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Guanylyl cyclase C (GC-C), the receptor for diarrhea-
genic enterotoxins and the paracrine ligands guanylin
and uroguanylin, regulates intestinal secretion. Beyond
volume homeostasis, its importance in modulating can-
cer cell proliferation and its uniform dysregulation
early in colon carcinogenesis, reflecting loss of ligand
expression, suggests a role for GC-C in organizing the
crypt-villus axis. Here, eliminating GC-C expression in
mice increased crypt length along a decreasing rostral-
caudal gradient by disrupting component homeostatic
processes. Crypt expansion reflected hyperplasia of the
proliferating compartment with reciprocal increases in
rapidly cycling progenitor cells and reductions in dif-
ferentiated cells of the secretory lineage, including Pan-
eth and goblet cells, but not enteroendocrine cells. GC-C
signaling regulated proliferation by restricting the cell
cycle at the G1/S transition. Moreover, crypt expansion
in GC-C�/� mice was associated with adaptive increases
in cell migration and apoptosis. Reciprocal alter-
ations in proliferation and differentiation resulting
in expansion associated with adaptive responses in
migration and apoptosis suggest that GC-C coordi-
nates component processes maintaining homeosta-
sis of the crypt progenitor compartment. In the
context of uniform loss of GC-C signaling during
tumorigenesis , dysregulation of those homeostatic
processes may contribute to mechanisms underly-
ing colon cancer. (Am J Pathol 2007, 171:1847–1858; DOI:
10.2353/ajpath.2007.070198)

The intestinal epithelium undergoes homeostatic cycles
of proliferation, migration, differentiation, and apoptosis
entrained by the regenerative activity of multipotent stem
cells.1,2 Although mechanisms coordinating homeostasis

are incompletely defined, they maintain the intestinal mu-
cosa integrity despite constant exposure to environmen-
tal insults. In that context, specialized functions such as
digestion and absorption of nutrients are accomplished
by the action of a heterogeneous monolayer of columnar
epithelial cells along the crypt-villus (small intestine) and
crypt-surface (colon) axes.1 Slowly-cycling stem cells lo-
cated near crypt bottoms produce rapidly-cycling pro-
genitor cells in mid-crypts, which initiate programs of
lineage commitment through complex regulatory signal-
ing,2 forming mature absorptive cells or enterocytes and
secretory cells, including mucus-producing goblet cells
and peptide-producing enteroendocrine and Paneth
cells.1,3 Mature epithelial cells are replaced as they mi-
grate toward the lumen side of the mucosa where they
undergo apoptosis and shedding.3

An imbalance in component processes underlying ho-
meostasis may be one fundamental mechanism contrib-
uting to the development of colon cancer,4 the second
leading cause of cancer-related mortality in developed
countries.5 Thus, targeted inactivation of p21,6 which
regulates cell cycle progression and differentiation, pro-
motes APC mutation-dependent tumor formation by in-
creasing proliferation and decreasing apoptosis and dif-
ferentiation in intestine. Deletion of Muc2 in differentiated
cells induces colorectal cancer by increasing prolifera-
tion and migration and decreasing apoptosis.7 Con-
versely, crypt hyperplasia associated with disrupted dif-
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ferentiation, without changes in proliferation or apoptosis,
promotes intestinal tumorigenesis in mice exhibiting loss
of imprinting of the insulin-like growth factor II gene.8

Guanylyl cyclase C (GC-C), the receptor for bacterial diar-
rheagenic heat-stable enterotoxins (STs) and the endogenous
ligands guanylin and uroguanylin, is the primary endogenous
source of cyclic guanosine 3�,5� monophosphate (cGMP) in
intestinal epithelial cells.9,10 Heretofore, GC-C and its down-
stream effector cGMP were considered principal regulators of
intestinal fluid homeostasis. Intriguingly, GC-C has recently
emerged as a key regulator of colon cancer cell dynamics.
GC-C signaling through cyclic nucleotide gated channel dis-
rupts tumor cell cycle progression and proliferation.11–13 In
close agreement, induction of cGMP-dependent mechanisms
produces enduring colon cancer cytostasis.13 Further, treat-
ment of ApcMin/� mice with oral uroguanylin suppresses intes-
tinal tumor formation.14 However, although cGMP coordinates
proliferation, differentiation, and apoptosis in many cell sys-
tems,15,16 a role for GC-C in regulating component processes
underlying crypt-villus homeostasis remains elusive. That
GC-C might regulate crypt-villus homeostasis is supported by
the near-uniform loss of guanylin and uroguanylin expression

early in intestinal tumorigenesis.17–19 Indeed, eliminating gua-
nylin expression in mice induces expansion of the proliferating
crypt compartment in colon,20 although this effect is ostensibly
not mimicked by elimination of GC-C expression.21

These observations suggest that GC-C and its ligands
may function as a paracrine system regulating component
processes underlying intestinal mucosa homeostasis.
Moreover, GC-C signaling may represent a novel homeo-
static mechanism whose dysregulation through loss of li-
gand expression contributes to colon carcinogenesis. The
present studies explored the role of GC-C in coordinating
processes organizing the crypt-villus axis, including prolif-
eration, cell cycle, migration, differentiation, and apoptosis.

