Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Oct 1;87(1):248–254. doi: 10.1083/jcb.87.1.248

Isolation and partial characterization of the plasma membrane of the sea urchin egg

PMCID: PMC2110726  PMID: 6252214

Abstract

The cell surface complex (Detering et al., 1977, J. Cell Biol. 75, 899- 914) of the sea urchin egg consists of two subcellular organelles: the plasma membrane, containing associated peripheral proteins and the vitelline layer, and the cortical vesicles. We have now developed a method of isolating the plasma membrane from this complex and have undertaken its biochemical characterization. Enzymatic assays of the cell surface complex revealed the presence of a plasma membrane marker enzyme, ouabain-sensitive Na+/K+ ATPase, as well as two cortical granule markers, proteoesterase and ovoperoxidase. After separation from the cortical vesicles and purification on a sucrose gradient, the purified plasma membranes are recovered as large sheets devoid of cortical vesicles. The purified plasma membranes are highly enriched in the Na+/K+ ATPase but contain only very low levels of the proteoesterase and ovoperoxidase. Ultrastructurally, the purified plasma membrane is characterized as large sheets containing a "fluffy" proteinaceous layer on the external surface, which probably represent peripheral proteins, including remnants of the vitelline layer. Extraction of these membranes with Kl removes these peripheral proteins and causes the membrane sheets to vesiculate. Polyacrylamide gel electrophoresis of the cell surface complex, plasma membranes, and Kl- extracted membranes indicates that the plasma membrane contains five to six major proteins species, as well as a large number of minor species, that are not extractable with Kl. The vitelline layer and other peripheral membrane components account for a large proportion of the membrane-associated protein and are represented by at least six to seven polypeptide components. The phospholipid composition of the Kl- extracted membranes is unique, being very rich in phosphatidylethanolamine and phosphatidylinositol. Cholesterol was found to be a major component of the plasma membrane. Before Kl extraction, the purified plasma membranes retain the same species- specific sperm binding property that is found in the intact egg. This observation indicates that the sperm receptor mechanisms remain functional in the isolated, cortical vesicle-free membrane preparation.

Full Text

The Full Text of this article is available as a PDF (832.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Castañeda M., Tyler A. Adenyl cyclase in plasma membrane preparations of sea urchin eggs and its increase in activity after fertilization. Biochem Biophys Res Commun. 1968 Dec 9;33(5):782–787. doi: 10.1016/0006-291x(68)90228-3. [DOI] [PubMed] [Google Scholar]
  3. Decker G. L., Lennarz W. J. Sperm binding and fertilization envelope formation in a cell surface complex isolated from sea urchin eggs. J Cell Biol. 1979 Apr;81(1):92–103. doi: 10.1083/jcb.81.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Detering N. K., Decker G. L., Schmell E. D., Lennarz W. J. Isolation and characterization of plasma membrane-associated cortical granules from sea urchin eggs. J Cell Biol. 1977 Dec;75(3):899–914. doi: 10.1083/jcb.75.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Glabe C. G., Vacquier V. D. Isolation and characterization of the vitelline layer of sea urchin eggs. J Cell Biol. 1977 Nov;75(2 Pt 1):410–421. doi: 10.1083/jcb.75.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heller E., Raftery M. A. The vitelline envelope of eggs from the giant keyhole limpet Megathura crenulata. I. Chemical composition and structural studies. Biochemistry. 1976 Mar 23;15(6):1194–1198. doi: 10.1021/bi00651a002. [DOI] [PubMed] [Google Scholar]
  8. Herzog V., Fahimi H. D. A new sensitive colorimetric assay for peroxidase using 3,3'-diaminobenzidine as hydrogen donor. Anal Biochem. 1973 Oct;55(2):554–562. doi: 10.1016/0003-2697(73)90144-9. [DOI] [PubMed] [Google Scholar]
  9. Kinsey W. H., Rubin J. A., Lennarz W. J. Studies on the specificity of sperm binding in echinoderm fertilization. Dev Biol. 1980 Jan;74(1):245–250. doi: 10.1016/0012-1606(80)90067-6. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. MARSH B. B. The estimation of inorganic phosphate in the presence of adenosine triphosphate. Biochim Biophys Acta. 1959 Apr;32:357–361. doi: 10.1016/0006-3002(59)90607-9. [DOI] [PubMed] [Google Scholar]
  13. McBlaine P. J., Carroll E. J., Jr Sea urchin egg hyaline layer: evidence for the localization of hyalin on the unfertilized egg surface. Dev Biol. 1980 Mar;75(1):137–147. doi: 10.1016/0012-1606(80)90150-5. [DOI] [PubMed] [Google Scholar]
  14. Michell R. H., Jafferji S. S., Jones L. M. The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gates. Adv Exp Med Biol. 1977;83:447–464. doi: 10.1007/978-1-4684-3276-3_41. [DOI] [PubMed] [Google Scholar]
  15. Renkonen O., Gahmberg C. G., Simons K., Käriäinen L. The lipids of the plasma membranes and endoplasmic reticulum from cultured baby hamster kidney cells (BHK21). Biochim Biophys Acta. 1972 Jan 17;255(1):66–78. doi: 10.1016/0005-2736(72)90008-9. [DOI] [PubMed] [Google Scholar]
  16. Schmell E., Lennarz W. J. Phospholipid metabolism in the eggs and embryos of the sea urchin Arbacia punctulata. Biochemistry. 1974 Sep 24;13(20):4114–4121. doi: 10.1021/bi00717a008. [DOI] [PubMed] [Google Scholar]
  17. Schuel H., Kelly J. W., Berger E. R., Wilson W. L. Sulfated acid mucopolysaccharides in the cortical granules of eggs. Effects of quaternary ammonium salts on fertilization. Exp Cell Res. 1974 Sep;88(1):24–30. doi: 10.1016/0014-4827(74)90613-2. [DOI] [PubMed] [Google Scholar]
  18. Shapiro B. M. Limited proteolysis of some egg surface components is an early event following fertilization of the sea urchin, Strongylocentrotus purpuratus. Dev Biol. 1975 Sep;46(1):88–102. doi: 10.1016/0012-1606(75)90089-5. [DOI] [PubMed] [Google Scholar]
  19. Turner J. D., Rouser G. Removal of lipid from intact erythrocytes and ghosts by aqueous solutions and its relevance to membrane structure. Lipids. 1974 Jan;9(1):49–54. doi: 10.1007/BF02533213. [DOI] [PubMed] [Google Scholar]
  20. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  21. Veron M., Foerder C., Eddy E. M., Shapiro Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell. 1977 Feb;10(2):321–328. doi: 10.1016/0092-8674(77)90226-4. [DOI] [PubMed] [Google Scholar]
  22. Wolf D. P., Nishihara T., West D. M., Wyrick R. E., Hedrick J. L. Isolation, physicochemical properties, and the macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs. Biochemistry. 1976 Aug 24;15(17):3671–3678. doi: 10.1021/bi00662a005. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES