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Abstract

Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage
and compare the resulting data can be problematic. Biological, experimental, and technical variations
between studies of the same phenotype/phenomena create substantial differences in results. The
application of conventional meta-analysis to raw microarray data is complicated by differences in
the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative
approach to combining multiple microarray studies is to compare the published gene lists which
result from the investigators’ analyses of the raw data, as implemented in Lists of Lists Annotated
(LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/121/). The present review considers
both the potential value and the limitations of databasing and enabling the comparison of results from
different microarray studies. Further, a major impediment to cross-study comparisons is the absence
of a standard for reporting microarray study results. We propose a reporting standard: standard
microarray results template (SMART), which will facilitate the integration of microarray studies.
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1. Introduction

Microarrays have become routine methods for profiling gene expression in almost every
discipline of biomedical research. Genomic scale profiling of gene expression is a potentially
valuable means of evaluating changes in, for example, stem cell differentiation (Ivanova et al.,
2002; Ramalho-Santos et al., 2002; Fortunel et al., 2003), alcohol consumption (Mulligan et
al., 2006), cardiovascular disease (McCaffrey et al., 2000; Gagarin et al., 2005), cancer
(Bullinger et al., 2004; Valk et al., 2004), inflammation (Calvano et al., 2005), and aging (Lu
et al., 2004). As the cost of microarray technologies decrease, it is possible that array-based
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methods of genomic-scale transcript profiling may become as commonplace as PCR-based
methods are currently.

A hallmark of the scientific process is the reproducibility of published outcomes, and yet
comparing the results of microarray studies has proven difficult. There are two general
approaches to integrating microarray studies: comprehensive re-analysis of the primary data
by merging data from multiple studies; or, comparative analysis of the published results (i.e.
gene lists). Re-analysis of merged primary data sets has certain merits and complications that
have recently been reviewed (Larsson et al., 2006). Of major concern to meta-analysis of raw
data is that only about one-third of published studies have deposited meaningful raw data in
public databases (Larsson and Sandberg, 2006). The present review focuses exclusively on
comparing microarray results, an approach which may become increasingly useful as the sheer
volume of microarray data expands, and which has the potential to make this mass of data
accessible and comparable for the broad scientific community.

Ultimately, the quality of any meta-analysis depends on the quality of the underlying data. The
accuracy and reproducibility of commonly-used microarray platforms has been hotly debated,
with initial results ranging from relatively discouraging (Tan et al., 2003; Severgnini et al.,
2006), to cautiously optimistic (Irizarry et al., 2005; Larkin et al., 2005). Recently, an
exhaustive analysis of popular microarray platforms by a multi-center consortium, MAQC,
delivered reassuringly impressive outcomes (Canales et al., 2006; Shi et al., 2006).)
Nonetheless, all of these studies emphasize the necessity of careful control of biological
samples and close adherence to standard protocols.

Beyond the limitations of the raw data, the process of comparing long lists of genes from
microarray studies using different gene nomenclatures is often so tedious as to prevent effective
comparisons. Not only are results reported using incompatible gene nomenclatures (i.e.
Genbank, Locuslink, or Affymetrix gene identifiers), but often the lists of differentially
expressed genes (DEGs) are published in graphic or tabular formats that are inaccessible by
search engines. The analyzed results are rarely made available in any central database, such as
GEO, even when the underlying raw data is deposited. Despite these obstacles, several groups
have successfully gleaned important insights from the focused comparison of disparate
microarray results. Careful meta-analysis of aging and cellular senescence microarray studies
led to the intriguing observation that the expression pattern of cellular senescence was similar
to that of aging in mice, but not in humans (Wennmalm et al., 2005), and a database of
microarray studies in aging has been established (Pan et al., 2007). A cross-species analysis of
expression changes in aging models identified a common transcriptional profile shared across
phyla from yeast to humans (McCarroll et al., 2004). Likewise, data from a variety of
laboratories was integrated to identify a common host transcriptional response to pathogens
(Jenner and Young, 2005). A careful comparison of potential diagnostic genes for acute
myeloid leukemia (AML) (Bullinger et al., 2004; Valk et al., 2004) reveals a much smaller set
of robust candidate genes for further analysis (Cahan et al., 2005). There is substantial potential
for novel discoveries that would emanate from comparing microarray studies, but doing so
requires a concerted effort to identify and remove obstacles to the routine mass-comparison of
microarray data.