Materials and Methods

Cell Culture, Mice, and Reagents

NCM460 cells,22 which express GC-C mRNA (Figure 1A)
and functional GC-C protein (Figure 1, B–E), and their
proprietary M3:10 medium were from In Cell (San Anto-
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Figure 1. GC-C expression in NCM460 cells and GC-C�/� mice. A: GC-C mRNA is present in normal NCM460 colonocytes and T84 colon carcinoma cells (positive
control) as assessed by RT-PCR (1 �g RNA of sample/reaction). B: Dose response of 125I-ST binding to NCM460 membranes (cold competitor, 1 �mol/L ST). kDa,
ST binding affinity, Bmax, maximum number of ST binding sites. C: Total binding of 125I-ST to NCM460 membranes in the presence of the vehicle (CTR, control)
or the inactive ST analog TJU 1-103 (TJU, 1 �mol/L), ST (1 �mol/L), or guanylin (1 �mol/L) as cold competitors. In NCM460 cells, ST induces cGMP accumulation
in a dose-dependent manner (D), an effect mimicked by guanylin (1 �mol/L) but not the vehicle (CTR, control) or the inactive analog TJU 1-103 (TJU, 1 �mol/L)
(E; ST, 1 �mol/L). F: PCR on DNA extracts yielded the expected 195-bp (GC-C�/�) and 146-bp (GC-C�/�) amplicons. G: Specific 125I-ST binding (cold competitor,
1 �mol/L ST) to intestinal mucosa membranes isolated from GC-C�/� (hatched columns) and GC-C�/� (black columns) mice. H: H&E staining of representative
GC-C�/� and GC-C�/� mouse intestinal sections. Du, duodenum; Je/Ile, jejunum and ileum; PC, proximal colon; and DC, distal colon. *P � 0.05, two-tailed t-test.
Original magnifications, �100.
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nio, TX). T84 human colon carcinoma cells, used as a
positive control for GC-C expression,23 were from Amer-
ican Type Culture Collection (Manassas, VA).

GC-C�/� mice, generated by neomycin-resistant gene
insertion,24 were genotyped after polymerase chain re-
action (PCR) of genomic DNA isolated from tails (GC-C
forward primer, 5�-AGGTCATGACGTCACTGCTGGGCC-
3�; GC-C reverse primer, 5�-TGTCCAGTCCTTCCTCCA-
CAG-3�; neomycin reverse primer, 5�-GGTGGGCTCTAT-
GGCTTC-3�) (Figure 1F) and exhibited loss of GC-C
ligand binding in their intestine (Figure 1G). GC-C�/�

mice (I-129 background) were backcrossed with a
C57BL/6 strain for seven or more generations, and
GC-C�/� and GC-C�/� littermates (males, 3 months old)
were analyzed. Animals were maintained in a controlled
environment (20°C, 12-hour dark/light cycle) with free
access to food and water. For cell migration, three
GC-C�/� and three GC-C�/� mice per time point (2, 24,
and 48 hours) were analyzed. These animals (nine
GC-C�/� and nine GC-C�/� mice) were also used for
examining other morphometric or cytodynamic param-
eters. Two additional cohorts of six mice per genotype
were used for calculations of cell cycle times. Finally,
two additional cohorts of five mice per genotype were
used for immunoblot analyses. Reagents used in-
cluded native ST and the inactive analog ST(5–
17)Ala,9,17Cys(Acm),5,106-14 disulfide (TJU 1-103)
(Bachem, San Carlos, CA); [methyl-3H]thymidine (Am-
ersham, Piscataway, NJ), and 3-isobutyl-1-methylxan-
thine, guanylin, 8-br-cGMP (Sigma, St. Louis, MO).

