Abstract
Rough microsomes from rat liver have been subjected to various treatments and incubated afterwards with UDP-N-acetyl-[14C]glucosamine and GDP-mannose in the presence of GTP (0.5 mM), or of other nucleotides. In agreement with earlier results from this laboratory, the preparations previously treated to strip off the ribosomes and incubated in the presence of GTP assembled dolichol-linked oligosaccharides and transferred these oligosaccharides to endogenous protein acceptors much more actively than untreated preparations, or stripped preparations incubated in the absence of GTP. Thin-section and freeze-fracture electron microscopy have revealed that pyrophosphate- treated preparations incubated with GTP are aggregated and contain numerous vesicles as large as 1-4 micrometer, or more. Such large vesicles were not present before incubation and thus were considered to have been formed through coalescence of regular-sized ones. Like glycosylation, the coalescence phenomenon depends upon the removal of ribosomes, because it occurred whether ribosomes had been stripped, at least partly, with pyrophosphate, KCl, or puromycin, but not when rough microsomes had been washed with 0.25 M sucrose or with KCl and MgCl2. Like glycosylation, it also depends on the addition of GTP and was not induced by ATP, UTP, CTP, and nonhydrolysable analogues of GTP. Rough microsomes coalesced, however, when pyrophosphate-treated preparations were incubated with GTP in the absence of nucleotide sugars, or in the presence f tunicamycin, indicating that the coalescence phenomenon does not result from the glycosylation of some membrane constituents.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman M. R., Sabatini D. D., Blobel G. Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components. J Cell Biol. 1973 Jan;56(1):206–229. doi: 10.1083/jcb.56.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amar-Costesec A., Beaufay H., Wibo M., Thinès-Sempoux D., Feytmans E., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. II. Preparation and composition of the microsomal fraction. J Cell Biol. 1974 Apr;61(1):201–212. doi: 10.1083/jcb.61.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amar-Costesec A., Wibo M., Thinès-Sempoux D., Beaufay H., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical, and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate. J Cell Biol. 1974 Sep;62(3):717–745. doi: 10.1083/jcb.62.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmann L., Schmitt W. W. Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2149–2152. doi: 10.1073/pnas.68.9.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Clifford A. J., Riumallo J. A., Baliga B. S., Munro H. N., Brown P. R. Liver nucleotide metabolism in relation to amino acid supply. Biochim Biophys Acta. 1972 Sep 14;277(3):443–458. doi: 10.1016/0005-2787(72)90087-1. [DOI] [PubMed] [Google Scholar]
- FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M., Amar-Costesec A. The dolichol pathway of protein glycosylation in rat liver. Stimulation by GTP of the incorporation of N-acetylglucosamine in endogenous lipids and proteins of rough microsomes treated with pyrophosphate. Eur J Biochem. 1979 May 2;96(1):17–26. doi: 10.1111/j.1432-1033.1979.tb13008.x. [DOI] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M. Incorporation of N-acetylglucosamine into endogenous acceptors of rough microsomes from rat liver: stimulation by GTP after treatment with pyrophosphate. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1095–1099. doi: 10.1073/pnas.74.3.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M. The dolichol pathway of protein glycosylation in rat liver. Incorporation of mannose into endogenous lipids and proteins of rough microsomes. Eur J Biochem. 1979 May 2;96(1):27–34. doi: 10.1111/j.1432-1033.1979.tb13009.x. [DOI] [PubMed] [Google Scholar]
- Losa G. A., Weibel E. R., Bolender R. P. Integrated stereological and biochemical studies on hepatocytic membranes. III. Relative surface of endoplasmic reticulum membranes in microsomal fractions estimated on freeze-fracture preparations. J Cell Biol. 1978 Aug;78(2):289–308. doi: 10.1083/jcb.78.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojakian G. K., Kreibich G., Sabatini D. D. Mobility of ribosomes bound to microsomal membranes. A freeze-etch and thin-section electron microscope study of the structure and fluidity of the rough endoplasmic reticulum. J Cell Biol. 1977 Mar;72(3):530–551. doi: 10.1083/jcb.72.3.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parodi A. J., Leloir L. F. The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta. 1979 Apr 23;559(1):1–37. doi: 10.1016/0304-4157(79)90006-6. [DOI] [PubMed] [Google Scholar]
- Takatsuki A., Tamura G. Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo) 1971 Nov;24(11):785–794. doi: 10.7164/antibiotics.24.785. [DOI] [PubMed] [Google Scholar]
- Wibo M., Amar-Costesec A., Berthet J., Beaufay H. Electron microscope examination of subcellular fractions. 3. Quantitative analysis of the microsomal fraction isolated from rat liver. J Cell Biol. 1971 Oct;51(1):52–71. doi: 10.1083/jcb.51.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wibo M., Godelaine D., Beaufay H. Effect of the removal of bound ribosomes on N-acetylglucosamine transfers in rat liver microsomes [proceedings]. Arch Int Physiol Biochim. 1977 Dec;85(5):1036–1037. doi: 10.3109/13813457709053351. [DOI] [PubMed] [Google Scholar]
- Zeligs J. D., Wollman S. H. Mitosis in rat thyroid epithelial cells in vivo. I. Ultrastructural changes in cytoplasmic organelles during the mitotic cycle. J Ultrastruct Res. 1979 Jan;66(1):53–77. doi: 10.1016/s0022-5320(79)80065-9. [DOI] [PubMed] [Google Scholar]
- van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]
