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In this study the role of myeloperoxidase (MPO) in a
murine (C57BL/6) model of ischemia and reperfusion
(I/R)-induced renal failure was investigated. The renal
function after I/R was analyzed in MPO-deficient
(Mpo�/�) mice and compared with wild-type (WT)
controls. A significant reduction in renal function
loss (blood urea nitrogen) was observed after 24
hours of reperfusion of ischemically damaged kid-
neys in Mpo�/� mice compared with I/R WT controls
(I/R Mpo�/� � 31.3 � 1.7 mmol/L versus I/R WT �
42.8 � 2.1 mmol/L, sham � 7.0 � 0.5 mmol/L; P �
0.003). The early reperfusion phase (2 hours of reper-
fusion) was characterized by a substantial increase in
apoptosis and early complement activation, surpris-
ingly similar in Mpo�/� and WT mice. Improved renal
function in Mpo�/� mice after extended reperfusion
was accompanied by a reduced neutrophil influx (P �
0.017) compared with WT controls. Activation and
deposition of complement was not significantly re-
duced in Mpo�/� mice compared with WT controls
after 24 hours of reperfusion, indicating no specific
in vivo role for MPO in activating complement after
renal I/R. Taken together, these results demonstrated
an important contribution of MPO in the induction of
organ damage after renal I/R by influencing critical
factors such as neutrophil extravasation but not com-

plement activation. (Am J Pathol 2007, 171:1743–1752;

DOI: 10.2353/ajpath.2007.070184)

In clinical medicine, complications arising from organ
ischemia and reperfusion (I/R) are common phenomena,
complicating the treatment of severely injured or ill pa-
tients and influencing the outcome of various clinical
conditions. Throughout the past decades studies into the
pathophysiology of I/R-induced organ damage have
identified several critical factors—cellular injury, endo-
thelial dysfunction, microcirculatory collapse, neutrophil
activation and extravasation, and complement activation,
all contributing to the development of organ dysfunction.
Our limited understanding of exact pathophysiological
mechanisms has so far impaired the development of new
and effective therapies.

Cellular injury, induced by ischemia and aggravated
on reperfusion, forms a potent trigger for activation of an
extensive inflammatory response, illustrated by the pro-
duction of various cytokines such as tumor necrosis fac-
tor-�, interferon-�, and the interleukins 6, 10, 12, and
18,1,2 the activation and sequestration of polymorphonu-
clear neutrophils (PMNs) in the affected area,3 as well as
the expression and deposition of various components of
the innate immune response, such as complement fac-
tors.4–6 Under healthy conditions, cells and proteins of
the innate immune system protect the organism by or-
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chestrating a well mounted attack on invading microor-
ganisms, but when faced with extensive I/R injury, suffi-
cient means of control seem absent. Already during the
1980s a detrimental role for PMNs was shown during
hypoperfusion and ischemia followed by reperfusion.7,8

These early studies proposed a role for activated neutro-
phils in the frequently observed no-reflow phenomenon9

and the generation of harmful reactive oxygen species
after reperfusion of ischemically damaged tissue.10

Myeloperoxidase (MPO) is a 140-kDa heme protein
that is predominantly stored in the lysosomes of mono-
cytes and in the azurophilic granules of PMNs.11 It is one
of the most abundant enzymes released on neutrophil
activation. The capacity of MPO to catalyze the formation
of hypochlorite (HOCl) from hydrogen peroxide (H2O2)
and chloride ions makes it a powerful tool in the bacteri-
cidal armament of these cells. However, there are clinical
studies indicating a potentially harmful effect of MPO in
immune-mediated inflammatory syndromes, such as mul-
tiple sclerosis,12 acute coronary syndrome,13,14 and re-
nal disease.15 In addition, a considerable line of research
indicates that MPO and MPO-derived oxidants are in-
volved in the pathogenesis of atherosclerosis,16–18 organ
damage after myocardial I/R and infarction,19 as well as
complement activation in vitro.20 Furthermore, MPO con-
tributes to the dysfunction of the local vasculature during
acute inflammation by modifying local NO production
and availability.21

To study the in vivo contribution of MPO in the devel-
opment of I/R-induced injury, the role of MPO in a mouse
model of renal I/R injury was investigated. Disease sever-
ity was compared between MPO-deficient (Mpo�/�) and
wild-type (WT) mice with respect to renal function, com-
plement activation, neutrophil activation and extravasa-
tion, renal morphology, and apoptosis. Our results show
that MPO plays a detrimental role in the pathogenic
mechanisms involved in this model and is in part respon-
sible for the development of renal damage resulting from
I/R without influencing complement activation in vivo.