Crypt Depth

Mouse intestines were isolated, cleaned, and divided into
five segments: duodenum (the rostral, 5-cm-long small
intestinal segment from the pyloric sphincter), jejunum
(the rostral half of small intestine from the duodenum to
the ileal-cecal junction), ileum (the caudal half of small
intestine from the duodenum to the ileal-cecal junction),
and proximal (the rostral half) and distal (the caudal half)
colon (from the cecal-colonic junction to the anal sphinc-
ter). Intestinal samples, spanning 1 cm (small intestine) or
0.5 cm (colon) from the center of each segment, were
fixed overnight (10% formalin), embedded in paraffin,
sectioned (5 �m), and mounted (5 to 20 sections/slide)
for hematoxylin and eosin (H&E) staining. Digital images
were captured with a light microscope attached to a
computer and recorded using Adobe Photoshop. Crypt
length was measured (in �10 crypts/intestinal segment/
mouse) as the distance from the bottom to the opening of
crypt with intact columnar epithelia using the NIH Image
J analysis software.

In Vivo Cell Proliferation, Cell Differentiation, and
Cell Death

Intestinal sections were deparaffinized and rehydrated
with sequential washes of xylene, ethanol, and water,
followed by heat-induced epitope retrieval (10 mmol/L
citrate buffer, ph 6.0). Sections were incubated with pri-

mary antibodies (overnight, 4°C), followed by secondary
antibodies and diaminobenzidine substrate (avidin-biotin
kit; Vector Laboratories, Burlingame, CA). Stained cells
were quantified (in 5 to 15 crypt-villus units/intestinal
segment/mouse) using NIH Image J software. Proliferat-
ing cells were stained with the proliferating cell nuclear
antigen (PCNA) immunohistochemistry (IHC) kit (Zymed,
South San Francisco, CA) or the rat anti-mouse Ki-67
antibody (1:50 dilution; DAKO Cytomation, Carpinteria,
CA). PCNA- and Ki-67-labeling indices were calculated by
normalizing the number of PCNA- or Ki-67-positive cells to
the total cell number in respective crypts. Paneth cells,
enterocytes, and enteroendocrine cells were stained with
rabbit anti-human/mouse lysozyme antibody (ready-to-use,
DAKO Cytomation), goat anti-villin antibody [Villin(C-19),
1:25 dilution; Santa Cruz Biotechnology, Santa Cruz, CA],
and rabbit anti-chromogranin A antibody (1:200 dilution,
Zymed), respectively. Goblet cells were quantified using
Alcian blue staining of mucin7 with fast nuclear red coun-
terstaining. Finally, cell death was quantified by terminal
deoxynucleotidyl transferase-mediated dNTP-biotin nick-
end labeling (TUNEL) using the TACSXL blue label in situ
apoptosis detection kit (Trevigen, Gaithersburg, MD).

In Vivo Cell Cycle and Cell Migration

Crypt cell cycles were examined by cumulative BrdU (15
mg/kg) injections (at 4- to 6-hour intervals for 24 hours)
into the peritoneal cavity.25 Thirty minutes after each in-
jection, a cohort of mice was sacrificed, and intestinal
sections were stained for BrdU (IHC BrdU kit, Zymed
Inc.). The relationship between the ratio of BrdU� cells to
PCNA� cells and time was analyzed with a nonlinear
mixed effects model, and cell cycle times (T) calculated
from the slope (sl) of the proximal limb of biphasic
curves,25 using the equation: sl � 1/T.
For cell migration, three mice per group were sacrificed
at 2, 24, and 48 hours after a single intraperitoneal BrdU
injection (15 mg/kg), and resulting intestinal sections
were subjected to BrdU IHC. Migration rate (�m/hour)
reflects the slope of the fitted line of the distance of the
farthest labeled enterocyte from the crypt-bottom
throughout time. The number (for cell cycle) or the dis-
tance (for cell migration) of BrdU-labeled cell(s)/crypt
was quantified using NIH Image J software.

Immunoblot Analyses

Epithelia were dissected from normal intestinal mucosa
from five individual animals in each group or NCM460
cells (�1,000,000/well in a six-well plate) were synchro-
nized (48 hours) by serum starvation and restimulated
with serum alone (control) or that containing 1 mmol/L
8br-cGMP for 3 hours. In each case, protein was ex-
tracted in Laemmli buffer containing protease and phos-
phatase inhibitor cocktails (Pierce, Rockford, IL) and
stored at �20°C. Homogenized proteins were subjected
to immunoblot analyses using antibodies to the following
antigens where indicated: cyclin D1 and pRb from Santa
Cruz Biotechnology (1:200 dilution) and cleaved caspase
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3 and GAPDH from Cell Signaling (Danvers, MA; 1:1000
dilution). ITF (1:10,000) anti-serum was a gift from Dr.
Daniel K. Podolsky (Massachusetts General Hospital and
Harvard Medical School, Boston, MA). Bovine anti-goat
and anti-rabbit secondary antibodies were from Santa
Cruz Biotechnology (1:5000 dilution). Staining intensity of
specific bands quantified by densitometry was normal-
ized to that for GAPDH. Average relative intensity reflects
the mean of five individual animals per genotype or three
independent experiments with NCM460 cells.

