled human neutrophils
migrating through two 3.0-ltm micropore cellulose nitrate
filters . Each point is the mean of four determinations .

FIGURES 5 and 6

	

Human neutrophils under in vitro conditions of chemotaxis (Gey's balanced salt
solution in uppercompartment, E. coli endotoxin-activated serum in lower compartment) fixed in osmium-
antimonate. Under these conditions (Fig . 5), the neutrophils line up adjacent to each other with the
nucleus at the rear of the cell and pseudopods extending into the filter toward the chemoattractant. At
higher magnification (Fig . 6), electron-dense precipitates of antimonate salts are seen associated with the
cytoplasmic side of the pseudopod membrane at the leading end of the cell (arrows), and at higher
magnification, in the inset c. Deposits are also present in granules, on some granules membranes, and
associated with the uncondensed chromatin . Antimonate salt precipitates were removed from the pseu-
dopod cell membranes, granules, and nucleus of cells washed in EDTA (inset a) or EGTA (inset b). Fig .
5, uranyl acetate and lead citrate, x 3,800. Fig, 6, was unstained, x 11,500 ; inset a, x 20,000 ; inset b, x
12,500 ; inset c, x 100,000. Bar, 1 .0 yin ; bar, insets a and b, 0 .5 pin ; bar inset c, 0 . I ,um .
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FIGURE 8

	

Unstained section of a human neutrophil under conditions of chemotaxis (Gey's balanced
salt solution upper compartment, N-f-Met-Leu-Phe 10-e M in lower compartment) fixed with osmium-
antimonate . At this concentration of synthetic peptide, the cells are actively undergoing chemotaxis and
antimonate-cation precipitates line the cytoplasmic side of the pseudopod cell membrane (arrows).
Deposits are also seen in granules (G) and associated with the uncondensed chromatin (arrowheads),
although some deposit is still seen associated with the condensed chromatin. Unstained, x 7,600 . Bar, 1 .0
Wm .

X-ray microprobe analysis, by both Mr . David
Harling and Dr. Tamiko Sato, of cation antimon-
ate deposits at the leading end of neutrophils
stimulated to undergo chemotaxis with activated
serum showed spectra for osmium, chloride, anti-
mony, and either nickel or copper, depending on
the type of grid used to supply the sections . So-
dium, potassium, magnesium, and manganese
were not present in detectable amounts. The an-
timony peaks surrounded the calcium peaks and
so it was not possible to verify the presence of
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calcium. Attempts by Dr. Sato to detect calcium
by antimony subtraction were inconsistent and as
a result were inconclusive .

DISCUSSION
The pyroantimonate technique is a specialized
cytochemical procedure which can demonstrate
the sites of critical concentrations ofbound organic
or inorganic cations as insoluble electron-dense
pyroantimonate precipitates . Using this technique,
we have demonstrated that the primary sites of



FIGURE 9

	

Human neutrophil in a chemical gradient of chemoattractant (Gey's balanced salt solution
upper compartment, N-f-Met-Leu-Phe [10" M] lower compartment) fixed in osmium-antimonate . At this
concentration of synthetic peptide, pseudopods are observable although cells are not undergoing chemo-
taxis but rather are in the process of secretion . Examples of exocytosis (arrow and insets) can be seen at the
side of the cell in contact with the micropore filter and closest to the chemoattractant. Uranyl acetate and
lead citrate, x 20,000 ; inset a, x 11,800 ; inset b, x 23,000 . Bar, 1 .0 j,m .

bound cations in human neutrophils are the nu-
cleus, lysosomal granules, and the cytoplasmic
membrane. Variation in the location of pyroanti-
monate deposits under different experimental con-
ditions may reflect accumulation of cations or
increased cation accessibility to antimonate . The

cation deposits may contain calcium as they were
removed by EDTA and EGTA, and microprobe
analysis indicated the possible presence of calcium
ions, whereas Mg" and Na' were not detected .
When randomly migrating neutrophils were

fixed directly in osmium-pyroantimonate, cation
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precipitates were observed in the condensed chro-
matin of the nucleus. In contrast, under conditions
of chemokinesis and chemotaxis, cation deposits
were found commonly but not exclusively in the
uncondensed chromatin of the nucleus. The mean-
ing of this observation is uncertain but may relate
to metallic cations associated with nucleoproteins
(18, 19, 22, 28).

Perhaps the most interesting chemoattractant-
induced change in cation localization was associ-
ated with the plasma membrane . Localization of
cations to the inside of the plasma membrane was
observed only in cells stimulated by a chemoat-
tractant and undergoing either chemokinesis or
chemotaxis . In the former case, cations bound
randomly to the inside of the cell membrane with-
out obvious orientation while in the latter case the
precipitate was associated with the inside of the
cell membrane of pseudopods at the leading edge
of the cell . This localized concentration of cations
to the front of the cell during chemotaxis was
unrelated to cell adhesion to the filter because
submembranous precipitates were not observed in
cells undergoing spontaneous random migration
which made contact with and occasionally sent
pseudopods into the filter. The presence ofcations
beneath the cell membrane may explain the de-
crease in negative surface charge observed in sus-
pensions of neutrophils exposed to a chemoattrac-
tant (12) . Whether or not deposition of submem-
branous cations represent localization of calcium-
binding proteins or phospholipids in the cell mem-
brane (24) which may be required for calcium
modulation of actin filament contraction (9), or
else localization of cation pumps as described in
developing fucoid eggs (23), will await additional
study.
Of considerable interest is the fact that deposi-

tion of submembranous cation was dependent on
critical concentrations ofchemoattractant . For ex-
ample, with high concentrations of N-f-Met-Leu-
Phe (10-5 M), which caused secretion of intracel-
lular granule contents and depression of chemo-
taxis, no submembranous cation deposits were
observed even though the cells appeared oriented
and had pseudopods extending into the filter . Al-
though the same chemotactic stimulus can cause
both secretion and chemotaxis, the number of
receptors stimulated and the sequence of events
after stimulation may be quite different (1, 30, 32).
Further experiments defining the role of local
submembranous cation deposition in the modu-
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lation of neutrophil chemotaxis and secretion are
currently under study.
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