Materials and Methods

Mice

Mpo�/� mice, backcrossed to a C57BL/6 background six
times, were genotyped using polymerase chain reaction
(PCR)-amplified DNA from tail clippings.22 WT male
C57BL/6 control mice (11 weeks of age) were obtained
from Charles River Breeding Laboratories (Heidelberg,
Germany). Mice were kept according to University of
Maastricht animal facility regulations, and all experiments
were approved by the local animal ethical committee.

Experimental Procedures

Experiments were performed as previously described,
with minor modifications.6 At the start of the experiments,
mice (n � 6 in each group) were anesthetized with so-
dium pentobarbital (100 mg/kg i.p.). Body temperature
was maintained at 37°C by a heating pad until animals

recovered from anesthesia. Under aseptic conditions a
1.0-cm-long midline abdominal incision was made, and
ischemia was induced by applying a nontraumatic vas-
cular clamp to the left renal pedicle for 40 minutes. Sub-
sequently, the wound was covered with cotton soaked in
sterile phosphate-buffered saline (PBS). After removal of
the clamp, the left kidney was inspected for restoration of
blood flow and the contralateral kidney was removed and
stored for analysis. The wound was closed in two layers
and in mice that were to be sacrificed after 24 hours,
0.25% bupivacaine was applied topically to the wound
for postoperative pain management. The animals were
sacrificed 2 or 24 hours after reperfusion. At the time of
sacrifice, plasma was collected and the left kidney was
harvested for morphological, immunohistochemical, and
immunofluorescent analyses. Macroscopic evaluation of
the ischemic kidneys during the procedure resulted in the
exclusion of one mouse, because its kidney appeared to
have been insufficiently ischemic during the experiment.
One WT frozen tissue sample to be used for preparation
of frozen sections was lost during work-up.

Plasma Measurements of Blood Urea Nitrogen
(BUN) and MPO

In mice sacrificed after 24 hours, BUN levels in the
plasma were determined by an enzymatic degradation
assay on a Synchron LX20 PRO chemistry analyzer
(Beckman Coulter Inc., Fullerton, CA). Plasma MPO lev-
els were determined by in-house catching enzyme-linked
immunosorbent assay as described previously.23 Briefly,
microtiter plates were coated (1 �g/ml) with Fc� frag-
ment-specific goat anti-mouse IgG (Jackson ImmunoRe-
search, West Grove, PA), incubated for 48 hours at 4°C,
and blocked with 1% bovine serum albumin in PBS.
Plates were then incubated with an anti-murine MPO-
specific monoclonal antibody (mAb) (clone 8F4; Hbt,
Uden, The Netherlands), followed by incubation with ap-
propriately diluted plasma samples. Next, the plates were
incubated with polyclonal rabbit anti-human MPO (Dako-
Cytomation, Glostrup, Denmark) and alkaline phospha-
tase-labeled polyclonal goat anti-rabbit IgG as primary
and secondary detection antibody, respectively. 4-Nitro-
phenyl phosphate (pNPP) was used as substrate, and
results were analyzed spectrophotometrically at 405 nm.
Concentrations were calculated from a standard curve of
purified murine MPO (range, 2.5 to 100 ng/ml).

Immunofluorescence and
Immunohistochemistry

Kidneys were snap-frozen in OCT compound. Five-�m
sections were cut with a cryostat, dried, and stored at
�70°C. The slides were fixed in �20°C cold acetone and
stained for neutrophil influx using a rat anti-mouse neu-
trophil antibody (clone NIMP-R14, Hbt).24 After incuba-
tion of the primary antibody, endogenous peroxidase
activity was blocked using 0.05% H2O2 in PBS, and rab-
bit anti-rat IgG and goat anti-rabbit IgG-PO (both Dako-
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Cytomation) were then used as secondary and tertiary
antibodies, respectively. Antibody binding was visualized
using 3-amino-9-ethylcarbazole with H2O2 as substrate.
Sections were counterstained with hematoxylin, and jux-
tamedullary neutrophil influx was quantified by counting
the average number of NIMP-R14-positive cells in 10
high-power fields of four tissue sections per kidney in WT

and Mpo�/� mice (n � 5 per group), at 24 hours after
reperfusion.

To determine co-localization of PMNs with renal MPO
deposits, renal cross-sections were double-stained with
a biotinylated mouse mAb specific for murine MPO (clone
8F4, Hbt)23 and rat anti-mouse neutrophil mAb NIMP-R14
(Hbt), using Alexa 488-labeled streptavidin and Alexa
568-labeled goat anti-rat IgG (both Invitrogen Molecular
Probes, Leiden, The Netherlands), respectively, as
conjugates.

Murine complement factors MBL-A, MBL-C, C3, C6,
and C9 were determined by using rat monoclonal
(MBL-A, clone 8G6; MBL-C, clone 14D12; iC3b, clone
2/11; Hbt) or rabbit polyclonal anti-mouse C6 (kindly
provided by Dr. A. Tenner, University of California, Irvine,
CA) and rabbit anti-mouse C9 (in-house made by M.R.D.)
primary antibodies. Specific binding was detected by
using peroxidase-conjugated secondary antibodies to rat
and rabbit IgG, respectively (Jackson ImmunoResearch).
Staining was visualized by 3-amino-9-ethylcarbazole fol-
lowed by hematoxylin. No significant staining was de-
tected in slides incubated with control rat IgG (for NIMP-
R14, MBL-A, MBL-C, and C3), mouse IgG (for MPO), and
rabbit IgG (for C6 and C9). After immunohistochemical
staining of kidneys (n � 5 per group), renal deposition of
complement factors was scored arbitrarily as negative
(�), slightly positive (�), moderately positive (��), and
intensively positive (���).

Western Blot

Western blot analyses of C6 deposition in sham-treated
or reperfused ischemic knockout (KO) and WT kidneys
was performed as described before, with minor modifi-
cations.25 Renal tissue samples from WT and KO I/R or
sham-treated animals were homogenized in lysis buffer
(200 mmol/L NaCl, 10 mmol/L Tris base, 5 mmol/L ethyl-
enediaminetetraacetic acid, 10% glycerin, 1 mmol/L phe-
nylmethyl sulfonyl fluoride, 0.1 U/ml aprotinin, and 1
�g/ml leupeptin). Tissue homogenates were centrifuged
at 300 rpm for 10 minutes, after which the collected
supernatants were centrifuged again at 10,000 rpm for 3
minutes. The protein concentration of the different lysates
was determined using Bradford analyses. Aliquots con-
taining equal amounts (10 �g) of total protein or normal
mouse serum as positive control were heated to 100°C
for 5 minutes in sodium dodecyl sulfate-sample buffer
containing 5% �-mercaptoethanol (Sigma, Chicago, IL),
transferred to a 8% sodium dodecyl sulfate-polyacrylam-
ide gel and blotted on an Immobilon-P polyvinylidene
difluoride membrane (Millipore, Bedford, MA). After blot-
ting of the proteins, the blocking and antibody incubation
steps were performed in phosphate-buffered saline con-
taining 5% bovine serum albumin and 0.1% Tween 20
(Sigma). C6 was detected by incubating polyvinylidene
difluoride membranes overnight at 4°C in buffer contain-
ing properly diluted rabbit anti-mouse C6 (Hbt). Binding
of the primary antibody was detected with a peroxidase-
conjugated secondary antibody to rabbit IgG (Jackson
ImmunoResearch). After washing positive bands were

Figure 1. Similar renal morphology of ischemically damaged WT and KO
kidneys after 24 hours of reperfusion. Microphotographs showing periodic
acid-Schiff staining of kidney sections of sham-treated (A) as well as WT (B)
and Mpo�/� (C) mice subjected to 40 minutes of ischemia followed by 24
hours of reperfusion. Shown are representative microphotographs of all
groups. Original magnifications, �100.
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visualized using chemiluminescence (Supersignal;
Pierce, Rockford, IL).