In Vitro Cell Proliferation and Cell Cycle

For DNA synthesis, NCM460 cells (�50,000/well in a
96-well plate) were synchronized (48 hours) by serum
starvation and restimulated (24 hours) with 10% fetal
bovine serum in the presence of the indicated treatments.
Cells were labeled by adding, for the last 3 hours of
incubations, [methyl-3H]thymidine (0.2 �Ci/well), and
[3H]thymidine incorporation into DNA was quantified.11,13

Also, growth curves were generated by treating NCM460
cells (�50,000/well in a 24-well plate) in media and de-
termining the DNA or protein content per well. After DNA

extraction with ethanol in phenol/chloroform, DNA con-
centrations were measured by spectrophotometry (260
nm) and cell numbers extrapolated from linear standard
curves (data not shown). Conversely, protein concentra-
tions were determined using the BCA protein assay kit
(Pierce). Cell doubling times (at the period of exponential
growth) and cell cycle distributions by flow cytometry
(after serum restimulation of synchronized cells) were
calculated as described.11

Primary Cultures of Colon Mucosa

Colonic tissues were obtained from patients undergoing
surgery under a protocol approved by the institutional re-
view board (control no. 01.0823) as a part of the clinical trial
NIH R01 CA75123 (S.A. Waldman, PI). Normal colonic mu-
cosa dissected from the lamina propria were cut into 25-
mm2 sheets and placed onto six-well plates in primary
culture media.26 Colonic mucosal sheets incorporated thy-
midine into nuclear DNA for �21 hours (data not shown).
Thus, after isolation and recovery (4 hours), treatments were
performed 15 minutes before addition of [methyl-3H]thymi-
dine (2 �Ci/well) for 16 hours. Then, 3H-thymidine incorpo-
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Figure 2. GC-C�/� mice exhibit expanded proliferating compartments. A: Crypt depth was increased in GC-C�/� intestinal segments (black columns) compared
with their GC-C�/� counterparts (hatched columns). B: Ki-67 IHC staining of representative GC-C�/� and GC-C�/� mouse intestinal sections. C: Ki-67� cells per
crypt section were increased in GC-C�/� mice. D: Ki-67 labeling index (Ki-67� cell number/total cell number/crypt section) in different intestinal sections. E:
PCNA� cells per crypt section were increased in GC-C�/� mice. F: PCNA labeling index (PCNA� cell number/total cell number/crypt section) in different intestinal
sections. Du, duodenum; Je, jejunum; Ile, ileum; PC, proximal colon; and DC, distal colon. *P � 0.05, **P � 0.01, ***P � 0.0001 by linear mixed effects model.
n � 9 mice/genotype. Original magnifications, �400.
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ration into DNA was quantified,11 and results were normal-
ized to the wet weight of mucosa sheets.

GC-C and Cyclic GMP Analyses

GC-C mRNA was quantified by reverse transcriptase
(RT)-PCR.27 Iodination of ST and GC-C ligand binding
was assessed in membranes from NCM460 cells or
mouse intestinal mucosa.23 Specific GC-C binding was
calculated using Prism 3.0 software after subtraction of
nonspecific binding (with unlabeled ST) from total bind-
ing (without unlabeled ST). Finally, cGMP was quantified
by radioimmunoassay28 in NCM460 cells incubated (30
minutes) in serum-free media with the phosphodiesterase
inhibitor 3-isobutyl-1-methylxanthine (1 mmol/L) before
addition of treatments (for 15 minutes).

Statistics

Crypt depth, cell proliferation by PCNA or Ki-67 IHC, and
cell migration were analyzed by fitting a linear mixed effects
model.29 To estimate cell cycle times, a nonlinear mixed
effects model29 was fitted to the crypt-specific proportion
ratios of BrdU-labeled cells to PCNA� cells with the fixed
effects part as described.25 These models accounted for
animal-to-animal variability and correlation between clus-
tered measures from the same animal. All other compari-
sons used the Student’s t-test. Determinations in vitro were
repeated at least three times. Where appropriate, analyses
were done in triplicate and results reflect mean 	 SEM of a
representative experiment. In all analyses, P � 0.05 was
considered statistically significant.

