Abstract
Previous studies of the olfactory nerve, mainly in higher vertebrates, have indicated that axonal injury causes total degeneration of the mature neurons, followed by replacement of new neuronal cells arising from undifferentiated mucosal cells. A similar regeneration process was confirmed in the garfish olfactory system. Regeneration of the nerve, crushed 1.5 cm from the cell bodies, is found to produce three distinct populations of regenerating fibers. The first traverses the crush site 1 wk postoperative and progresses along the nerve at a rate of 5.8 +/- 0.3 mm/d for the leading fibers of the group. The second group of fibers traverses the crush site after 2 wk postcrush and advances at a rate of 2.1 +/- 0.1 mm/d for the leading fibers. The rate of growth of this group of fibers remains constant for 60 d but subsequently falls to 1.6 +/- 0.2 for the leading population of fibers. The leading fibers in the third group of regenerating axons traverse the crush site after 4 wk and advance at a constant rate of 0.8 +/- 0.2 mm/d. The multiple populations of regenerating fibers with differing rates of growth are discussed in the context of precursor cell maturity at the time of nerve injury and possible conditioning effects of the lesion upon these cells. Electron microscopy indicates that the number of axons decreases extensively after crush. The first two phases of regenerating axons represent a total of between 6 and 10% of the original axonal population and are typically characterized by small fascicles of axons surrounded by Schwann cells and large amounts of collagenous material. The third phase of fibers represents between 50 and 70% of the original axonal population.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agranoff B. W., Field P., Gaze R. M. Neurite outgrowth from explanted Xenopus retina: an effect of prior optic nerve section. Brain Res. 1976 Aug 27;113(2):225–234. doi: 10.1016/0006-8993(76)90938-0. [DOI] [PubMed] [Google Scholar]
- Bedini C., Fiaschi V., Lanfranchi A. Degenerative and regenerative processes in the olfactory system of homing pigeons. Arch Ital Biol. 1976 Nov;114(4):376–388. [PubMed] [Google Scholar]
- Berger B. Etude ultrastructurale de la dégénérescence wallérienne expérimentale d'un nerf entiérement amyélinique: le nerf olfactif. II. Réactions cellulaires. J Ultrastruct Res. 1971 Dec;37(5):479–494. doi: 10.1016/s0022-5320(71)80019-9. [DOI] [PubMed] [Google Scholar]
- Cancalon P. Influence of temperature on the velocity and on the isotope profile of slowly transported labeled proteins. J Neurochem. 1979 Mar;32(3):997–1007. doi: 10.1111/j.1471-4159.1979.tb04586.x. [DOI] [PubMed] [Google Scholar]
- Cancalon P. Subcellular and polypeptide distributions of slowly transported proteins in the garfish olfactory nerve. Brain Res. 1979 Jan 26;161(1):115–130. doi: 10.1016/0006-8993(79)90199-9. [DOI] [PubMed] [Google Scholar]
- Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
- Dyck P. J., Hopkins A. P. Electron microscopic observations on degeneration and regeneration of unmyelinated fibres. Brain. 1972;95(2):233–234. doi: 10.1093/brain/95.2.223. [DOI] [PubMed] [Google Scholar]
- Easton D. M. Garfish olfactory nerve: easily accessible source of numerous long, homogeneous, nonmyelinated axons. Science. 1971 May 28;172(3986):952–955. doi: 10.1126/science.172.3986.952. [DOI] [PubMed] [Google Scholar]
- Elam J. S., Peterson N. W. Axonal transport of sulfated glycoproteins and mucopolysaccharides in the garfish olfactory nerve. J Neurochem. 1976 Apr;26(4):845–850. doi: 10.1111/j.1471-4159.1976.tb04461.x. [DOI] [PubMed] [Google Scholar]
- Forman D. S., Berenberg R. A. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins. Brain Res. 1978 Nov 10;156(2):213–225. doi: 10.1016/0006-8993(78)90504-8. [DOI] [PubMed] [Google Scholar]