In order to address these issues, two databases have emerged to house and integrate the results
of microarray experiments: LOLA (Cahan et al., 2005) and L2L (Newman and Weiner,
2005). LOLA and L2L allow investigators to compare their data to published microarray data
from different platforms, different nomenclatures, or even different species. The databasing of
microarray gene lists allows for systematic comparison of the results of similar studies in order
to identify consistent expression patterns, as well as helping experimenters to interpret new
data by mining for these biologically significant patterns (Newman et al., 2006). While
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relatively comprehensive in certain areas, the hundreds of data sets included in LOLA and L2L
are only a fraction of those potentially available. They are severely constrained in scope by the
need to laboriously adapt inconsistently published data, and by the absence of a standard format
for exchanging data between databases.

Although a rigorous standard for reporting raw microarray data, MIAME (Brazma et al.,
2001), is in wide use by both journals and data repositories, no similar standard exists for
reporting the results of microarray studies. To fill this need, we propose a standard microarray
results template (SMART). SMART carries forward MIAME-compliant information, such as
the platform, the number of specimens, amplification, genome definition, and experimental
design. It then adds additional fields to describe the analytical methodologies and differentially
expressed gene results. The purpose of SMART is to facilitate the exchange and comparison
of microarray results. Importantly, however, SMART is readily amenable to the results of other
genome-wide analyses, such as SAGE, microRNA, linkage and association, proteomic, and
computational studies.

2. Comparing the results of microarray studies

The initial experience with comparing the results of similar microarray studies has suggested
cautious optimism. There is typically substantial discordance in gene lists generated by
apparently similar studies (Cahan et al., 2005). However, judiciously applied statistics will
often show highly significant overlaps, even across species, as demonstrated by our meta-
analyses of aging studies (Cahan et al., 2005; Newman and Weiner, 2005). Moreover,
examining a large number of studies simultaneously can reveal significant overlaps within a
topic such as the interferon response (Figure 1), even if it is difficult to identify a specific set
of common genes. Three major sources of this superficial discordance are: 1) variation due to
random noise, 2) biological and experimental differences, and 3) differences in technical
methods. Many of these can be mitigated or overcome by the use of standard reporting methods,
together with careful application of large-scale meta-analysis techniques.

2.1 Variation due to random noise

Potentially the biggest limitation to microarray studies is the reduction in power due to testing
tens of thousands of hypotheses based on relatively small sample sizes. If one is willing to
accept a false positive rate (o)) of 0.05 in a microarray study evaluating 54,000 transcripts, then
2700 genes will be observed to change simply due to random fluctuations in expression levels.
However, the potential benefit of meta-analysis is that by combining across different studies,
the false positive genes will not replicate, while the ‘true’ genes should be observed in multiple
studies.

2.2 Variation derived from biological and experimental variation

Undoubtedly, some variation in genes identified by different studies results from true biological
variations in the samples which are analyzed. Even very similar studies employ different cell
lines, tissues, or specimens, such as whole blood or purified mononuclear cells. Even ostensibly
identical cell lines could be substantially influenced by experimental variations, such as culture
in different media or serum, and at different densities, which might significantly affect the
response to treatment. This results in changes in gene expression that are ‘true’ within their set
of experimental conditions, but which do not reflect the variable under study and will not
replicate in other studies using slightly different conditions. As with random noise, meta-
analysis permits these changes to be ignored, and the focus to lie on the remaining ‘robust’
changes.
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2.3 Variation derived from technical differences

The third major source of variation can be labeled as variation derived from technical
methodology, summarized in Table 1.

2.3.1 Platforms—Several platforms for microarray analysis of gene expression are currently
in use, and until recently, each was measuring unique subsets of the full genome. The different
microarray platforms employed varied hybridization strategies: synthesized oligonucleotide
microarrays, such as Affymetrix; spotted oligo arrays, such as Agilent; bead-based formats,
such as lllumina; and custom spotted cDNA microarrays (Bammler et al., 2005). Only recently
have some of these formats reached full-genome coverage, meaning that prior studies using
different platforms would have necessarily produced different outcomes due to the different
transcripts that were measured. Recent comprehensive examinations of intra- and inter-
platform reliability and concordance suggest that technically the microarray has come of age,
and typically shows about 80% concordance between any two major platforms when
comparable methods were employed (Shi et al., 2006). Likewise, after direct comparison of
Affymetrix and TIGR spotted arrays, Larkin concluded that “despite the common perception
that gene expression (is) not reproducible across platforms, (their) analysis of cardiac gene
expression yielded consistent results for greater than 90% of genes in common between the
Affymetrix GeneChip and TIGR cDNA arrays” (Larkin et al., 2005).

