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ABSTRACT
Membrane adhesions between the flagella of mating-type "plus" and "minus"
gametes of Chlamydomonas reinhardi are shown to stimulate a rapid change in the
ultrastructure of the flagellar tips, designated as flagellar tip activation (FTA). A
dense substance, termed fibrous tip material (FTM), accumulates between the
flagellar membrane and the nine single A microtubules of the tip . The A
microtubules then elongate, growing into the distal region of the tip, increasing tip
length by 30% . This study describes FTA kinetics during normal and mutant
matings, presents experiments designed to probe its role in the mating reaction,
and offers the following conclusions : (a) FTA is elicited by agents that cross-link
flagellar membrane components (including natural sexual agglutinins, antiflagellar
antisera, and concanavalin A) but not by flagellar adherence to polylysine-coated
films . (b) FTA is reversed by flagellar disadhesion . (c) Gametes can undergo
repeated cycles of FTA during successive rounds of adhesion/disadhesion . (d)
FTA, flagellar tipping, and sexual signaling are simultaneously blocked by col-
chicine and by vinblastine, suggesting that tubulinlike molecules, perhaps exposed
at the membrane surface, are involved in all three responses . (e) FTA is not
blocked by short exposure to chymotrypsin, by cytochalasins B and D, nor by
concanavalin A, even though all block cell fusion ; the response is therefore
autonomous and experimentally dissociable from later stages in the mating
reaction . (f ) Under no experimental conditions is mating-structure activation
observed to occur unless FTA also occurs . This study concludes that FTA is a
necessary event in the sexual signaling sequence, and presents a testable working
model for its mechanism .
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sensory cilia
agglutination
The mating reaction of the biflagellate Chlamy-
domonas reinhardi (16) initiates when mating-type
"plus" (mt+) and "minus" (mt) gametes are
mixed together. The resulting interactions can be

subdivided into seven stages, all of which can be
completed within 30 s. (a) The cells adhere to one
another via mi-specific flagellar surface aggluti-
nins, thought to be glycosylated membrane poly-
peptides (6, 57). (b) Pairs of adhering cells move
their agglutinins out to their respective flagellar
tips, a "tipping" response that brings the apical
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cell surfaces into close proximity (14, 20, 38). (e)
One or more "signals" are transmitted to the cell
bodies of paired cells (14, 22, 39, 59). (d) As a first
response to signaling, cells release an autolysin (9,
56) that mediates the shedding of cell walls (22,
59). (e) As a second response to signaling, cells
activate their mating structures, the mt+ gamete
sending out a microvillarlike fertilization tubule
(8, 15, 22, 63) and the mt- gamete reorganizing the
conformation of its mating-structure membrane
(67). (f) The mating-structure membranes fuse
together, creating a narrow cytoplasmic bridge
that opens up to allow full cytoplasmic confluence
(15) . (g) The adhering flagella of the resultant
quadriflagellated cell lose their agglutinative prop-
erties (33), presumably in response to a "signal to
disadhere" transmitted at the time of cell fusion
(16) .

Because the tipping response appears to precede
signal generation, and because bound ligands such
as concanavalin A (Con A) and flagellar-directed
antibodies also move to flagellar tips (20) and send
mating signals to the cell bodies (9, 20), we ex-
amined flagellar tip ultrastructure during the
course of the mating reaction . In this paper we
report that a dense material accumulates beneath
the flagellar tip membrane at the time of flagellar
agglutination and is lost from the tip at the time
flagella disagglutinate . An alteration in axoneme
structure follows the accumulation of the material :
the A microtubules increase in length, and the
entire tip region elongates reversibly . We also
present experimental evidence that such flagellar
tip activation (FTA) is a critical feature of sexual
signaling in C. reinhardi . A preliminary account of
some of these studies has been presented (17) .

MATERIALS AND METHODS

Strains and Culture Conditions
Clones of the wild-type (wt) strain 137c, mt' and nit, of C.

reinhardi that exhibit high (near 100%) mating efficiencies were
used in most experiments. The mutant strains imp-1 mt' (I8, 22)
and imp-5 mt' (6 . 19) were used as indicated . The cw-15 strain
(lacking cell walls) (11) was used in several experiments in which
mating-structure activation (MSA) was monitored so failure to
shed cell walls would not bias scoring. Plate gametes (34) were
harvested after 7-14 d on TAP-agar plates and suspended in
nitrogen-free high-salt minimal medium (NFHSM) (34) for 1-2
h. or until strongly agglutinative,

Mating Test and Mating Efficiency
For mating experiments, equal numbers of mt' and mt

	

cells
were mixed in NFHSM at concentrations between 0.7 and 3 x
10' cells/ml, cell number being determined with a hemacyto-
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meter. At indicated times. aliquots were withdrawn and fixed
with glutaraldehyde, and cells were scored by phase microscopy
as being either biflagellated (BFC) or quadriflagellated (QFC)
cells. Mating efficiency, as a percentage, was then calculated by
the expression 2QFC x 100/(2QFC + BFC) .

Electron Microscopy

INrA('I ('RIrlCAL-POINT-DRIED FLAGELLA : Critical-
point-dried cells were prepared by a modification of a method
(38) that minimizes cell disruption . A 500-O1 container was
divided into two unequal but interconnected compartments by a
removable stainless steel L-shaped holder. In the larger com-
partment, a 0.5, Formvar-coated EM grid was sandwiched
between the holder and a stainless steel ring, creating a micro-
compartment just above the surface of the grid . Exchange of
solutions occurred in the smaller compartment. A 100-,Al sample
of cells (10' cells/ml) was pipetted onto the grid and fixed after
the appropriate experimental interval with 400 Al of cold fixative .
Fixation scheme 1 consisted of0.1, glutaraldehyde in NFHSM,
for 60 min, followed by 2, OsO, in 10 mM HEPES buffer, pH
7.0, for 60 min; and fixation scheme 2 consisted of 2` OsO, in 10
mM HEPES buffer . pH 7.0 . for 60 min, followed by 3m glutar-
aldehyde in the same buffer for 60 min. The 0.1 In glutaraldehyde
concentration was chosen after scanning EM studies revealed
that higher concentrations caused extensive blebbing of both the
flagellar and plasma membranes. Fixation scheme 2 was used
specifically to study the microtubules in the flagellar tips .

After fixation, cells were washed in distilled water for 10 min,
stained in 17, uranyl acetate in distilled water for 30-60 s, and
washed again in distilled water for 10 min. Dehydration was
carried out at room temperature with one change each of 30, 60.
90Q,, and twoof 100°4 ethanol, 10 min each, and directly followed
by critical-point drying in CO,. Whole mount preparations were
examined with a Philips EM300 at 60 kV or with a Hitachi HU-
I IC at 75 kV .

DI, ILR(iLN-r-LXIRACTLD

	

(RITICAL-POINI--DRIED
FLAGELLA :

	

These flagella were obtained using cells prepared
by fixation scheme 1, except that after 30 min in glutaraldehyde
the cells were extracted for 30 min with 30 mM octylglucoside
(OG) (Calbiochem-Behring Corp ., American Hoechst Corp ., San
Diego. Calif.) in NFHSM containing 0.1 mM dithiothreitol
(DTT).