Apoptosis Assay

The presence of internucleosomal DNA cleavage in kid-
neys was established with a commercial ligase-mediat-
ed-PCR assay kit (Apoalert; Clontech, Palo Alto, CA),
enabling semiquantitative measurement of the extent of
apoptosis.26

Renal Morphology

Paraffin-embedded sections from the 24-hour reperfu-
sion group were prepared and stained using periodic
acid-Schiff staining. Morphological changes resulting
from I/R injury were graded using the scoring system
described by Leemans and colleagues.27 Tubules, cast
deposition, brush border loss, and necrosis were identi-
fied in at least 10 randomly chosen �200 fields in the
cortico-medullary region of three sections per kidney.
Total scores were calculated for each kidney.

Statistical Analysis

Data are expressed as means � SEM and were analyzed
by unpaired two-tailed Student’s t-test, using Graphpad
Prism 4.01 for Windows (Graphpad Software, San Diego,
CA). A P value �0.05 was considered statistically
significant.

Results

Renal Histology

To directly assess tissue damage induced by 40 minutes
of ischemia followed by 24 hours of reperfusion, paraffin
sections were stained using periodic acid-Schiff staining
(Figure 1). Moderate to severe damage involving �25%
of the cortex was similarly observed in both Mpo�/� and
WT kidneys (Table 1), using the histopathological scoring
system developed by Leemans and colleagues27 to as-
sess the renal damage. No damage was seen in sham-
treated animals.

MPO Deficiency Reduces Renal Dysfunction

Renal dysfunction was reflected by an increase in BUN
levels after 24 hours of reperfusion (Figure 2). Forty min-
utes of unilateral ischemia followed by 24 hours of reper-
fusion caused an elevation of BUN levels in Mpo�/� and
WT mice. However, Mpo�/� mice displayed a markedly
less pronounced increase in renal failure compared with
WT mice (I/R Mpo�/� � 31.3 � 1.7 mmol/L versus I/R
WT � 42.8 � 2.1 mmol/L, P � 0.003, sham � 7.0 � 0.5
mmol/L). These findings illustrate a contribution of MPO
to the development of organ failure of reperfused isch-
emic kidneys.

MPO Deficiency Fails to Abrogate Apoptosis
and Mannose-Binding Lectin Deposition during
Early Reperfusion

Previously, it was demonstrated that apoptosis plays an
important role in the development of organ damage in-
duced by the reperfusion of ischemic kidneys.28 Be-
cause some studies show that MPO induces apoptosis
by directly mediating caspase activation, the hypothesis
that MPO deficiency preserves renal function by inhibi-
tion of apoptosis was tested. Apoptosis after 2 hours of
reperfusion, analyzed by typical DNA cleavage, is de-
picted in Figure 3. Clearly shown is the I/R-induced in-
crease in apoptosis, when comparing experimental and

Table 1. Immunohistochemical and Histological Analysis of Renal Complement Deposition and Damage

Ischemia
(minutes)

Reperfusion
(hours)

Lectin pathway Alternative
Pathway

C3

Common
pathway
C6 / C9

Histology
PASMBL-A MBL-C

WT Mpo�/� WT Mpo�/� WT Mpo�/� WT Mpo�/� WT Mpo�/�

� � � � � � � � � � 0 0
40 2 � � � � � � � � � �
40 24 �� �� �� �� � � �� �� 29.2 27.4*

*Average score from 10 randomly chosen �200 fields. I/R WT � 29.2 � 2.5 versus I/R Mpo�/� � 27.4 � 3.3, P � 0.68.

Figure 2. MPO deficiency significantly reduces renal function loss after renal
I/R. Renal function after 24 hours of reperfusion as reflected by BUN con-
centration. Statistical significance of renal function in Mpo�/� mice as com-
pared with WT animals was denoted at P � 0.003 (*).
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sham-treated animals. Mpo�/� and WT animals showed
a similar increase in apoptosis. The slightly larger amount
of apoptosis that was observed in Mpo�/� as compared
with WT mice after 2 hours of reperfusion, was similarly
observed in sham-treated Mpo�/� and WT mice. This
indicates that the rise in apoptosis in Mpo�/� and WT
experimental animals was in fact similar and certainly not
reduced in Mpo�/� animals.