2.3.2 Data transformations—Even within one experiment on a single platform, the method
of analysis of the raw microarray data leads to major differences in the differentially expressed
genes (DEGS). After raw fluorescence values are measured, the data is subjected to different
levels of transformation that can be divided into: background or mismatch subtraction, probeset
summarization (i.e. RMA, Plier, MAS5) which combines multiple measures of the same
transcript, normalization of levels between arrays (per chip normalization), and normalization
of transcript levels (per gene normalization). The impact of summarization and normalization
strategies has been extensively evaluated in the MAQC project (Shippy et al., 2006), but an
estimate of the impact is that two different summarizations of the same data may produce DEG
lists that are only 30% concordant (Gagarin et al., 2005) — though among tens of thousands of
total genes, such overlap is likely to be very highly significant.

2.3.3 Data analysis—After summarization/normalization, the data is analyzed by a variety
of methods to identify DEGs. Early methods of detecting changes, such as fold-change between
groups, have given way to statistically driven methods such as Significant Analysis of
Microarrays (SAM) and Analysis of Variance (ANOVA). Minor changes in o, the p-value
cutoff for statistical significance, have a major impact on the size of the list of differentially
expressed genes detected (Figure 2), and much of the potential concordance between lists may
lie just beneath a. Thus, the data processing steps have a major impact on the resulting changes
that are detected, and are likely to be a major cause of apparent disparities between microarray
studies. The impact of data analysis strategies was carefully considered in the MAQC analysis,
and it suggests that identifying DEGs with fold-changes or ratios, in combination with p-values,
increases the concordance between different platforms and laboratories (Shi et al., 2006).

2.3.4 Gene nomenclature—Independent of the biological, technical, and analytical reasons
that create variations between microarray studies, any two studies can be effectively impossible
to compare because the results may be reported in different gene nomenclatures. Current
microarray studies report results using Genbank, Locuslink, Entrez Gene (replacing
Locuslink), EMBL, Unigene, RefSeq, and Affymetrix gene identifiers. Without software
translation, such as provided by NIH-DAVID, GoMiner, Resourcerer, L2L or LOLA, it is
extremely difficult to compare any two microarray studies for similarities in their gene lists.
This “linguistic’ disparity has been a major impediment to accurate and high-volume
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comparison of microarray studies. Standard reporting of gene lists in the most low-level format
possible, i.e. probe identifiers for a platform described in a data repository, would substantially
ameliorate this problem.

2.3.5 Probe disparities—Even if exact translations between different nomenclatures can
be achieved, there are material differences in how different platforms measure specific
transcripts. Because of platform differences in the exact probe(s) used to interrogate a specific
transcript, there will always be some degree of imprecision in translation between different
platforms. Until all the relevant splice forms of transcripts are known, and sensitivity/
specificity of the probes to different splice variants is quantified, there will be irresolvable
disparities in the outcomes from any two platforms. While not debilitating, these disparities
could have important impact on any attempt to conduct effective meta-analysis of microarray
data by increasing the false negative rate. For instance, although some array platforms
interrogate as many as 54,000 transcripts, the MAQC project could only successfully cross-
reference 12,091 transcripts between all of the major platforms (Shi et al., 2006).

2.3.6 Species differences—Being able to compare the results of microarray studies
between different species would be tremendously valuable in order to determine, for instance,
whether a genetic change in a knockout mouse had a similar impact on gene expression as a
human disease that it is meant to model. One method of comparison of microarray data between
species is to utilize HomoloGene, as employed by LOLA and L2L. HomoloGene is a database
which utilizes an automated system of detecting homologs among the annotated genes of
several completely sequenced eukaryotic genomes (Wheeler et al., 2005), and thus is quite
useful for translating microarray results between species.