.MerH.ANDL-TRr.+renrLA(:ELLA :

	

Cells fixed in0.)"~;glu-
taraldehyde for 15 min were washed in distilled water for 10 min,
treated twice with 10Wr methanol for 10 min each, then stained
in Ie,. uranyl acetate in 100'x- methanol. 30-60 s, and immediately
dried on No . I filter paper (Whatman, Inc., Clifton . N.J .), all at
4°C. The poor fixation, shock of dehydration, and air-drying
adversely influence the shape of the cells, but flagellar morphol-
ogy is similar to that visualized by the preceding method, and
the procedure takes < I h. Samples scored for FTA yielded the
same results as those prepared by detergent treatment in a
parallel experiment . The small fraction of the flagella that break
during the procedure are easily distinguished and do not modify
scoring data . The technique is not suitable for scoring MSA.
GRID-DEMEMBRANATI-D FL.AGe1.LA : The procedure of

Dentler and Rosenbaum (12) was followed, with minor modifi-
cation . Intact cells were allowed to attach to polylysine-treated
carbon-over-Formvar-coated grids for several seconds and were
then treated with 30 mM OG in deflagellation buffer (5 mM
MgSO � 0.35 mM DTT. 0.5 mM EDTA, 10 mM HEPES, pH
7 .5) . The procedure results in detachment of flagella from cells
and a very mild demembranation of the flagella. Typical forms



of flagellar interaction (e .g ., "tipped" flagella) could still be
observed after preparation of mating cells .

'THIN-SLCTION ELEC"fRON MICROSCOPY : Cells were
prepared by fixation scheme I, dehydrated in ethanol, and
embedded in an Epon-Araldite resin mixture (30) .

Flagellar Isolation
Flagella were detached from -2 x 10"' cells by the pH-shock

method of Witman et al . (73) . Cell bodies were pelleted by two
brief centrifugations at 3,000 g; the supernate was layered over
a 25% sucrose solution in 10 mM Tris, pH 7.4, and spun at 3,000
rpm for 15 min in an HB-4 rotor of a Sorvall RC-5B centrifuge
(Du Pont Co. . Sorvall Biomedical Div., Wilmington, Del.) : the
band of white flagella at the interface was collected, pelleted at
31,000 g for 20 min, and stored at -70°C. Upon thawing, the
flagella exhibited strong isoagglutinability with gametes of op-
posite mi . Flagellar counts were made with a hemacytometer,

OG Extraction ofFlagellar Agglutinins
A gametic mt - flagellar pellet was suspended in 1 ml of 30

mM OG in 10 mM Tris, pH 7.4, containing 10-' M EGTA and
0.1 mM DTT. The detergent extract was dialyzed overnight
against several changes of NFHSM. The dialyzed material was
then applied to the surface ofa Formvar-coated copper EM grid,
allowed to dry. and presented with a drop of mi * gametes .

Ant~flagellar Antisera
Antisera raised in rabbits against intact, unfixed, or glutaral-

dehyde-fixed mt * gametic flagella were presented to WI MI' or
imp-5 mt' gametic cells at the dilutions indicated . Additional
information on the properties of these and related antisera is
given in references 3 and 20.

Con A
A 5 mg/ml stock solution of Con A (Sigma Chemical Co ., St .

Louis, Mo .) was prepared in NFHSM and diluted with NFHSM
as indicated for individual experiments . When presented to ga-
metes at 1.25 x 10' cells/ml for 5 min, 100-200 pg/ml of the
lectin gave maximal (near 100%) agglutination : 50 jig/ml gave
50'%~ agglutination . and 12 .5 pg/ml gave 10% agglutination, as
scored by hemacytometer counts of fixed samples.

Drugs and Enzymes
Solutions of colchicine, vinblastine sulfate, cytochalasins B

and D (Sigma Chemical Co .), grid chymotrypsin (Worthington
Biochemical Corp ., Freehold, N.J .) were added to cells that had
been spun out of their medium. Cytochalasins B and D were
dissolved at 10 mg/ml in dimethyl sulfoxide (DMSO) (Sigma
Chemical Co.), and this stock was diluted further with NFHSM;
all other reagents were dissolved directly in NFHSM to the
concentrations specified .

Milligram quantities of lumicolchicine (an inactive derivative
of colchicine) were prepared by irradiating solutions of colchicine
at 20 mg/liter (50 pM) in absolute ethanol (72) . Irradiation took
place in a hand-blown quartz 100-ml round-bottom flask with a
Blak-Ray UV lamp (model B100A, Ultra-Violet Products, Inc.,
San Gabriel, Calif.) . Aliquots of the solution were irradiated for
I h, with completion of the reaction monitored by loss of absorb-
ance at 350 rim and a concomitant rise in absorbance at 267 rim .
Ethanol was removed by flash evaporation at 60 °C: the flask was
rinsed three times with 5 ml absolute ethanol, and the combined

rinses were evaporated under a stream of nitrogen gas at 60°C .
The yield of lumicolchicine was determined spectrophotometri-
cally by absorbance at 267 rim .

RESULTS

Unactivated Gametic Flagella

The fine structure in the Chlamydomonas fla-
gellum is described in numerous reports (12, 26,
30, 46, 49-51, 73, 74); noted here are features
pertinent to this study. The organelle is differen-
tiated longitudinally into two zones: an - 10-12-
,um "shaft" region ending in an -0.5-0.6-pm "tip"
region . The shaft contains nine doublet microtu-
bules bearing dynein arms, nexin links, and radial
spokes, plus a central microtubule pair surrounded
by its helical axial filament (the "sheath"). At the
shaft-tip junction, the B microtubules of the dou-
blets terminate, as do most of the other flagellar
components . Continuing into the tip are the cen-
tral pair and nine single A microtubules (Figs. 1
and 2) . The central pair loses its axial filament and
acquires a central wedge of connecting material
(50 and Fig. 2); it terminates in a "cap" of two
dense plates associated with at least three and
possibly four spheres (12 and 50; Mesland, unpub-
lished micrographs) . The A microtubules radiate
out toward and appear to make direct contact with
the tip membrane (Figs. l and 2, small arrows),
giving the tip axoneme a somewhat larger diameter
(-270 rim) than the shaft axoneme (-200 rim) .
Each A tubule exhibits a short dense terminus
(Fig. l, t) . The microtubule occupying position 3
of the axoneme (53) extends to the end of the
flagellum and associates with the cap (Fig. 1) . The
remaining tubules terminate at more proximal
levels of the tip region and differ considerably in
length : in a representative detergent-treated axo-
neme (cf. references 12, 52), one A tubule extends
420 rim beyond the terminus of its B partner,
whereas another extends only 90 rim.

In critical-point-dried preparations of intact fla-
gella (Fig. 3), the electron-dense flagellar shaft (S)
is readily distinguished from the electron-translu-
cent tip (T), in which the "high" microtubule 3
and the terminating A microtubules (arrows) can
be readily visualized .

Activated Gametic Flagella

Fig. 4 shows a critical-point-dried intact flagel-
lum from a gamete that has been mated for 2 min
and has undergone FTA. Two differences are
apparent between this activated flagellum and the
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FIGURE 1 Unactivated flagellar tip from an mt' ga-
mete seen in medial longitudinal section . Visible com-
ponents ofthe cap (C) include two lightly stained spheres
resting on a horizontal plate, which in turn rests on the
central-pair microtubules (cp) . The high A microtubule
arches toward the cap and bears a blunt, dense terminus
(t) . Small arrows point to filamentous contacts between
the microtubule and the flagellar membrane. x l 10,000 .