It has been shown that bound complement compo-
nents are critical in the induction and propagation of
I/R-induced organ damage after initial cellular damage
and apoptosis.29,30 Predominantly the murine MBL vari-
ant C is one of the first inflammatory factors observed
to bind during early reperfusion.31 Therefore, immuno-
histochemical staining was performed on early 2-hour
reperfusion samples, to study the deposition of acti-
vated MBL-C. No differences were detected in the
amount of MBL-C present in the cortico-medullary re-
gion on peritubular capillaries and in the interstitium of
reperfused ischemic kidneys from either Mpo�/� or WT
mice (Figure 4), suggesting similar levels of comple-
ment activation as a result of comparable ischemia-
induced cellular damage and apoptosis in Mpo�/� and
WT animals.

PMN Influx and MPO Release

Next the influx and activation of inflammatory mediators
present during the subsequent progression phase of
reperfusion was investigated. Neutrophils invading the
damaged tissue contribute to the local inflammatory re-
sponse in part by releasing their lysosomal constituents,
including MPO. MPO released by the activated PMN has
been shown to be important in the activation and adhe-
sion of other neutrophils.32,33 WT mice had high levels of

circulating MPO (Figure 5), indicating I/R-mediated neu-
trophil activation. This idea was strengthened by the lack
of MPO in sham-treated animals. Immunohistology re-
vealed high levels of MPO in the kidney, mostly com-
prised to NIMP-R14-positive PMNs and their direct sur-

Figure 3. MPO deficiency does not affect I/R-induced early apoptosis.
Shown are two sham-treated animals as well as two representatives of each
experimental group. Loading controls are given in the inset.

Figure 4. Two hours of reperfusion of ischemically damaged kidneys results
in early MBL-C deposition, similar in Mpo�/� and WT mice. MBL-C binding
in WT sham-treated (not shown) and KO sham-treated (A) animals was only
observed in glomeruli. MBL-C deposition was evident in peritubular capil-
laries, the interstitium, and along the epithelial brush border of damaged
tubules in both WT (B) and Mpo�/� (C) mice subjected to renal I/R. Shown
are representative microphotographs of all groups. Original magnifications:
�200; �600 (inset).
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roundings (Figure 6, A–C). As expected MPO was absent
in samples from Mpo�/� mice (Figures 5 and 6F). To
quantify the neutrophil infiltration, we counted cells pos-
itive for NIMP-R14, a neutrophil marker not influenced by
the lack of MPO. Analysis revealed a significant reduction
of I/R-induced PMN infiltration of the Mpo�/� kidneys in
comparison to the WT (I/R Mpo�/� � 28.2 � 3.3 PMN/
high-power fields versus I/R WT � 40.4 � 2.3 PMN/high-
power fields, P � 0.017), indicating an important in vivo
role for MPO in the extravasation of neutrophils after I/R
(Figure 7).

Complement Activation

Studies of the complement system during renal I/R re-
vealed the lectin and alternative as well as the subse-
quent common complement pathways as key effectors in
the induction of I/R-induced organ failure.4,31 MPO has
been described as an activator of complement.20 In vitro
experiments revealed complement component C5 acti-
vating properties for various proteolytic enzymes that
were released on PMN stimulation. Similarly, purified
MPO was shown to activate C5 by hypochlorite formation
in vitro. From this we hypothesized that MPO might reg-
ulate complement activation and influence renal function
in an in vivo renal I/R model. Activation of the complement
system was assessed after prolonged 24 hours of reper-
fusion (Table 1). Immunohistochemistry revealed similar
activation of early and late common pathway comple-

ment proteins in Mpo�/� and WT mice. The deposition of
early complement factors MBL-A, MBL-C, and C3 in-
creased in both Mpo�/� and WT mice after 24 hours of
reperfusion when compared with the 2-hour reperfusion
samples. MBL-C and C3 deposition was abundantly
present in peritubular capillaries and interstitium as well
as on the epithelial lining of damaged tubules after I/R.
Surprisingly, no differences in the quantity of complement
proteins MBL-A, MBL-C, and C3 were detected between
Mpo�/� and WT groups subjected to I/R (Figure 8). Be-
cause C5 convertase-like properties have been de-
scribed for MPO in vitro, the in vivo deposition of common
pathway complement components was analyzed. Similar
to the results observed for early complement proteins, the
deposition of common pathway proteins C6 (Figure 9),
analyzed by immunohistochemical staining and Western
blot, and C9 (Figure 10) were not substantially reduced in
MPO-deficient mice after 24 hours of reperfusion, sug-
gesting no considerable role for MPO in the activation of
common pathway complement components in vivo in re-
sponse to kidney I/R. C6 and C9 depositions were simi-
larly observed in WT and Mpo�/� mice on the epithelial
lining of damaged tubules as well as on tubular cast
formations observed after 24 hours of reperfusion.

