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Although the adaptive value of flight may seem
obvious, it is the most difficult behaviour of
birds to monitor. Here, we describe a technique
to quantify the frequency and the duration of
flights over several months by implanting a data
logger that records heart rate ( fH), hydrostatic
pressure (diving depth) and the body angle of a
large sea duck species, the common eider
(Somateria mollissima). According to the mean
fH recorded during flight and the parameters
recorded to identify the fH flight signature, we
were able to identify all flights performed by 13
individuals during eight months. We cumulated
local flight time (outside migrations) and found
that activity occurs primarily during dawn and
morning and that flying activities are strongly
related to diving activities (Pearson’s rZ0.88,
permutation test p!0.001). This relationship
was interpreted as a consequence of living in a
dynamic environment where sea currents move
the ducks away from the food patches. We
believe that the technique described here will
open new avenues of investigation in the adap-
tive value of flight.
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1. INTRODUCTION
The main functions of flight are to increase foraging
success, reduce the probability of predation and
facilitate long-distance movements to escape adverse
conditions (Pomeroy 1990). However, to link flight to
one of these advantages is difficult owing to technical
and logistical difficulties. Radar and satellite telemetry
have been used to analyse the orientation and
duration of long migrating flights (Casement 1966;
Butler et al. 1998; Hays et al. 2001), but none
provided detailed information about flights of shorter
duration. To quantify short local flights, researchers
have used visual observations (Walsberg 1983) and
telemetry (Ackerman et al. 2006), but these methods
are probably biased for most species and ineffective to
monitor marine birds.

For almost four decades, the fact that heart rate
increases to high levels during forward flapping flight
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has been documented by physiologists studying both
short (Lord et al. 1962; Kanwisher et al. 1978; Bevan
et al. 1997) and migration flights (Butler et al. 1998).
However, the heart rate ( fH) signature of flight (shape
of trace in relation to time) has never been quantified
and used as a means of identifying and compiling all
flights performed by a bird species.

We studied the flying and diving behaviour of
common eider (Somateria mollissima), a large sea duck
species that spend most of its time (11 months) at
sea. We describe the characteristics of the flight
signature and present data of observations during the
post-hatching period in order to discriminate fH
reached during flight from that recorded during
other behaviours. We show the potential of this
new technique by analysing the occurrence of
flight behaviour in relation to time of the day and
foraging behaviour. We tested the hypothesis that
flight behaviour in this species is mostly used as a way
to improve foraging opportunities.
2. MATERIAL AND METHODS
In 2003 and 2004, 20 and 10 female eiders, respectively, were
equipped with data loggers (DLs, 36!28!11 mm; 21 g, i.e. less
than 1.2% of body mass, Woakes et al. 1995). The DLs recorded
heart rate (0.5 Hz), pressure (dive depth, 0.5 Hz) and body angle
(1 Hz, those used in 2004 only). The body angle switch turned on
due to acceleration and speed or when the DL is at an angle of
C45 or K458. Using a before–after design with a control group, it
was impossible to detect any negative impact on laying date,
clutch size and hatching success for individuals carrying a DL for
one full year (Guillemette et al. 2002). Furthermore, the DLs used
in this study were implanted in the body cavity of the experimental
bird, with no external protrusions, thus conserving aerodynamic
and hydrodynamic properties of the study animals (Guillemette
et al. 2002).

Only females implanted in 2003 were included in the analysis of
flight time. Eighteen females returned to the colony (90%)
for laying, 17 of which were recaptured 1 year later and their DLs
were removed. Only 13 loggers with their memory full or almost
full (190–220 days) were kept for flight analysis, data spanning
from May 2003 until the middle of December 2003. We kept only
local flights to test our hypothesis (99% of all flights) that flight
behaviour was mostly linked to foraging behaviour and demand.

We compared fH recorded during flight to fH recorded during
different activities by conducting focal observations (only one
animal at a time) on 10 (2003) and 4 (2004) experimental females
during the post-hatching period (total of 118 h of observation).
Behaviours were assigned to one of the 11 categories described in
the electronic supplementary material. By using the signature of
recorded flight activity performed during the post-hatching period,
we found the set of parameters (figure 1) giving the best description
of the shape of trace in relation to time, and they were programmed
in a purpose-designed software for the extraction of all flights
performed by each female. The set of parameters was then
validated by visual analysis of traces in all recording days in each
female to ensure that the parameters selected only the fH signatures
related to flight.