FIGURE 2

	

Unactivated flagellum from an mt' gamete,
sectioned through a proximal portion ofthe tip . The nine
Amicrotubules are positioned close to the flagellar mem-
brane and appear, at arrows, to make contact via fila-
mentous structures . x 110,000.

unactivated flagellum shown in Fig. 3 : first, a zone
of dense material (D) is present beneath the mem-
brane of the tip region; second, the tip region is
increased in length . These two changes are consid-
ered in turn below.
The dense material in activated flagellar tips is

most readily examined in cross section . Fig. 5
shows an activated flagellum sectioned just below
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the cap region ; Figs . 6-8 show successively more
proximal images . A fibrous substance, absent from
unactivated flagella (Figs. 1 and 2), has accumu-
lated between the tip membrane and the A micro-
tubules; until it is identified biochemically, we
shall refer to it as fibrous tip material (FTM). In
places the FTM appears to associate into ropelike
strands which extend around the circumference of
the tip (e .g ., Figs . 6 and 7, arrows), but no other
structural organization is apparent . FTM localizes
in a highly invariant region of the flagellum: it
begins at the level of the cap plates, forms a

FIGURE 3

	

Unactivated mt' flagellum, prepared by fix-
ation scheme I (see Materials and Methods) and critical-
point dried. Transition from the dense shaft region (S)
into the translucent tip region (T) is indicated. The high
A microtubule (3) connects with the cap structure (C);
other A microtubules terminate at lower levels (arrows) .
Mastigonemes are indicated by m. x 80,000.

FIGURE 4

	

Activated flagellum fixed 2 min after initi-
ation of mating, prepared by fixation scheme 1 and
critical-point dried. The increased tip length from the
tip/shaft junction (T/S) compared with Fig . 3 is appar-
ent . The A microtubules terminate at a focus marked mt ;
several appear to connect to the cap (C). Electron-dense
material is indicated at D. Absence of mastigonemes is
not significant ; their retention on the flagellar surface is
highly variable in both mated and nonmated samples .
x 80,000 .



FIGURES 5-8

	

Activated flagellar tips viewed in progressively more proximal cross sections. Fig. 5 (fixed
15 s after initiation of mating) shows an extreme distal section, with a ring of FTM beneath the tip
membrane (grazed during sectioning); the central-pair tubules are seen ending at the level of the cap
plates . Fig. 6 (fixed I min after initiation of mating) shows the high filled microtubule at position three
(arrow head) and strands of material within the ring of FTM (arrows) . Fig. 7 (fixed 1.5 min after initiation
of mating) shows six filled microtubules (arrowheads) and strands within the FTM (arrows). Fig. 8 (fixed
1 .5 min after initiation of mating) is sectioned at a level where at least one microtubule appears hollow
(arrowhead) ; the others are filled . x 110,000 .

discrete 45-nm layer between the membrane and
the ring of nine A microtubules, and terminates
above the level of the tip/shaft junction (Fig. 4) .
Its presence creates a physical separation between
the A microtubules and the flagellar membrane
(Figs. 6-8) .
The second structural change during activa-

tion-the increased length of the activated tip-
has been quantitated in whole-mount preparations
ofthe sort shown in Fig. 4. Fig. 9 plots the resulting
measurements . Whereas a range of tip lengths is
found for both unactivated and activated flagella,
a statistically significant (P :5 0.001%) 30% increase
in mean length is found to accompany FTA.
Two observations support the concept that the

increase in length is effected by an elongation of
the A microtubules .

(a) When flagella are fixed in OS04 (Figs. 10
and 11), FTM is largely extracted and the tips are
highly transparent . As activation proceeds, the
microtubules can be seen to elongate until all nine
extend to the very end of the flagellum, converting
the tapered unactivated tip (Fig . 10) into a
rounded activated one (Fig . 11) .

(b) In negatively stained axonemal preparations
from activated flagella, the ends of the A tubules
usually end in sheets of protofilaments topped by
plugs (Fig . l2). Although such protofilament
sheets are occasionally encountered on one or two
ofthe nine microtubules in unactivated axonemes,
their frequency is markedly enhanced during
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FIGURE 9

	

Distribution of tip-region lengths (see sche-
matic drawing in inset) for unactivated (---) and acti-
vated (-) flagella . Samples were prepared by fixation
scheme I . Tips were measured directly from the micro-
scope image using an ocular micrometer. Average length
found: for unactivated tips, 570 nm (n = 100, SD = 14 .1
nm); for activated tips (2 min of mating), 750 nm (n =
107, SD = 10.0 nm). P <_ 0.001% for the lengths to be
equal .

FTA. A comparable increase in A tubule proto-
filament sheets is found in vegetative axonemes
undergoing flagellar regeneration (12), suggesting
that they represent the elongating ends of micro-
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FIGURE 10

	

Unactivated mt' flagellum prepared by fixation scheme 2 (see Materials and Methods) . The
transition between shaft (S) and tip (T) region is indicated. Arrows point to the ends of A microtubules .
The high A microtubule (3) connects to the cap structure (C). x 90,000.

FIGURE I I

	

Activated flagellum prepared by fixation scheme 2. The length of the tip region (T) has
increased considerably . Most A microtubules terminate close to the cap structure (arrows), an exception
being the microtubule marked x; their termini appear to associate with unstained spherical structures
connected to the cap (C). x 90,000 .

tubules. It is possible that the abundant "filled"
microtubules in activated flagella (Figs. 5-8) also
represent regions of active growth .

Kinetics ofActivation
To study FTA kinetics during the mating reac-

tion, we developed two preparative procedures
which permit unactivated and activated flagella to
be readily and accurately distinguished by low-
magnification EM. In both procedures, cells are
first fixed with dilute glutaraldehyde solutions;
they are then treated either with methanol or with
the detergent OG (see Materials and Methods) .

THE JOURNAL OF CELL BIOLOGY " VOLUME 84, 1980

Figs . 13 and 14 compare unactivated and activated
flagella prepared by the methanol procedure. The
association of the A tubules with FTM in the
activated state is preserved by glutaraldehyde fix-
ation and retained during the subsequent extrac-
tion ; the result is a distinctive distended tip and a
narrow "neck" at the tip/shaft junction . Fig. 15
shows an OG-treated preparation and illustrates

that unactivated (arrowheads) andactivated (small
arrows) tips can be easily identified at low mag-
nification .