- Frizell M., Sjöstrand J. The axonal transport of (3H)fucose labelled glycoproteins in normal and regenerating peripheral nerves. Brain Res. 1974 Sep 20;78(1):109–123. doi: 10.1016/0006-8993(74)90357-6. [DOI] [PubMed] [Google Scholar]
- Graziadei G. A., Graziadei P. P. Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J Neurocytol. 1979 Apr;8(2):197–213. doi: 10.1007/BF01175561. [DOI] [PubMed] [Google Scholar]
- Graziadei P. P. Cell dynamics in the olfactory mucosa. Tissue Cell. 1973;5(1):113–131. doi: 10.1016/s0040-8166(73)80010-2. [DOI] [PubMed] [Google Scholar]
- Graziadei P. P., DeHan R. S. Neuronal regeneration in frog olfactory system. J Cell Biol. 1973 Nov;59(2 Pt 1):525–530. doi: 10.1083/jcb.59.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross G. W., Beidler L. M. A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J Neurobiol. 1975 Mar;6(2):213–232. doi: 10.1002/neu.480060208. [DOI] [PubMed] [Google Scholar]
- Gross G. W., Beidler L. M. Fast axonal transport in the c-fibers of the garfish olfactory nerve. J Neurobiol. 1973;4(5):413–428. doi: 10.1002/neu.480040503. [DOI] [PubMed] [Google Scholar]
- Ichikawa M., Ueda K. Fine structure of the olfactory epithelium in the goldfish, Carassius auratus. A study of retrograde degeneration. Cell Tissue Res. 1977 Oct 14;183(4):445–455. doi: 10.1007/BF00225659. [DOI] [PubMed] [Google Scholar]
- Joseph B. S. Somatofugal events in Wallerian degeneration: a conceptual overview. Brain Res. 1973 Sep 14;59:1–18. doi: 10.1016/0006-8993(73)90250-3. [DOI] [PubMed] [Google Scholar]
- Joseph B. S., Whitlock D. G. The spatio-temporal course of Wallerian degeneration within the CNS of toads (Bufo marinus) as defined by the Nauta silver method. Brain Behav Evol. 1972;5(1):1–17. doi: 10.1159/000123734. [DOI] [PubMed] [Google Scholar]
- Kiernan J. A. Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol Rev Camb Philos Soc. 1979 May;54(2):155–197. doi: 10.1111/j.1469-185x.1979.tb00871.x. [DOI] [PubMed] [Google Scholar]
- LUBINSKA L. AXOPLASMIC STREAMING IN REGENERATING AND IN NORMAL NERVE FIBRES. Prog Brain Res. 1964;13:1–71. [PubMed] [Google Scholar]
- Lieberman A. R. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol. 1971;14:49–124. doi: 10.1016/s0074-7742(08)60183-x. [DOI] [PubMed] [Google Scholar]
- Lubińska L. Early course of Wallerian degeneration in myelinated fibres of the rat phrenic nerve. Brain Res. 1977 Jul 8;130(1):47–63. doi: 10.1016/0006-8993(77)90841-1. [DOI] [PubMed] [Google Scholar]
- McQuarrie I. G., Grafstein B. Axon outgrowth enhanced by a previous nerve injury. Arch Neurol. 1973 Jul;29(1):53–55. doi: 10.1001/archneur.1973.00490250071008. [DOI] [PubMed] [Google Scholar]
- Ochs S. Fast axoplasmic transport in the fibres of chromatolysed neurones. J Physiol. 1976 Feb;255(1):249–261. doi: 10.1113/jphysiol.1976.sp011278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payer A. F. An ultrastructural study of Schwann cell response to axonal degeneration. J Comp Neurol. 1979 Jan 15;183(2):365–383. doi: 10.1002/cne.901830209. [DOI] [PubMed] [Google Scholar]
- Romine J. S., Bray G. M., Aguayo A. J. Schwann cell multiplication after crush injury of unmyelinated fibers. Arch Neurol. 1976 Jan;33(1):49–54. doi: 10.1001/archneur.1976.00500010051008. [DOI] [PubMed] [Google Scholar]
- Stevenson J. A., Yoon M. G. Regeneration of optic nerve fibers enhances cell proliferation in the goldfish optic tectum. Brain Res. 1978 Sep 22;153(2):345–351. doi: 10.1016/0006-8993(78)90413-4. [DOI] [PubMed] [Google Scholar]
- Turner J. E., Singer M. The ultrastructure of regeneration in the severed newt optic nerve. J Exp Zool. 1974 Dec;190(3):249–268. doi: 10.1002/jez.1401900302. [DOI] [PubMed] [Google Scholar]
- Veraa R. P., Grafstein B., Ross R. A. Cellular mechanisms in axonal growth. Exp Neurol. 1979 Jun;64(3):649–698. doi: 10.1016/0014-4886(79)90238-3. [DOI] [PubMed] [Google Scholar]