2.3.7 Annotation and re-annotation—While peer-review and publication are absolutely
essential aspects of disseminating microarray results, they create static ‘gene lists” which are
fixed in time with respect to the state of knowledge at the time of publication. To date, there
are names, and putative functional information on only 30-50% of routinely measured
transcripts—meaning that more than half of genes on “‘gene lists’ are currently uninterpretable,
and often only accessible in Supplementary Data on the publisher’s or author’s website. By
systematically databasing the results in a low-level probe ID format, it is possible to reinterpret
microarray results in light of new gene annotations, thereby creating dynamic tools for further
discovery.

2.3.8 Levels of concordance—The aforementioned problems associated with disparities
in platform, nomenclature, and species emphasize the difficulties in determining ‘exact match’
identity in the results from 2 different studies. However, it is possible to take advantage of the
fact that genes can be arranged into a hierarchical structure with varying degrees of relatedness.
For instance, while one study might observe a change in TGF-R1, and another in TGF-2, thus
failing an identical match, a higher order concordance could observe a concordant change in

“TGF-R’ or ‘growth factor’. Previously established gene ontologies, such as KEGG (Ogata et
al., 1999), provide exactly the type of hierarchical trees that can allow analytical software to

identify concordant changes in predefined categories such as ‘interferon response’, “multidrug
resistance’, or ‘pro-apoptotic’, thereby exposing potentially useful relationships. Interestingly,
gene lists from different studies are amenable to hierarchical clustering methods which would
allow the relatedness of multiple studies to be easily visualized.

3. Existing guidelines and databases for microarray studies

As a result of the large amount of data that has been generated from microarray experiments,
there has been increasing awareness of the need for guidelines in reporting. To date, microarray
data has been organized by the publication of guidelines for reporting the data, especially the
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Minimum Information About a Microarray Experiment (MIAME) guidelines (Brazma et al.,
2003), and functionally by databases which act as repositories for microarray data, such as
Gene Expression Omnibus (GEO) (Edgar et al., 2002) and ArrayExpress (Parkinson et al.,
2006), or for SAGE data (i.e. CGAP Genie - cgap.nci.nih.gov). These major public repositories
are critical in facilitating the storage and exchange of raw expression data. However, these
standards and databases are focused on reporting raw microarray data and experimental
features, and do not capture the key variables between the raw data and the reported results,
such as DEGs; hence, a common format, Standard MicroArray Results Template (SMART),
is being proposed as one implementation of MIAME, to facilitate the comparison of results.

The Minimum Information About a Microarray Experiment (MIAME) standard functions as
a guideline for researchers to report an adequate description of how microarray data was
obtained. There are six essential elements to MIAME compliance (Brazma et al., 2001):

1. Experimental design: the set of hybridization experiments as a whole

2. Array design: type of array used and description of each element (spot, feature) on
the array

Samples: samples used, extract preparation and labeling

Hybridizations: procedures and parameters

a &~ w

Measurements: images, quantification and specifications
6. Normalization controls: types, values and specifications

Inaddition, a controlled vocabulary — the MGED Ontology - has also been set forth by MIAME
to allow precise and comparable descriptions of each element (Whetzel et al., 2006). By
providing the information required by the MIAME standard, microarray data can be more easily
interpreted by researchers (Brazma et al., 2001). However, MIAME was designed to specify
details about the raw data. It provides for only an unstructured field for presenting microarray
results, i.e. gene lists, with, as yet, no controlled format or language. Further, there is not yet
a standardized set of requirements for describing the many variables that affect gene list
composition (as outlined above), comparable to the MIAME requirement for raw data.