Using such extracted material, we can readily
score the kinetics of activation. Fig. 16A plots



FIGURE 12

	

Axoneme from an activated flagellum, pre-
pared by demembranating whole cells with detergent 1
min after the initiation of mating . Six A microtubules
are visible, all terminating in sheets of protofilaments .
Small arrows point to the sites of insertion of "plugs"
(12) into the protofilament sheets . Large arrows point to
the termini of two B microtubules . X 108,000 .

results based on OG-extracted samples, and Fig.
17A shows a methanol-treated experiment . The
first fused QFC vary somewhat in time of appear-
ance in the two matings, but the overall kinetics
are seen to be very similar . Three features of the
activation process are to be noted in these experi-
ments. First, FTA clearly precedes gametic cell
fusion . Second, the maxima in cell pairing coincide
with the maxima in FTA. Third, FTA is seen to
be reversible, declining coincidentally with the
rate of cell fusion .
FTA is found in such experiments to proceed

through an "intermediate" stage : as illustrated in
Fig. 18, many tips in early samples appear fuller
than in unmated samples but do not yet display

the bulbous ends and narrow necks of fully acti-
vated organelles . The development of this inter-
mediate morphology precedes full activation in
kinetic experiments (Fig . 16B), and intermediate
flagella are at a minimum when full activation is
maximal (Fig . 16B) . In samples fixed from the
same experiment plotted in Fig. 16 and analyzed
by thin-section EM, 70% (19 of 27) of the tips
photographed from the 15-s sample were found to
contain some FTM. In whole-mount preparations,
only 8% of the flagella in this 15-s sample were
judged to be fully activated, whereas 26% were
scored as intermediate (Fig . 16 B) . These observa-
tions suggest that the first activation event is the

FIGURE 13 Unactivated mi' flagellum, fixed, metha-
nol treated and air-dried . The central pair cap (C), its
associated microtubule (3), the tapered tip region (T),
and the shaft region (S) can be distinguished . Remnants
of the matrix and/or membrane remain associated with
the axoneme and form a double or triple semihelix. X

80,000 .

FIGURE: 14

	

Activated methanol-treated flagellum . The
stretch caused by air-drying creates a very narrow neck
zone (N) and accentuates the FTM-filled bulbous tip .
The semihelical structure is visible around the whole
length of the axoneme . T, tip : S, shaft . X 80,000.
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accumulation of FTM, which causes tips to change
from a pointed (unactivated) to a rounded (inter-
mediate) shape; this is followed by A tubule elon-
gation, which generates the extreme morphologi-
cal alteration scored as full tip activation .
That the reversal of FTA seen in Figs . 16A and

17A is a consequence of cell fusion and not a
preprogrammed decline in activation ability has
been demonstrated using imp-1 mt+ x wt mt -
matings. The imp-I mutation prevents gametic cell
fusion and flagellar disadhesion but does not pre-
vent the transmission of mating signals to the cell
bodies ; as a consequence, cells continue to agglu-
tinate sexually for many hours (22) . As seen in
Figure 17 B, flagellar tips remain fully activated in
imp-1 x wt matings for at least 30 min. The
structure of such a tip, moreover, is indistinguish-

606

FIGURE 15 Activated flagella and mating structures in OG-treated, critical-point-dried mt' gametes.
Gametes (2 x 107 cells/ml) were mixed with isolated mt flagella (2 .7 x 10' flagella/ml) and fixed after
3 min. Activated flagellar tips (small arrows) and nonactivated flagellar tips (arrowheads) are indicated.
Large arrows point to activated mating structures . x 8,100.
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able from a tip that has been activated for only l
min; the continued time of agglutination does not
generate a tip that is either any longer or more
filled with FTM.

FTA Induction by Agglutinins and Surface
Cross-linking Agents
To determine whether it is essential for FTA

that cells of both mt be present, we performed two
kinds of experiments . First, isolated mt flagella
were presented to mt+ gametes. Second, mt fla-
gella were extracted with OG (68), the detergent
was removed by dialysis, a film of the dialyzed
extract was allowed to form on a Formvar-coated
EM grid, and a drop ofmt+ cells was then applied
to the grid . Adair et al. (2) have found that gametes
adhere by their flagellar tips to such films in an
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FIGURE 16 (A) Time-course of cell-pair formation
(p), cell fusion (0), and FTA (") in mating gametes.
Duplicate samples were fixed at each time indicated .
One was scored microscopically for pair formation and
cell fusion; the other was OG treated and critical-point
dried for scoring of FTA. (B) Time-course of the occur-
rence ofunactivated (A), intermediate ("), and activated
flagella (") in the same experiment as described for A .

FIGURE 17

	

Kinetics of FTA ("), cell pairing (A), and
cell fusion (0) scored in samples prepared by methanol
treatment, examining A, a wt mating, and B, an imp-1

mt' x wt mt - mating . Cell pairing cannot be scored in
imp-1 matings, because the clump size becomes enor-
mous.

mt-specific fashion; that is, mt' cells stick to mt -
but not mt' films, and vice versa.
As seen in Table I, the FTA response in mt'

gametes is readily elicited by both the isolated
flagella and the detergent-extracted mt- agglutinin
film . The same cell samples were also scored for
MSA, seen in mt' whole mounts as the extension
of a long, slender fertilization tubule from the cell
anterior (Fig . 15, large arrows). As shown in Table
I, the flagella and the extracted agglutinins are as
effective in inducing MSA as they are in inducing
FTA.

In control experiments designed to determine
whether mt' gametes undergo activation if their
flagella are simply tethered, cells were allowed to
adhere to polylysine-coated EM grids and then
examined . None of the flagella was activated by
such adhesions, nor were mating structures acti-
vated (Table 1) . To rule out the possibility that the
presence of polylysine might be inhibitory to the
activation response, ml+ cells tethered to polyly-
sine films were subsequently presented with iso-
lated mt - flagella . As seen in Table I, the attached
cells remained capable ofnormal FTA in response
to these flagella .
Two experimental approaches were taken to

determine whether sexual agglutinins are required
to elicit FTA or whether the response can also be
evoked by other ligands that cross-link flagellar
surface components . First, an antiserum raised
against isolated mt' flagella was presented to wt
mt' gametes, causing them to isoagglutinate by
their flagellar tips and to activate their mating
structures (20) . It is seen in Table I that 40% of the

FIGURE 18

	

Intermediate stage of FTA in a flagellum
fixed by scheme 1, 30 s after initiation of mating. Tip
region (T) is not yet elongated but the tip is already
rounded in shape. The tip is also moderately electron
dense (cf. Fig. 3), presumably because it contains FTM.
S, shaft . x 80,000.
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TABLE I

Effect of Flagellar Membrane Agglutinins on Parameters of the Sexual Response in mt' Gametes

' Flagellar tips are scored intermediate (inter) when they cannot be scored as either unactivated (non) or activated
(act) . These include tips that have a clear intermediate morphology (see Figs. 16 B, 18, and 19) ; also included are
tips that are difficult to score as, for example, when aGG' presentation has induced antibody/vesicle complexes
(Fig . 19) that are resistant to OG removal.

$ Experiment with the cw-t5 mt' mutant ; occasionally a gamete of this mutant bears a spontaneously activated small
mating structure .

~~ Gametes adhere to the film formed by the extract .
§ OG - extract, dialyzed octylglucoside extract ofmt- gametic flagella .
$ aGG', antiserum raised against glutaraldehyde-fixed isolated gametic mt' flagella .

flagella undergo unmistakable activation after 3
min, with a concomitant induction of MSA. In a
parallel experiment, the mutant imp-5, which lacks
a functional agglutinin (6), was isoagglutinated by
a second antiserum raised against mt' gametic
flagella, and the cells were examined by thin-sec-
tion EM. Although meaningful quantitation of
thin-sectioned material is impossible, many of the
tips were activated (Fig . 19) .
The second protocol for nonsexual agglutina-

tion used Con A, which isoagglutinates gametes of
either mating type by their flagella (5, 35, 71). As
seen in Table 1, both FTA and MSA are elicited
by the lectin in a parallel fashion . It should be
noted that the fertilization tubules fail to elongate
to their normal dimensions (Fig . 15) in the pres-
ence of Con A; instead, the activated structures
are uniformly short, stubby protrusions (Fig. 20),
as if the lectin generates a defective signal or
interferes directly with theMSA response, or both .