Results

GC-C Regulates the Size of the Proliferating
Crypt Compartment

Although the gross histological architecture of crypt
and villus units were not obviously different in GC-C�/�

and GC-C�/� mice (Figure 1H), closer examination
revealed that in the absence of GC-C signaling mice
exhibited longer crypts (Figure 2A, Table 1; measured
with the NIH Image J analysis software) associated
with increased numbers of Ki-67� (Figure 2, B–D;
quantified by Ki-67� IHC) or PCNA� (Figure 2, E and F,
and Table 1; quantified by PCNA� IHC) cells com-
pared with GC-C�/� mice. Crypt elongation reflected
hyperplasia along a decreasing rostral-caudal gradi-
ent (P � 0.001), and the number of proliferating cells
was the dominant predictor of hyperplasia in all intes-
tinal segments (P � 0.001). Moreover, the fraction of
proliferating cells in crypts (Ki-67- or PCNA-labeling
index) increased in GC-C�/� mice compared with GC-
C�/� mice with the greatest effect in proximal colon
(Figure 2, D and F), indicating that crypt hyperplasia
principally reflects expansion of the proliferating, and
not quiescent, compartment. Indeed, the colonic crypts
of Lieberkuhn include the entire cell phenotypic spectrum
along the crypt-villus axis, whereas shorter small intesti-
nal crypts (Figure 1H), apically restricted by the crypt-
villus junction (Figure 8), are predominantly populated by
proliferating progenitor cells (Figure 2B). In agreement
with the suggestion that GC-C critically regulates cell
proliferative dynamics, induction of GC-C signaling using
ST or 8-br-cGMP, a membrane-permeant cGMP ana-
log,30 inhibited proliferation of normal epithelial cells in
mucosal sheets isolated from intestines of patients, as
assessed by 3H-thymidine incorporation into nuclear
DNA (Figure 3A). Further, ST or the endogenous GC-C
agonist guanylin, but not the inactive ST analog TJU
1-103, inhibited proliferation of NCM460 human intestinal
crypt cells22 (Figure 3B), and this effect was mimicked by
8-br-cGMP (Figure 3C).

GC-C Regulates the Rate of the Cell Cycle in
the Proliferating Crypt Compartment

To define further the proliferative crypt kinetics in GC-C�/�

mice, cell cycle duration was quantified after serial perito-

Table 1. Crypt Depth and PCNA-Labeled Cell Number

Genotype Section

Crypt depth (�m) PCNA� cells/crypt

Mean

95% Confidence
interval

Mean

95% Confidence
interval

Lower Upper Lower Upper

Small intestine
GC-C�/� Duodenum 76.2 73.1 79.4 29.5 27.6 31.4
GC-C�/� Duodenum 92.7* 89.5 95.9 35.4* 33.5 37.3
GC-C�/� Jejunum 75.0 71.9 78.2 29.9 28.0 31.8
GC-C�/� Jejunum 96.6* 93.5 99.7 38.1* 36.2 40.0
GC-C�/� Ileum 74.9 71.8 78.1 29.6 27.7 31.5
GC-C�/� Ileum 87.4* 84.3 90.5 36.0* 34.2 37.9

Colon
GC-C�/� Proximal 129.6 125.6 133.7 19.7 17.9 21.4
GC-C�/� Proximal 154.3* 150.3 158.3 28.3* 26.5 30.2
GC-C�/� Distal 142.8 139.2 146.4 22.2 20.3 24.0
GC-C�/� Distal 146.9 143.2 150.6 20.9 19.1 22.8

Crypt depth and PCNA� counts reflect analysis of 12 to 106 (median, 47.5) and 4 to 17 (median, 10) crypts/intestinal section/animal. Analyses
reflect nine mice for each genotype. *P � 0.0001, GC-C�/� versus GC-C�/�.
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neal BrdU injections, with incorporation into DNA by cycling
cells during S phase transition (Figure 4A).25 This model
presumes that proliferating crypt cells reflect two popula-
tions, including stem cells with a uniform cell cycle that is
twice the duration of progenitor cells.25,31 The nonlinear

mixed effects model,29 used to analyze BrdU labeling
curves, was fitted to the crypt-specific proportion ratios of
BrdU-labeled cells to PCNA� cells (Figure 4B). Only cell
cycles of progenitor cells were considered, since the model
and time (24 hours) used permit quantification of in vivo cell
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cycle rates of rapidly proliferating progenitor cells rather
than slowly proliferating stem cells.3,31 Elimination of GC-C
signaling accelerated the cell cycle in crypt progenitor cells
of GC-C�/�, compared with GC-C�/�, mice along a rostro-
caudal gradient, with significantly higher effects in proximal
small intestine and modest effects in colon (Figure 4, B and
C; Table 2). Acceleration of the cell cycle in GC-C�/� mice
was associated with increases in critical intestinal cell cycle

mediators by immunoblot analysis, including cyclin D1 and
p-Rb (Figure 4, D and E).