Discussion

The results provide evidence that a lack of MPO reduces
renal function loss after I/R. By showing that MPO-deficient
mice are partially protected from I/R-induced renal failure,

Figure 5. MPO plasma levels, representing total neutrophil activation, are
increased 24 hours after reperfusion of ischemically damaged WT kidneys.
No MPO was detected in Mpo�/� mice. Statistical significance of WT MPO
levels as compared with sham-treated animals was denoted at P � 0.0001.

Figure 6. Immunofluorescent staining showing
PMN sequestration (red, Alexa 568) and MPO
presence (green, Alexa 488) in kidneys of WT
(A–C) and Mpo�/� (E–G) mice subjected to I/R.
Overlapping PMN and MPO data depict the fact
that MPO is predominantly located around
NIMP-R14-positive PMNs. D (WT) and H
(Mpo�/�) show PMN infiltration in relation to
structural changes. Shown are representative mi-
crophotographs of all groups. Original magnifi-
cations, �200.

Figure 7. MPO deficiency reduces neutrophil infiltration after renal I/R.
Statistical significance as compared with WT animals was denoted at P �
0.017.
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the results demonstrate that this enzyme plays an important
role in the pathogenesis of I/R-induced renal damage. MPO
deficiency reduced PMN infiltration but failed to abrogate
complement activation in reperfused murine kidneys.

MPO is a neutrophil-derived enzyme with the capacity
to catalyze the formation of the proinflammatory oxidant
HOCl and chlorinating species out of H2O2 and chloride
ions.11 Apart from MPO’s contribution to innate immunity,
there is in vitro evidence that MPO plays a role in apopto-
sis. Neutrophil-derived proteinase 3 and MPO mediate

Figure 8. MBL-C and C3 (insets) deposition in WT and Mpo�/� mice after
24 hours of reperfusion. MBL-C and C3 deposition was not different in WT (B)
or Mpo�/� (C) mice. A: Virtually no MBL-C or C3 staining was detected in
sham-treated WT (not shown) and Mpo�/� mice. Corresponding data were
obtained for MBL-A deposition (data not shown). Shown are representative
microphotographs of all groups. Original magnifications: �200; �100 (insets).

Figure 9. Common pathway activation as determined by immunohisto-
chemical and Western blot analyses of C6 deposition in WT and Mpo�/�

mice after 24 hours of reperfusion. C6 deposition in Mpo�/� mice (C) was
similar as compared with WT (B) controls. A: No C6 staining was detected
between WT sham (not shown) and Mpo�/� sham-treated mice. Shown are
representative microphotographs of all groups. Western blot results for C6
(sham in A; WT in B; KO in C) under reducing conditions are shown in the
insets. Original magnifications, �100.
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proapoptotic caspase-3 activation or induce direct HL-60
leukemia cell and endothelial cell apoptosis in vitro.34–36

Throughout the years, a massive body of literature has
emerged describing the activation of apoptotic pathways
in renal I/R.37,38 Furthermore, inhibition of apoptosis
through administration of the anti-apoptotic agents such
as IGF-1 or ZVAD-fmk (a broad caspase inhibitor) has
been shown to preserve renal function after I/R.28 The
hypothesis is tested that, in our model, a decrease in

MPO-mediated apoptosis is one of the mechanisms
through which Mpo�/� mice are protected from injury
caused by renal I/R. Analyzing the overall levels of apo-
ptosis, by detecting specific DNA fragmentation, it is
shown that renal ischemia followed by 2 hours of reper-
fusion induces a marked increase in the level of apopto-
sis in both KO and WT animals. Moreover, the observed
increase in apoptosis in Mpo�/� mice is similar to the rise
of apoptosis in WT animals during this early phase of
reperfusion. Similarly, studies by Vasilyev and col-
leagues19 could not show a significant contribution for
MPO or its derived oxidants in the induction of apoptosis
and necrosis in vivo. MPO rather adversely influenced
organ function by the production of cytotoxic alde-
hydes19 or the oxidative inactivation of plasminogen ac-
tivator inhibitor 1 (PAI-1).39 The present data indeed sug-
gest that MPO has no significant in vivo role in the
induction of renal cell death throughout the first moments
of I/R but rather has a profound effect on organ function
during late reperfusion, known as progression phase.