FTA Reversal and Reinitiation
The kinetic experiments presented in Fig. 17
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MSA

demonstrate that in an imp-] x mt- mating in
which cell fusion and zygotic flagellar disadhesion
are blocked, the deactivation of flagellar tips is
blocked as well, suggesting that tip deactivation is
triggered either by cell fusion, by flagellar disadhe-
sion, or by both . To determine which stimulus is
operative, we took advantage of the phenomenon
of reversible in vitro flagellar adhesion reported
by Snell and Roseman (58) . They discovered that
when isolated flagella of one mt are mixed in a l :
l ratio with gametes of opposite mt, an initial burst
of isoagglutination is followed by a progressive
loss of adhesion until only single cells and free
flagella remain . The cells can be readily reagglu-
tinated using a fresh sample of isolated flagella,
whereas the initial set of flagella are rendered
nonadhesive as a consequence ofthe agglutination
reaction . Using this system, we were able to subject
a sample ofcells to successive rounds ofadhesion/
disadhesion under conditions it. which no cell
fusion occurs, and to ask whether activated tips
undergo deactivation in response to disadhesion
alone.

mt' Gametes presented with Agglutination Tipping
Cell wall
release Non Inter' Act

Total
scored

Total
scored

No additives No No No 91 9 0 (98) 0 -
Polylysine-coated grid$ Adhesion No No 76 24 0 (106) 2 (51)
Preimmune serum

(1 :6) No No No 90 10 0 (102) 0 -
Isolated -mt flagella

(1 .3 flagella/cell) Yes Yes Yes 23 16 61 (140) 40 (77)
Isolated mt- flagella after

polylysine adhesion$ Yes Yes - 18 23 59 (115) 44 (48)
OG- extract§

(1 .6 mg/ml) Yesil Yes Yes 28 25 47 (111) 47 (64)
aGG'J

(1 :160) Yes Yes Yes 15 44 41 (74) 45 (84)
Con A

(I mg/ml) Yes Yes No 47 29 24 (72) 3 (59)
(200 fig/ml)$ Yes Yes - 61 18 21 (106) 23 (56)



FIGURE 19 Antibody-mediated tip activation of an
imp-5 mt' gamete. The flagellum is judged to be in an
intermediate stage of activation, with FTM (arrows)
localized between the axoneme and membrane but with
tip elongation not yet initiated . Antibody (Ab) aggregates
are associated with the membrane surfaces and with
vesicles that bleb from the flagellar tips (20) . Central-
pair cap is at C; the high microtubule 3 arches toward
the cap/central-pair junction . Arrowhead points to a
dense microtubule terminus . x 66,000.

Fig. 21 shows the results of several experiments
in which isolated mt- flagella were presented to
mt' gametes. Fig. 21 a shows the kinetics of the
agglutination/disagglutination response as judged
by visual inspection; comparable kinetics are
found by Coulter-counter assay (58) . Fig. 216
shows the extent of FTA in such samples; the
deactivation process is seen to parallel disadhesion,
ruling out a causative role for cell fusion in elicit-
ing tip deactivation. The microfilament-filled fer-
tilization tubules, it should be noted, remain ex-
tended during the disadhesion/deactivation phase
of the experiment (Fig. 21 c), indicating that the
polymerized state of the microfilaments is not
dependent on sustained flagellar interactions .
The experiments summarized in Fig. 21 reveal

an additional feature of the FTA response, namely
that flagella can undergo multiple activation/
deactivation cycles. Thus in Fig. 21 b, 65% of the

flagella were initially activated; this number can
be "boosted" to nearly 90% if additional flagella
are presented after 3 min (dashed lines) . If addi-
tional flagella are added at 24 min (arrow), after
roughly 50010 deactivation has occurred, a full ac-
tivation response is repeated, again in parallel with
the development of a fresh set of adhesions.

Agents Blocking FTA but Not Adhesion
The foregoing experiments reveal that flagellar

adhesion is ordinarily sufficient to trigger FTA;
i.e ., the two responses are ordinarily coupled. Pre-
sented here are experiments showing that colchi-
cine and vinblastine, agents known to interact with
tubulin (72), are effective in blocking the genera-
tion of FTA in response to adhesion .
Fig. 22 presents data on the sensitivity of the

mating reaction to increasing concentrations of
colchicine (A) and vinblastine (B). Both drugs, at
concentrations in the range required for antitu-
bulin effects with Chlamydomonas (13, 51), pro-
duce a sharp and complete inhibition of mating .
Inspection of gametes pretreated with' 10-15 mg/
ml colchicine or 0.18 mg/ml vinblastine reveals
that neither drug has any effect on motility or on
the establishment of a vigorous agglutination re-
action when the two mt are mixed. Both drugs,
however, are found to block the tipping response :
clumps of adhering gametes fail to move their
adhesive sites out to the flagellar tips, the result

FIGURE 20

	

MSA by Con A in mt' gametes. Gametes
(1 .25 x 107 cells/ml) were incubated with 100 wg/ml
Con A for 5 min, fixed, OG treated, and critical-point
dried. A slight elevation ofthe mating structure (arrow)
indicates activation, but no full outgrowth ofthe mating
structure occurs (cf. Fig. 15) . x 16,500.
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FIGURE 21

	

Influence of adhesion and disadhesion of
isolated mt - flagella to mt' gametes on FTA and MSA.
Equal volumes of mt' gametes (2 x 10' cells/ml) and
isolated mt

	

flagella (2 .7 x 10' flagella/ml) were mixed
and aliquots were tested for agglutination (A), FTA (B),
and MSA (C). At the times indicated (arrows), 2.7 x 10`
flagella suspended in one-tenth the volume were added
and the same parameters scored . (A) The adhesion/
disadhesion cycle and its stimulation by adding fresh
flagella . (B) FTA, scored in three different experiments
(denoted by different symbol shadings). Circles and solid
line : no additional mt- flagella added; squares and bro-
ken lines : time-course after addition of fresh flagella .
FTA can be boosted further by adding fresh flagella at
3 or at 6 min. (C) MSA, scored in the experiments
indicated by equivalent symbols in B. The percentage of
activated mating structures levels off at 45%, is stimu-
lated further by addition of fresh flagella at 24 min, and
plateaus at 70%.

being that the cell bodies pack in close together .
When such agglutinating mixtures are fixed and
examined by electron microscopy, an almost com-
plete inhibition of FTA is observed both by whole-
mount scoring (Table II) and by thin-section anal-
ysis (Fig. 23).
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The experiment summarized in Table III was
designed to determine whether a 30-min preincu-
bation in colchicine is in fact required to inhibit
mating, or whether shorter exposures are also ef-
fective . Cells of both mt were exposed to colchicine
for only 30 s before being mixed, and were fixed
and scored for QFC formation 5 min later. It is
seen that the inhibition of fusion effected by this
short exposure to the drug is comparable to the
inhibition exerted by a prolonged exposure,
whereas untreated controls undergo extensive fu-
sion during the same interval.