4. The SMART extension to MIAME

The Standard MicroArray Reporting Template (SMART) will greatly facilitate the research
community by making microarray data 1) accessible, 2) comparable, and 3) dynamically
updatable. The SMART format is based on MIAME concepts, but includes extensions that
allow a gene list to be adequately recorded and described. The MGED (www.mged.org)
developed a semantically consistent markup language for communicating MIAME data, called
MAGE-ML (Ball and Brazma, 2006), which is based on the eXtensible Markup Language
(XML). Simplistically, MAGE-ML, and more recently MAGE-TAB and tab2MAGE (Rayner
etal., 2006), defines a set of consistent field identifiers that are relevant for microarray studies,
thereby allowing different databases to exchange information with minimal reformatting.
SMART carries forward any relevant MIAME data fields, such as experimental and array
design, as described above. In addition, SMART defines several new fields to rigorously
describe the analytical methods used to generate a gene list (as described in Table 1), the
relationship between the gene list and the raw data from which it was derived, and the contents
of the gene list itself (gene identifier, scale and direction of change values). Optional fields can
denote follow-up confirmations that were conducted utilizing alternative laboratory
procedures, such as Northern blot analysis, qRT-PCR or real-time PCR. An example of a
SMART format, implemented in a variation of tab2MAGE (tab2mage.sourceforge.net/docs/
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spreadsheet.html), can be found in Supplementary Data and on both the L2L and LOLA
websites.

The biological community has come very far in a very short time in adopting standards for
reporting and archiving raw microarray data. Fortunately, SMART-compliance will not require
an equivalent effort, but can be readily inserted into existing infrastructure and procedures.
Most journals require that raw array data be uploaded into public repositories prior to
publication, so it is logical to similarly require that any tables of genes presented in a
manuscript, or supplemental data, be similarly deposited in SMART format. Any repository
that accepts accessory files can readily accommodate a text-based SMART gene list in
tab2MAGE/MAGE-TAB format. GEO, for example, permits the upload of accessory gene
tables with arbitrary headers. Over the long-term, SMART could be easily incorporated into
any software tool that accepts or outputs text-formatted data.

5. Conclusions

Microarray data is rapidly emerging from the shadows of being a “cautionary tale” (Sherlock,
2005), into a valuable technology with increasing reliability, reproducibility, and accuracy. To
date, the quality of microarray data has often been limited by cost, sample size, inadequate
analysis methods, and heterogeneous nomenclatures. As the quality of array platforms
improve, prices fall, and experimental design and analytical methods standardize, microarrays
will have a transforming effect on the way biomedical research is conducted. A key step in the
maturity of the field will be fair, open, and accurate exchange and comparison of the results
of the increasing number of microarray-based studies. The rapid adoption and implementation
of reporting standards is critical to that transition, and to unlock valuable biological knowledge
from this fast-growing universe of data.
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Abbreviations

AML

acute myeloid leukemia
ApoD

apolipoprotein D
DEGs

differentially expressed genes
ESC

embryonic stem cells
IFN

interferon
LOLA

List of Lists Annotated
MIAME

minimum information about a microarray experiment
NPC

neural progenitor cells
RPC

retinal progenitor cells
SAGE
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serial analysis of gene expression

SMART
Standard MicroArray Reporting Template
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Figure 1. Similarities between IFN-related gene lists in the L2L microarray database

The L2L and LOLA databases include a number of gene lists derived from published studies
that investigated the effects of interferons (IFN) on gene expression, using disparate source
materials and methods. Each IFN-related list was compared to all others using the L2L program,
in order to determine the degree and statistical significance of any overlap between these
ostensibly related gene lists. The figure is symmetric across the diagonal axis. Red denotes
lists with up-regulation by interferon. Green denotes lists with down-regulation by interferon.
Names of gene lists are as they appear in the database. Analysis of the same lists in LOLA

produced highly similar outcomes (r = 0.994).
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Figure 2. The effect of analytical strategies on the number of differentially expressed genes
LEFT: A set of microarray data (Affymetrix human U133A array, 22,283 genes total) from
drug-treated vascular cells was analyzed by t-test at different p-value thresholds (a=.001, 0.005,
0.05, or 0.10, n=9 pairs) and the number of differentially expressed genes (DEGS) recorded
(no correction for multiple testing). RIGHT: The same data was analyzed for DEGs by using
a t-test (0=0.01) or a 2-fold change with different numbers of replicate pairs (1-9).
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Sources of variation in microarray analysis.

Table 1
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Background Correction Summarization Method Normalization Method| Comparison Strategy Nomenclature
Mismatch subtraction (Affx) RMA Median per chip ANOVA Entrez Gene
Spot perimeter subtraction GC-RMA quartile EDR Genbank
None (RMA) Plier ‘Housekeeping’ SAM LocusL ink
MAS5 per gene fold-change Unigene
dChip Cy3/Cy5 ratio clustering SwissProt
t-test Affymetrix ID
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