Conversely, induction of GC-C signaling prolonged the
cell cycle of NCM460 human normal colonocytes in vitro
(Figure 5). Indeed, colonocytes treated with ST (Figure 5A)
or 8-br-cGMP (Figure 5B) grew more slowly than control
cells receiving PBS, as quantified by the DNA (top panels)
or protein (bottom panels) content of cell cultures. Also,
intestinal cells exposed to ST (Figure 5C) or 8-br-cGMP
(Figure 5D) exhibited a longer doubling time (assessed at
the period of exponential growth)11 associated with a delay
in the G1/S phase transition (Figure 5E). Accordingly, in
NCM460 cells cGMP reduced the protein levels of cyclin D1
and p-Rb (Figure 5, F and G), key promoters of the G1/S cell
cycle transition that are regulated by in vivo GC-C signaling
(Figure 4, D and E).

GC-C-Induced Crypt Hyperplasia Is Coupled
with Adaptive Increases in Cell Migration and
Apoptosis

Beyond proliferative kinetics, expansion of the crypt pro-
genitor cell compartment in GC-C�/� mice could reflect
reduced egress of cells from that compartment, mediated
by changes in migration or apoptosis.2 Proliferating epithe-
lial cells migrated more rapidly along the crypt-villus axis in

Table 2. Cell Cycle Times

Genotype Section

Cell cycle (hour)

Mean

95% Confidence
interval

Lower Upper

Small intestine
GC-C�/� Duodenum 28.3 19.6 37.0
GC-C�/� Duodenum 10.8* 8.1 13.5
GC-C�/� Jejunum 34.1 25.2 43.0
GC-C�/� Jejunum 18.9* 13.6 24.2
GC-C�/� Ileum 24.2 17.5 30.9
GC-C�/� Ileum 17.1 12.4 22.1

Colon
GC-C�/� Proximal 21.4 17.5 25.2
GC-C�/� Proximal 18.4 11.7 26.1
GC-C�/� Distal 21.8 17.8 25.8
GC-C�/� Distal 15.2 12.5 18.0

*P � 0.05, GC-C�/� versus GC-C�/�.
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GC-C�/� compared with GC-C�/� mice (Figure 6, A and B,
and Table 3; quantified by single intraperitoneal BrdU injec-
tion). Linear mixed effects modeling, which considered an-

imal-average scores of PCNA� cells and crypt depth, sug-
gests that accelerated enterocyte migration was an
adaptive response to, rather than the cause of, crypt hyper-
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Figure 6. Adaptive increases in migration and apoptosis along the GC-C�/� crypt-villus axis. A: BrdU IHC staining of representative intestinal sections from mice
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Table 3. Cell Migration Rates

Genotype Section

Crypt migration (�m/hour) 
 Migration �(GC-C�/�) � GC-C�/��

Mean

95% Confidence
interval

Mean

95% Confidence
interval

Lower Upper Lower Upper

Small intestine
GC-C�/� Duodenum 23.3 21.1 25.4
GC-C�/� Duodenum 31.8* 29.7 33.9 8.5 5.6 11.5
GC-C�/� Jejunum 19.6 17.5 21.7
GC-C�/� Jejunum 24.1† 22.0 26.2 4.5 1.6 7.4
GC-C�/� Ileum 15.2 13.2 17.2
GC-C�/� Ileum 18.4‡ 16.4 20.5 3.3 0.4 6.1

Colon
GC-C�/� Proximal 3.9 1.9 6.0
GC-C�/� Proximal 4.4 2.4 6.5 0.5 �2.4 3.3
GC-C�/� Distal 3.6 1.6 5.5
GC-C�/� Distal 1.3 �0.7 3.4 �2.3 �5.1 0.6

Migration distances traveled by enterocytes were measured in 2 to 72 (median, 24) crypts/intestinal section/animal.
*P � 0.0001, †P � 0.01, ‡P � 0.05, GC-C�/� versus GC-C�/�.

1854 Li et al
AJP December 2007, Vol. 171, No. 6



plasia (P � 0.001). Indeed, as observed for proliferative
kinetics, GC-C-dependent regulation of cell migration ex-
hibited a rostro-caudal gradient (Table 3). Similarly, elimi-
nation of GC-C increased apoptosis in intestinal crypts as
assessed by TUNEL (Figure 6, C and D) and immunoblot
analysis for cleaved caspase 3 (Figure 6, E and F), also
reflecting an adaptive response to crypt hyperplasia.