In a reciprocal experiment summarized in Table
IV, cells of opposite types were preincubated for
30 min in inhibitory concentrations of colchicine ;
they were then allowed to agglutinate in the pres-
ence of the drug for 5 min, after which the drug
was diluted to a noninhibiting level for an addi-
tional 15 min. As seen in Table IV, significant
recovery from the effect of the drug occurs in this
short interval .

Lumicolchicine proved soluble in NFHSM only
at 0.89 mg/ml. To perform a lumicolchicine con-
trol experiment, therefore, we developed the fol-
lowing protocol . We found that if gametes were
incubated overnight in the presence of 0.89 mg/
ml colchicine and 10 Id/ml DMSO, fusion was
inhibited by about 40% relative to DMSO-incu-
bated controls (44 vs . 69% for controls) . When
cells from these cultures were instead incubated
overnight in the presence of 0.89 mg/ml lumicol-
chicine and 10 pl/ml DMSO, no inhibition of
mating occurred (79 vs . 69% for controls) .

FIGURE 22

	

The effects of increasing concentrations of
colchicine (A), vinblastine (B), and chymotrypsin (C) on
the fusion of mt' and mt - gametes . Cells were preincu-
bated at 3 x 107 cells/ml in various concentrations of
the reagents for 30 min, opposite mt were mixed, and
fusion was allowed to proceed for 15 min (A and B) or
5 min (C), at which times fixative was added and the
percentage of fusion determined . At 2-3 min after mix-
ing, agglutination was assessed and judged to be as
vigorous as in untreated controls except for 0.5 mg/ml
chymotrypsin, in which agglutination was severely re-
duced.



TABLE lI

Effect of Colchicine and Vinblastine on Parameters ofthe Sexual Response in Mating Gametes

A.

B.

FIGURE 23 Tip cross section of a flagellum from a
gamete incubated in 10 mg/ml colchicine for 1 min and
allowed to agglutinate in the presence of colchicine for
an additional minute . No FTM accumulation or other
signs of activation were evident in seven tip sections
photographed . x 81,000 .

Agents Blocking Cell Fusion but Not FTA
We have to date identified four ways to block

the Chlamydomonas mating reaction at a stage
between FTA and cell fusion . The first is chymo-
trypsin digestion . The sensitivity of the mating
reaction to this enzyme is displayed in Fig. 22 C.
When gametes treated with 0.25 mg/ml chymo-
trypsin are mixed and examined, flagellar adhe-
siveness, flagellar tipping, and wall loss during the
first 5 min of mating appear completely normal
(Table V). The FTA response, moreover, develops
to the same extent as in the controls (Table V) . As
assessed either by thin-section or whole-mount

(A) Gametes of both mt (10' cells/ml) treated for 30 min, then mixed and fixed after 5 min for FTA and after 15
min for cell fusion determination . (B) Gametes of both ml (1 .5 x 10' cells/ml) treated for 15 min, then mixed and
fixed after 2 min for FTAand after 15 min for cell fusion determination .

' See Table I for details of scoring .

TABLE III
Effect ofColchicine Preincubation Time on Cell

Fusion

We preincubated mt' and ml - cells separately at 3 x 10'
cells/ml in 15 mg/ml colchicine in NFHSM for the times
indicated. Control cells were preincubated for 5 min in
NFHSM. Opposite mt were mixed, and fusion was al-
lowed to proceed for 5 min; the mating reaction was then
stopped by the addition of 3% glutaraldehyde solution .
Cells were scored in the light microscope as quadrifla-
gellated cells (QFC) or biflagellated cells (BFC) and the
percentage of fusion was calculated (29) .

electron microscopy, however, neither activation
of mt' mating structures nor cell fusion occurs
(Table V) . It should be noted that if the gametes
are allowed to continue mating for an additional
10 min in the presence of the enzyme and are then
examined, the agglutination response is found to
have greatly abated, possibly because chymotryp-
sin has at this point destroyed a critical number of
agglutinins (cf. reference 70). In this case, a con-
comitant reduction is found to have occurred in
FTA (Table V), much as in experiments with
isolated flagella (Fig . 21).

The second class of agents that blocks "down-
stream" from FTA is that including the cytocha-
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Agglutina-
tion Tipping Cell wall release Non Inter`

FTA

Act
Total
scored

Cell
fusion

a
Colchicine treatment

(10 mg/ml)
Control Yes Yes Yes 35 19 46 (139) 95
Experiment Yes No No 85 11 4 (140) 0

Vinblastine treatment
(0 .12 mg/ml)

Control Yes Yes Yes 8 7 85 (102) 98
Experiment Yes No Not 89 7 4 (109) 2

scored

Duration of preincu-
bation No. ofQFC No. of BFC

Fusion in 5
min

30s 2 282 1
5 min 2 170 2
Control 114 147 61



lasins Band D. High concentrations ofthese drugs,
although without effect on FTA, inhibit both MSA
and cell fusion (Table VI). Whether they act on
the microfilaments of the mt' mating structures
(22) has not yet been determined.
The remaining two conditions that inhibit mat-

ing at a stage between FTA and cell fusion are the
imp-I mutation, which affects MSA (22; Fig. 17 B),
and the lectin Con A. When cw-15 gametes are
preincubated in low concentrations (12 ttLg/ml) of
the lectin and are then mixed, fusion is inhibited
by 40%; such inhibition is not observed if gametes
are instead pre-isoagglutinated by flagella or ifthe
lectin is first mixed with its hapten a-Me-D-glu-
cose .
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TABLE IV
Effect of Colchicine Dilution on Cell-Fusion

Inhibition

We preincubated mt' and mt- cells separately at 3 x 10 7
cells/ml for 30 min in the solutions indicated . Opposite
mt were mixed, and mating was allowed to proceed for
5 min, at which time the mating mixtures were diluted
threefold as shown. Fusion was allowed to continue for
an additional 15 min at which time the mating reaction
was stopped and the percentage of fusion determined as
described in Table Ill .
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DISCUSSION

Morphology of FTA

The flagella of Chlamydomonas are reported in
this paper to undergo a rapid and reversible
change in morphology, diagrammed in Fig. 24,
during the course of the mating reaction . EM
observations of specimens prepared by a variety
of protocols reveal FTA to be a highly invariant
process: FTM localizes in a specific region of the
flagellum, A microtubules elongate by a constant
percentage, and the process commences and re-
verses in response to defined stimuli (adhesion and
disadhesion) . Such precision argues strongly that
we are observing a carefully controlled biological
process.
We have surveyed literature on ciliated sensory

cells and mechanoreceptors (69) for evidence of
tip specializations analogous to those reported
here. An enormous variation in microtubule pat-
terns is encountered in sensory cilia, but the pres-
ence of filamentous structures organized in paral-
lel with the membrane is one invariant theme. For
mechanoreceptors, a second theme is that the tip
is anchored into an immobilized structure, be it a
cuticular extracellular cap in the case of insects
(e .g ., 40) or the otolithic membrane in the case of
the vestibular apparatus in vertebrates (25, 28). In
only one case, however, has any change in ciliary
structure been correlated with signal transmission ;
Moran et al . (40) report a pronounced bend at the
base of insect mechanoreceptor cilia under condi-
tions of maximal stimulation . It will be intriguing
to learn whether morphological changes can also
be detected at the tips of sensory cilia in response
to sensory stimulation, or whether this elaborate

TABLE V

Effect of Chymotrypsin Digestion on Parameters of the Sexual Response in Mating Gametes

Gametes ofboth mt (107 cells/ml) were treated separately for 15 min, then mixed and fixed after the time indicated
for FTAand after 15 min for cell fusion determinations .