PMNs influence I/R-induced tissue damage in a multi-
tude of organs by capillary plugging,9 induction of tubu-
lar leakage,40 release of oxygen-free radicals,41 and ly-
sosomal enzyme activity.42–45 MPO specifically mediates
neutrophil activation by binding to CD11b/CD18 (MAC1)
integrins,32 as well as PMN adhesion via the �m�2 inte-
grin,33 thereby facilitating PMN extravasation. Inhibiting
PMN extravasation abrogates renal I/R injury.14,46 The
reduced levels of BUN, observed in this model in Mpo�/�

mice, are accompanied by a decrease in PMN influx
during late (24 hours) reperfusion. Our data are in line
with the effect of MPO on PMNs and indicate that the
absence of MPO prevents PMN activation and adhesion,
thereby effectively reducing the amount of neutrophils
invading the damaged tissue and preserving organ
function.

A major role in the induction and continuation of local
inflammation is played by the complement system. Com-
plement proteins contribute to the development of I/R-
induced organ injury.6,31,47 Predominantly the activation
of the lectin30,31 and alternative pathway48 as well as the
formation of the membrane attack complex (MAC)49,50

and small cationic proteins (C3a, C4a, and C5a), known
as anaphylatoxins, have been shown to be involved in
I/R-induced tissue injury.6,26 The deposition of early com-
plement-activating proteins after 2 or 24 hours of reper-
fusion was similar between Mpo�/� and WT treated mice.
Neutrophils produce several proteins, such as properdin
and MPO, which have been shown to activate the com-
plement cascade. Myeloperoxidase is reported to di-
rectly activate C5, generating a functional common path-
way convertase capable of activating C6.20 We
hypothesized that with the absence of MPO adequate
means to locally activate common complement compo-
nents in reperfused kidneys would be reduced. To eluci-
date common complement pathway activation, we ana-
lyzed C6 and C9 deposition in reperfused kidneys of
Mpo�/� and WT controls after 24 hours of reperfusion.
Similar to the activation of MBL and C3, no reduction in
common complement pathway activity was shown in
Mpo�/� mice. Our data suggest that complement activa-

Figure 10. Similar common pathway activation between Mpo�/� (C) and
WT (B) mice after 24 hours of reperfusion was confirmed by C9 immuno-
staining. WT sham (not shown) and Mpo�/� sham-treated mice (A) did not
demonstrate any C9 staining. Original magnifications: �100; �200 (insets).
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tion initiated by the local presence of MPO is not of
particular importance during renal I/R and consequently
has no significant contribution to I/R-induced renal func-
tion loss. It has been described that several important
proteins of the common complement cascade, such as
C6 and C7,51 are directly produced by PMNs and re-
leased on their activation. This would mean that PMNs
provide the necessary elements, ie, C6 and C7, to boost
common pathway activation at sites of ongoing inflam-
mation. This could imply a limited presence of these
important common pathway components in case of a
reduced PMN influx, as was observed in the reperfused
kidneys of Mpo�/� mice. However, our data do not sup-
port that this quality attributed to the PMN has a detri-
mental role in our renal I/R model.

In conclusion, a reduced function loss in Mpo�/� mice
as compared with WT controls was observed in a well
established model of renal I/R. Apoptosis and activation
of the early complement lectin and alternative pathway
proteins, MBL-A, MBL-C, and C3, occurred similarly in
Mpo�/� and WT mice during the first hours of reperfu-
sion. After 24 hours of reperfusion, Mpo�/� mice exhib-
ited preservation of renal function along with a strongly
reduced number of neutrophils, present in the damaged
renal tissue. The absence of MPO and the decrease in
the number of neutrophils, however, did not correlate with
a diminished activation of the common complement path-
way in Mpo�/� mice. This observation might well illustrate
that the contribution of MPO to renal organ damage after
I/R is determined more by its influence on neutrophil
extravasation and tissue infiltration than by its ability to
mediate local complement activation in vivo. The results
clarify important mechanisms by which PMNs and their
derived activation products mediate I/R-induced renal
injury on a local level.
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