GC-C Regulates Lineage-Specific Cell
Differentiation

Perturbations in cell maturation dynamics also could con-
tribute to the expansion of crypt compartments in GC-
C�/� mice.2 Indeed, elimination of GC-C signaling spe-
cifically altered cell-lineage differentiation, and GC-C�/�

mice exhibited fewer goblet cells compared with wild-
type mice, as assessed by counting intestinal cells
stained for mucin with Alcian blue (Figure 7, A and B) and
by immunoblot analysis for intestine trefoil factor (Figure
7, C and D). In addition, GC-C�/� mice exhibited fewer
Paneth cells than GC-C�/� mice, as quantified by count-
ing mucosal cells stained with anti-lysozyme antibody

(Figure 7, E–G). However, there were no differences in
enteroendocrine cells (Figure 7, H–L; quantified by IHC
for anti-chromogranin A) or absorptive enterocytes (Fig-
ure 8; quantified by IHC for villin). Further, the ordered
transition from the proliferating (Ki-67�) to the differenti-
ated (villin�) cell compartment was maintained in GC-
C�/� mice (Figure 8). Moreover, there were no differ-
ences in villus length in GC-C�/�, compared with GC-
C�/�, mice (data not shown). Taken together, these data
suggest that GC-C signaling critically affects the ho-
meostasis of intestinal crypt compartment by coordinat-
ing processes underlying reciprocal regulation of prolif-
eration and differentiation associated with adaptive
responses in migration and apoptosis.

Discussion

The importance of defining the molecular mechanisms
organizing the crypt-villus axis is underscored by the
established relationship between dysregulation of key
processes underlying that organization and intestinal tu-
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morigenesis.4,6,8 Thus, Wnt/�-catenin/Tcf-4 pathway is a
principal determinant of the crypt cell phenotype,32 and
mice with disrupted Tcf-4 signaling exhibit depletion of
intestinal stem cell compartments.33 Ca2� inhibits prolif-
eration and promotes differentiation in intestinal
mucosa,34 and Ca2� supplementation abrogated intesti-
nal hyperproliferation and tumor formation in ApcMin/�

mice.35 Further, CDX-2 is a transcription factor of the
murine homeobox gene family that regulates intestinal
epithelial cell differentiation36 and its reduced expression
was associated with colon tumorigenesis in ApcMin/�

mice.37

In that context, GC-C signaling has emerged as a key
modulator of the colon cancer cell phenotype. GC-C
inhibits colon cancer cell proliferation11–13 and opposes
colon carcinogenesis in ApcMin/� mice.14,38 Also, al-
though GC-C expression is highly conserved,23 expres-
sion of guanylin and uroguanylin is uniformly lost early in
neoplastic transformation, suggesting that disruption of
GC-C signaling may contribute to colon carcinogene-
sis.14,19 GC-C and cGMP inhibit tumor cell proliferation
by inducing Ca2� influx through cyclic nucleotide gated
channels,12 suggesting that the anti-tumor effects of di-
etary Ca2� 34,35 may be mediated, in part, by GC-C
signaling. Moreover, activation of GC-C may oppose pro-
proliferative Wnt/�-catenin/Tcf-4 signaling by promoting
PKG1�-dependent degradation of �-catenin, inhibiting
its nuclear translocation.39

Beyond colon cancer cell proliferation, the role of
GC-C in mechanisms underlying normal intestinal epithe-
lial cell dynamics remains undefined. Elimination of gua-

nylin expression in mice produced colonic crypt hyper-
plasia, reflecting expansion of proliferative compartments
associated with increased migration.20 Although reminis-
cent of observations in the present study, these effects
were not replicated in GC-C�/� mice,21 suggesting that
other receptors mediate the effects of guanylin on colon
crypt dynamics. Indeed, receptors other than GC-C may
mediate effects of GC-C ligands on fluid homeostasis.40

However, previous studies examining crypt dynamics in
GC-C�/� mice did not present data and did not specify
the anatomical segment along the rostro-caudal axis an-
alyzed.21 As demonstrated herein, experimental mea-
surements confined to the distal colon in GC-C�/� mice
could have produced artifactually negative results.

Here, elimination of GC-C induced selective crypt hy-
perplasia along a decreasing rostro-caudal gradient, in
the absence of changes in villus morphology. Crypt hy-
perplasia reflected, in part, increases in the number of
proliferating cells and acceleration of their cell cycle.
These changes were associated with adaptive increases
in migration and apoptosis along the crypt-villus axis,
which limited expansion of the proliferating compartment.
Thus, GC-C signaling represents a previously unrecog-
nized mechanism restricting the size and proliferative
rate of the intestinal progenitor compartment. The rostral-
caudal gradient of this effect likely reflects a recapitula-
tion of the established gradient along that axis of
proliferation, migration, and apoptosis41,42 and the quan-
titative and qualitative differences in downstream effector
mechanisms mediating GC-C signaling.20,43–46 In the
context of the present studies, crypt elongation associ-
ated with increases in proliferation and migration previ-
ously observed in guanylin�/� mice reflect elimination of
GC-C signaling, rather than loss of signaling by another
unidentified receptor.20