` See Table I for details of scoring .

Mating
time

min

Agglutination Tipping
Cell wall
release Non Inter`

1/1

ETA

Act
Total
scored

Cell
fusion

Control 2 Yes Yes Yes 13 13 74 (117) 86
Chymotrypsin 2 Yes Yes Yes 18 11 71 (115)

(0 .25 mg/ml) 5 Yes Yes Yes 18 10 72 (124)
15 Slight Slight - 64 25 11 (128) 1

Preincubation
solution Dilution solution

No . of
QFC

No . of
BFC

Fusion
in 15
min

after di-
lution

NFHSM NFHSM 222 47 90
Colchicine NFHSM 60 191 39

(15 mg/ml)
Colchicine Colchicine 1 200 0

(15 mg/ml) (15 mg/ml)



TABLE VI

Effects of Cytochalasins B andDon Parameters ofthe Sexual Response in Mating Gametes

FIGURE 24

	

(A)Diagram ofthe FTAsequence showing
unactivated, intermediate, and activated flagella as in
critical-point-dried whole mounts, plus unactivated and
activated tips in cross section . (B) Unactivated and acti-
vated flagella as revealed in extracted preparations . Mi-
crotubules are represented by single lines; the spiral
represents a structure we believe may encircle the axo-
neme (Figs. 13 and l4). In the unactivated tip, A tubules
spread out toward the membrane and perhaps anchor
there by filamentous contacts (Figs. I and 2); when,
however, the membrane is removed with detergent or
methanol, the tubules collapse on one another. In the
activated tip, on the other hand, mild glutaraldehyde
fixation stabilizes associations between theFTMand the
microtubules; therefore, membrane removal does not
alter the bulging outlines of the tip, and the dense FTM

Gametes of both ml (10' cells/ml) were treated for 30 min, then mixed and fixed after 2 min for FTA and after 15
min for cell fusion determinations . In the critical-point-dried preparations of the 15-min samples in both
experiments, none of the single cells exhibited an activated mating structure .

' See Table I for details of scoring.

response to external stimuli is unique to Chlamy-
domonas.
The biochemical composition of FTM is un-

known, but possible identifications can be consid-
ered based on morphological criteria. Plaques of
dense material are known to localize between the
shaft axoneme and the membrane in both vege-
tative (50) and gametic (17) flagella of C. reinhardi,
but the plaque material is considerably more elec-
tron dense than is FTM. Moreover, the plaques
always occupy only an arc of the flagellar circum-
ference rather than the entire circumference, and
they remain present in the shaft while FTM is
accumulating in the tips . Therefore, there is no
reason to believe that plaques and FTM are iden-
tical or even homologous .
A second possibility, that FTM represents a

precursor form of tubulin destined to participate
in A-tubule elongation, is also discouraged on
morphological grounds. In studies of both regen-
erating and degenerating flagella (27, 30, 49, 51)
and basal bodies (21) in Chlamydomonas, EM
images of apparent tubulin precursor pools reveal
a light-staining, homogeneous area that is very
different from FTM.
A third possibility is that FTM represents a

microtubule-organization center (MTOC) (44),
imported to or organized within the tip to mediate
A-tubule elongation . MTOC (e.g., centriolar sat-
ellites and spermatid nuclear rings) are typically
dense, amorphous aggregates (43-45, 55, 60) sim-

is readily observed . The narrow neck contains that sector
of the axoneme that is stabilized neither by the spoke/
dynein/spiral system nor by the FTM system ; it may
therefore be differentially subject to stretch during spec-
imen preparation .
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Agglutina-
tion Tipping

Cell wall
release Non Inter`

%

FTA

Act
Total
scored

Cell
fusion

11

Control Yes Yes Yes 4 14 82 (121) 88
Control DMSO Yes Yes Yes 15 15 70 (134) 85
Cytochalasin B (200 ttg/ml) Yes Yes Yes 21 19 60 (114) 37
Cytochalasin D (200lAg/ml) Yes Yes Yes 21 15 64 (117) 15



ilar to FTM, but because Chlamydomonas flagella
normally grow without the apparent participation
oftip MTOC material (30, 49, 5 1), it is not obvious
why an MTOC should be recruited to mediate A-
tubule outgrowth during mating . Moreover,
whereas microtubules are typically found to be
completely embedded within MTOC material (cf.
reference 43), their association with FTM involves
only a discrete portion oftheir outer surfaces (Figs.
5-8) .

Because an actinlike protein has recently been
identified in the Chlamydomonas flagellum (47), it
is intriguing to speculate that FTM may be a
polymerized form of actin, a-actinin, or both . The
demonstrated association of actinlike molecules
with the cytoplasmic surfaces of various plasma
membranes (48) and the poor preservation ofFTM
by OsO, fixation (cf. reference 48) lend credence
to this speculation, but it is otherwise without
experimental support.

Finally, of course, FTM may represent a sub-
stance that has yet to be identified and/or de-
scribed in other organelles or organisms. Experi-
ments to isolate and characterize the material from
activated imp-1 flagella are planned in this labo-
ratory .

Stimulation of FTA

The experiments reported in this paper establish
that the adhesive cross-linking of flagellar surface
components is sufficient to cause the FTA re-
sponse . Because detergent-extracted agglutinins,
antiflagellar antiserum, Con A, and isolated fla-
gella can all elicit FTA in gametes of a single mt,
the response is clearly not mediated by possibly
hormonelike factors produced by opposite-type
cells during the mating reaction . Moreover, be-
cause a monolayer of agglutinin on an EM grid
will induce activation of an adherent monolayer
ofcells, it is clearly not necessary that pairs of cells
interact with one another . Finally, that cells teth-
ered to polylysine films do not activate either their
flagellar tips or their mating structures demon-
strates that the response is not due to tip immobi-
lization per se .
Con A and the antiflagellar antisera are capable

of agglutinating flagella of either mt (5, 20, 35, 71).
Such type nonspecificity cannot, however, be used
to argue that the FTA response is similarly non-
specific. Thus the fluoresceinated lectin interacts
with a number of flagellar membrane polypeptides
in SDS gels (W . S. Adair, unpublished observa-
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tions), any of which may prove with further anal-
ysis to be mt-specific . Similarly, the antisera have
been shown (3) to carry antibodies directed against
at least 20 flagellar polypeptides, and both specific
and nonspecific adhesions may be generated . The
imp-5 strain, whose flagellar tips are activated by
antiserum, cannot carry out sexual agglutination,
but it is not yet knownwhether the imp-5 mutation
affects the sexual adhesins directly or the (mem-
brane) component(s) required for them to func-
tion . Therefore, until the sexual adhesin or adhes-
ins are identified biochemically and agents are
found that cause isoagglutination without associ-
ating with these adhesins, it will not be possible to
ascertain whether FTA requires that the sexual
adhesins per se be agglutinated (cf. references 3l,
54) or whether the agglutination of other surface
components will also generate the response .