Owing to the extensive recording period, the duration of daylight
varied along the sampling period. Thus, we had to adjust take-off time
of each flight to determine the percentage of flights performed
according to sunrise and sunset by using the equation: adjusted
timeZ(t0KHsunrise)/(HsunsetKHsunrise), where t0 is the take-off time,
Hsunrise sunrise time and Hsunset sunset time (dawn is between K0.2
and 0.0, 0.0 is sunrise, 0.5 is midday, 1.0 is sunset, dusk is between
1.0 and 1.2, and outside these boundaries it is night).
3. RESULTS
Parameters found to identify fH flight signature during
forward flapping flight were defined using focal
observations and are summarized in figure 1. The
almost instantaneous increase in fH during take-off
and the large decrease during landing are quantified
with increasing and decreasing slopes equal to or
This journal is q 2007 The Royal Society
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Figure 1. Traces of heart rate ( fH), diving depth and body angle from a female common eider during dives and forward
flapping flight. The flight signature is determined by the following parameters: (a) fH threshold equal to or above 250 beats
per minute, (b) fH plateau threshold equal to or above 300 beats per minute, (c) fH ascending and descending slopes equal
to or above 10 beats per minute per second (absolute values), (d) standard deviation of diving depth up to 0.1 m (§2), and
(e) body angle switch (BA switch) turned on. The upward and downward pointing arrows indicate the point of take-off and
landing, respectively.
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Figure 2. Mean relative flying and diving frequencies
(meansG95% CI, %) recorded in 13 common eiders
according to adjusted time of the day (where ‘0’ is sunrise
and ‘1’ is sunset). These behaviours are performed outside
the migration and moult periods from May to December
2003. See text for further details.
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above 10 beats per minute per second (in absolute

values). The take-off ascending slope exceeded 250

beats per minute and the fH plateau reached after
take-off and recorded during forward flapping flight

exceeded a threshold of 300 beats per minute. To

eliminate some fH events related to diving bouts or

bathing behaviour with head submersion that are very

similar to flights (Stephenson et al. 1986), we

removed all fH events with unstable hydrostatic

pressure (standard deviation of diving depth equal to

or above 0.1 m). The body angle switch turned on

while birds were taking off from land, stayed on
during the majority of plateau phase duration and

turned off during the landing. We used these binary

data to confirm the other parameters’ thresholds.

With this set of parameters, we could identify flights

longer than 18 s with a plateau phase longer than 8 s.

Local flights for each female were performed

primarily between sunrise and sunset (morningZ
39G2% (s.e.m.) and afternoonZ31G6%; figure 2).
However, a substantial number of flights were also

performed during the night (14G6%), at dawn (12G
5%) and dusk (5G2%). Local flights were of higher

frequency mainly 55 min either side of sunrise

(20G4%), declined steadily throughout the day and

experienced a rapid decline at dusk. Females were

flying on average 9.6G2.4 min dK1 outside migration

periods, i.e. only 0.7% of the day.
Diving activities were performed more during the

day (morningZ42G5% and afternoonZ40G6%)

than during other periods (nightZ10G6%, duskZ
5G2% and dawnZ3G3%). As a result, the average

flight and dive frequencies were highly correlated

(Pearson’s rZ0.88, permutation test p!0.001;

figure 2). The diving frequency reached its maximum

value approximately 2 h after sunrise.
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4. DISCUSSION
In the present study, we provide, to our knowledge,

the first identification of all flights and foraging events

in a wild bird. It is easy to distinguish flights

(duration longer than 18 s) from other activities using

fH data recorded by a DL in a bird performing

forward flapping flight. The only activity that could

be similar to flight is bathing behaviour, during which

the bird is flapping its wings continuously and rapidly
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over the water and frequently submerging its head
underwater. However, bathing behaviour, in spite of
high mean fH, shows distinctive traces of fH such as a
bell shape (without abrupt ascending and descending
slopes of fH; figure 1c) with much variation in fH.
This variation is caused by momentary bradycardia
that occurs each time the bird submerges its head
(Stephenson et al. 1986). Moreover, Ely et al. (1999)
observed that antagonistic social interactions between
geese (Anser albifrons) could rapidly increase heart
rate to 400 beats per minute within a few seconds
(1–2.5 s). However, since we considered only heart
rate events longer than 18 s as a flight, we most
probably excluded these types of behaviours.

Our results illustrate that outside of their migration
periods, eider ducks fly for a very small proportion of
the day. Flight frequency is particularly high around
sunrise, decreases during the day and drops markedly
during the night (figure 2). This pattern is matched,
as hypothesized, by diving frequency. Common eiders
are benthic predators, feeding mostly on blue mussels
(Mytilus edulis), a sessile prey (Guillemette et al.
1992). As they feed little during the night (figure 2),
they are probably drifting on the sea surface away
from the food patches. As the starvation level
increases throughout the night, hunger is at its highest
level in the morning forcing the birds to forage again.
Since coastal currents are tightly related to winds and
tide levels, drifting away from the food patches during
resting bouts (Guillemette et al. 1992) may explain
the match between flight and diving frequency
observed during day and night.

A detailed analysis of this relationship is beyond the
scope of this preliminary report. For instance, in
another contribution, we test the hypothesis that dive
frequency between flights follows a lognormal distri-
bution with a high frequency of dives right after a flight
followed by much lower foraging activity before the
next flight. Such a distribution of dive frequency is
expected when flight costs are excessive (Pelletier
2006), which can be exacerbated by the accumulation
of prey in the digestive system (Guillemette 1994).
Nevertheless, we suggest here that flight behaviour of
common eiders is an integral component of their
foraging strategy.

All surgical procedures were conducted indoors on Chris-
tiansø island (Denmark) by a veterinary surgeon under
a licence from Dyreforsøgtilsynet (Royal Veterinarian
Corporation) and all birds were cared for in accordance to
the principles and guidelines of the Canadian Council on
Animal Care.
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