The present study reveals a previously unappreciated
role for GC-C in mechanisms regulating proliferative in-
dices of normal intestinal epithelial cells. Indeed, GC-C
signaling inhibited DNA synthesis rates in normal colono-
cytes in human mucosa sheets and in human intestinal
epithelial cells. Moreover, GC-C signaling prolonged the
intestinal epithelial cell cycle by inducing a G1/S delay.
Crypt hyperplasia associated with increased numbers of
rapidly cycling progenitor cells in GC-C�/� mice reflects
loss of physiological GC-C regulation of the cell cycle. In
contrast, GC-C-induced cytostasis in colon cancer cells
reflects a generalized slowing, without delay in any spe-
cific phase, of the cell cycle.11–13 In that context, GC-C-
induced G1/S delay may represent a novel tumor-sup-
pressor mechanism in normal cells whose interruption,
through loss of ligand expression,17–19 contributes to
colon tumorigenesis.

In addition, this study reveals a role for GC-C signaling in
lineage-specific maturation of intestinal epithelial cells. In
GC-C�/� mice, crypt hyperplasia reflected increases in
proliferative dynamics and reciprocal restriction of differen-
tiation along the secretory lineage, specifically of Paneth
and goblet cells, without effects on enteroendocrine cells or
absorptive enterocytes. The selective impairment of cell
lineage commitment suggests that, rather than a passive
consequence of dysregulated cell proliferation, these ef-
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Villin Ki67 Villin Ki67
Figure 8. The transition from proliferating to differentiated absorptive cells is
retained in GC-C�/� mice. IHC staining of representative small (jejunum, Je)
and large (proximal colon, PC) intestinal sections from GC-C�/� and GC-
C�/� mice. Mature enterocytes and proliferating crypt cells were visualized
in adjacent sections after staining for villin and Ki-67, respectively. Double-
headed arrows indicate the cell position of the transition from proliferation
to enterocyte differentiation (first villin�/Ki-67� cell from the crypt bottom).
Original magnifications, �400.
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fects may reflect a previously unrecognized ability of GC-C
to regulate discreet molecular mechanisms associated with
intestinal cell programming.

Beyond fluid balance, GC-C has recently emerged as
a critical signaling molecule suppressing colorectal tu-
morigenesis by regulating distinct, mutually reinforcing
molecular mechanisms underlying crypt-villus homeosta-
sis, including restriction of proliferation and maintenance
of genomic integrity.38 Observations presented here fur-
ther support the suggestion that GC-C is one of the
integrated paracrine mechanisms regulating intestinal
mucosa homeostasis. Thus, GC-C signaling restricts the
size of crypt progenitor compartments, impeding cell
cycle progression and proliferation, promoting lineage-
specific maturation, limiting cell migration, and inhibiting
apoptosis. The pathophysiological significance of GC-C
as a paracrine mechanism restricting the size of the
proliferating compartment is underscored by the central-
ity of this compartment in mechanisms underlying colon
carcinogenesis. Indeed, overexpression of molecules
like Wnt, �-catenin, and Tcf that promote the progenitor
cell compartment in the crypt is associated with colonic
tumorigenesis.32,33 Conversely, disruption of genes in-
cluding APC, SMAD, and IHH, which restrict the prolifer-
ating crypt compartment and promote differentiation in
the villus compartment, also is associated with colonic
tumorigenesis.47–51 The prevailing model suggests that
tumor initiation and progression in colon reflects accu-
mulation of genetic mutations in proliferating crypt pro-
genitor cells.52 Importantly, expression of guanylin and
uroguanylin is invariably lost early during neoplastic
transformation.17–19 In the context of the present studies,
early loss of GC-C ligands and the associated physiolog-
ical mechanisms restricting the cell cycle, number of
proliferating cells and size of the progenitor compart-
ment, and promoting cell differentiation will induce crypt
hyperplasia, amplifying accumulation of stochastic ge-
netic mutations underlying tumor initiation.4,6,8 Moreover,
dysregulated GC-C signaling reflecting loss of ligands
eliminates one important cytostatic mechanism inhibiting
proliferation in transformed cells, potentiating tumor pro-
motion.11–13,30 Of significance, loss of guanylin and
uroguanylin expression in human tumors is associated
with near-uniform overexpression of GC-C,23,27 suggest-
ing paracrine hormone replacement therapy as a novel
chemopreventive strategy to maintain crypt-villus ho-
meostasis and suppress tumor initiation and promotion in
intestine.38
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