Reversal and Reinitiation of FTA

The experiments with isolated flagella (Fig . 2l )
demonstrate two additional properties of FTA .
First, it is clear that reversal of FTA occurs in
response to flagellar disadhesion and not in re-
sponse to cell fusion or to possibly hormonelike
factors produced by opposite-type gametes. Sec-
ond, it is seen that the response can cycle : activated
tips can develop, reverse, and redevelop in the
same flagellum. This observation rules out models
in which a gametic flagellum is "primed" for the
reaction and undergoes a one-shot activation in
response to adhesion . Instead, the agents respon-
sible for tip elongation and FTM accumulation
must be thought of as being repeatedly responsive
to the agglutinated status of the organelle .

Agents That Fail to Block FTA

The FTAresponse occurs in cells that have been
treated with agents affecting subsequent steps in
the mating reaction . Specifically, chymotrypsin
digestion, which markedly alters the electropho-
retic mobility of several flagellar membrane gly-
copolypeptides (B . Monk, unpublished observa-
tions) and which inhibits transmission of mating
signals and/or the MSA response, has no effect on
the FTA response . The cytochalasins B and D, at
concentrations in great excess of those used to
perturb such parameters as locomotion and sugar
transport (4, 62), also inhibit cell fusion without
blocking FTA. And finally, the presence ofCon A
markedly suppresses zygote formation but, again,
does not perturb FTA. The FTA response is thus



not generally susceptible to agents that interfere
with the mating reaction . This point becomes im-
portant in considering the FTA block exerted by
antitubulin agents : one cannot dismiss this block
as a nonspecific perturbation of a biological proc-
ess readily disrupted by external agents .

Blocking FTA with Antitubulin Agents
Experiments with the antitubulin agents reveal

that it is possible to block the development of
tipping and FTA without disrupting sexual adhe-
sions. The concentrations of colchicine and vin-
blastine used are far higher than those used in
studies of mammalian cells (72), raising the ques-
tion of the tubulin specificity of these effects .
Because most protozoa and plant cells are highly
resistant to both drugs and require high drug
concentrations for such responses as mitotic inhi-
bition, cell-shape change, and flagellar-regenera-
tion inhibition (reviewed in reference 24), the con-
centrations employed here are ofless concern than
they would be in a mammalian study.
Two additional considerations support the no-

tion that the drugs are interacting with tubulins .
First, vinblastine and colchicine inhibit the mating
reaction in an identical fashion, causing blocks in
both the tipping response and in FTA; yet each
drug interacts with a different domain of the tu-
bulin protein (72) . Therefore, if a nontubulin mol-
ecule or molecules are proposed as being the non-
specific targets of drug action, they must be pos-
tulated to be susceptible to both colchicine and
vinblastine (but not to very high concentrations of
cytochalasins) . Second, we find that lumicolchi-
cine fails to inhibit the mating reaction even after
prolonged exposures. We recognize that these ob-
servations are consistent with, but do not prove, a
tubulin involvement in the FTA response, and we
are presently pursuing more direct approaches to
this question .

FTM Accumulation and A-Tubule Elongation

Two basic alternatives can be entertained to
explain the accumulation of FTM and the elon-
gation of A microtubules during the FTA re-
sponse . The first possibility is that FTM and mi-
crotubule precursors preexist in gametic flagellar
tips and that these are induced to aggregate or
polymerize by some adhesion-related stimulus .
Thus the occurrence of adhesions might stimulate
an efflux of Ca" from the tip matrix, and the
lower concentration of Ca" might favor both

aggregation and polymerization, with disadhesion
stimulating a reversal of these steps (see, e.g.,
reference 10) .
The alternative possibility is that FTM and

microtubule precursors are brought to the flagellar
tips as a consequence of the adhesion/tipping
reaction. If, as is argued in reference 20, sexual
agglutinins are distributed throughout the length
of the unmated flagellar surface, if these aggluti-
nins span the membrane or are associated with a
transmembrane complex, and if this complex in
turn associates with FTM and microtubule pre-
cursors, then the tipping of agglutinins would be
accompanied by the tipping of these precursors .
Once concentrated in the tip region, the FTM
precursors would proceed to aggregate or polym-
erize in a fibrous mass, while the microtubule
precursors would participate in A-tubule elonga-
tion .
We have not yet found a means to dissociate

tipping from FTA experimentally, and therefore
we do not know whether FTA induces tipping or
tipping induces FTA. If we argue that tipping
must precede FTA, as supposed in the second
model above, then colchicine and vinblastine must
somehow act to prevent the migration, the accu-
mulation of adhesive sites in flagellar tips, or both .
Candidate targets for these drugs are tubulin mol-
cules, which several laboratories, including our
own, suggest may associate with the cell surface
(1, 7, 32, 61). If the putative membrane-tubulin
monomers associate with agglutinins (as in the
second model), if surface adhesions bring these
monomers together into aggregates ("patches"),
and if this patching is essential for the tipping
reaction (as in the lymphocyte patching/capping
sequence), then the antitubulin drugs mayprevent
tipping by preventing patch formation. The rapid
onset and reversal of the colchicine block to mat-
ing (Tables III and IV) is consistent with a cell-
surface target for the drug action, but more direct
experiments are clearly needed .

Nature ofthe Signal

Because under all experiments conditions re-
ported here, MSA and gametic cell fusion occur
only under conditions in which FTA is allowed to
occur, we propose that FTA is necessary to signal
MSA. The signal is presumably transmitted via
the axoneme, the flagellar membrane, the flagellar
matrix, or a combination of the three. Because
paralyzed mutants of Chlamydomonas lacking
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central-pair microtubules (66) or radial spokes (46,
74) can mate normally, we conclude that neither
swimming motility nor an intact axoneme is nec-
essary for signal transmission . On the other hand,
because short flagella are sexually agglutinable but
reportedly fail to signal (36, 37, 59), it is possible
that a critical flagellar length is important to the
signaling mechanism.
Two fundamental problems have been left un-

solved . We need to determine first whether it is
FTM accumulation, axoneme elongation, or both
that contribute to "the signal," and second, how
these tip events are perceived as signals-to-activate
by the cell body . We can postulate, as a working
model, that the pivotal event may be the simulta-
neous elongation of all nine A tubules in associa-
tion with the FTM, making them unable to slide
past one another (cf. reference 65). The flagellum
would continue its ATP-driven dynein-bridge for-
mation but to no avail, the result being possibly
(ion-mediated) changes at the flagellar bases (29,
41, 42), possibly a deformation of cellular micro-
tubules or fibers (23, 40, 64), and the activation of
mating structures . The model predicts that pres-
sure applied to the flagellar tips of one mt might
lead to MSA in the absence of any adhesion, a
prediction that can be tested . It is interesting to
speculate that in certain ciliary-based mechano-
receptors where the ciliary tip is closely associated
with a pressure-transducing structure (reviewed in
69), analogous primary events may be occurring.
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