Cytochrome c₂-Independent Respiratory Growth of *Rhodobacter capsulatus*

FEVZI DALDAL[†]

Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724

Received 2 November 1987/Accepted 3 February 1988

To assess the role of cytochrome c_2 as a respiratory electron carrier, we obtained a double mutant of *Rhodobacter capsulatus* defective in cytochrome c_2 and in the quinol oxidase₂₆₀. This mutant was able to grow chemoheterotrophically, indicating that an electron pathway independent of cytochrome c_2 was functional between the ubiquinol:cytochrome c_2 oxidoreductase and the cytochrome oxidase₄₁₀.

The respiratory electron pathway of the purple, nonsulfur, photosynthetic bacterium Rhodobacter capsulatus has two branches (Fig. 1) (9, 11, 21). The "main" branch consists of two major membrane-bound, energy-conserving complexes, the ubiquinol:cytochrome c_2 oxidoreductase (also called the cyt bc_1 complex) and the cytochrome oxidase₄₁₀, and of at least one periplasmic electron carrier between these complexes, cytochrome c_2 (cyt c_2). The "alternate" branch of the respiratory pathway is less well defined, and it contains a quinol oxidase (22). R. capsulatus mutants affecting these terminal oxidases (i.e., $C \text{ ox}_{410}^{-}$ and $Q \text{ ox}_{260}^{-}$ mutants) have been described previously (11). The presence of one of the two oxidases appears sufficient for aerobic growth, since only double mutants lacking both of the oxidases (C ox_{410}^{-1} $Q \text{ ox}_{260}^{-}$) are unable to grow chemoheterotrophically (11). The main respiratory branch can also be inactivated by mutations affecting the ubiquinol:cytochrome c_2 oxidoreductase (bc_1^- mutants) (4). Although both the bc_1^- and the C ox_{410}^{-} mutants can grow chemoheterotrophically via the alternate respiratory branch (Fig. 1), the "oxidase-negative" mutants are proficient in photosynthesis but are unable to catalyze the Nadi (α -naphtol + dimethyl-p-phenylenediamine + $O_2 \rightarrow$ indophenol blue + H₂O) reaction (11). Conversely, the "oxidoreductase-negative" mutants cannot grow by photosynthesis but can catalyze the Nadi reaction (4).

Earlier, Daldal et al. discovered that the photosynthetic growth of R. capsulatus was not drastically impaired by the absence of cyt c_2 (3). The nearly wild-type photosynthetic growth rate of a cyt c_2 -negative (c_2^-) mutant was mediated by direct electron transfer from the cyt bc_1 complex to the photochemical reaction center via cytochrome c_1 (cyt c_1) (14) (Fig. 1, broken vertical arrow). Further, Prince and Daldal recently showed that in the absence of both cyt c_1 and cyt c_2 , electron transfer between these two complexes was completely abolished, leading to the loss of the photosynthetic growth ability (13). These studies established that, at least in this bacterium, the presence of $cyt c_1$ but not that of cyt c_2 is obligatory for anoxygenic photosynthetic growth (Fig. 1) (4). The question then arises as to whether the absence of cyt c_2 has any effect on chemoheterotrophic (aerobic, dark) growth. The study of this question is complicated in a wild-type strain of R. capsulatus because of the branching of the respiratory pathway (Fig. 1). However, with a mutant defective in quinol oxidase₂₆₀, aerobic, dark

growth can be limited solely to the main branch. In this background the role of cyt c_2 in chemoheterotrophic growth can then be assessed by deletion of the corresponding structural gene.

R. capsulatus strains were grown on either MPYE or RCV media (10, 18). For *Escherichia coli* strains Luria broth or M9 medium was used (12). All media were supplemented adequately with required antibiotics as described earlier (4). Photosynthetic growth (anaerobic, with a light intensity of approximately 12 J/m² per s) was monitored with a Klett-Summerson colorimeter, and for chemoheterotrophic growth the A_{630} was measured. Gene transfer agent (GTA)mediated crosses were performed as described earlier (4, 17) with either R121 or its derivatives, containing appropriate plasmids, as GTA-overproducing strains (19). Chromatophore supernatants were prepared and analyzed by absorption spectroscopy as described earlier (14) with a Hewlett-Packard diode array spectrophotometer (model 8452A).

R. capsulatus M6 (Q ox_{260}^{-}) and M7 (C ox_{410}^{-}) (Table 1), chosen as appropriate background strains to test the role of cyt c_2 in chemoheterotrophic growth, were isolated earlier by Marrs and Gest as spontaneous revertants of the respiration-deficient strain M5 (11). Although the exact nature of the genetic lesion in these mutants is unknown, biochemical analyses have indicated that M6 and M7 are defective in the terminal oxidases of the alternate and main branches of the respiratory pathway, respectively (9, 21). To facilitate future spectroscopic studies, strains M6G and M7G, "green" derivatives of M6 and M7, were isolated by using the GTA obtained from R121 (a strain that carries a crtD mutation that leads to the accumulation of neurosprene derivatives instead of natural spheriodene and spheroidenone) as a donor. M6G is therefore virtually identical to strain ZM6, previously described by Zannoni and Marrs (20). Table 1 lists the phenotypes of M6G and M7G with respect to their ability to catalyze the Nadi reaction (11) and to their sensitivity to myxothiazol, a potent inhibitor of the quinol oxidation site (Q_z) of the cyt bc_1 complex. Interestingly, inhibition of the respiratory growth of M6G by myxothiazol (2.5 µg/ml of MPYE) indicated that the cyt bc_1 complex became indispensable for growth when respiration was limited to the main branch (Fig. 1). Further, considering that only M7G was Nadi negative, catalysis of this reaction appeared to be related primarily to the availability of a functional cytochrome oxidase rather than to the presence of its electron donors, cyt c_1 and cyt c_2 (Table 1) (4).

The c_2^- derivatives of M6G and M7G were obtained by using a deletion-insertion allele of *cycA* (structural gene for

[†] Present address: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104.

FIG. 1. Electron transport pathways operating between various energy-transducing components involved in different growth modes of *R*. *capsulatus*. Ps, Photoheterotrophic growth; Res, chemoheterotrophic growth; DMSO, anaerobic dark growth in the presence of auxiliary electron acceptors like dimethyl sulfoxide; NADH and SDH, respiratory dehydrogenases; Q/QH2, ubiquinone/ubiquinol pool; R.C, photochemical reaction center; bc₁, ubiquinol:cytochrome c_2 oxidoreductase (cyt bc_1 complex); c_2 , cyt c_2 ; C ox₄₁₀ and Q ox₂₆₀, respiratory terminal oxidases. Newly discovered cyt c_2 -independent pathways are indicated by broken arrows.

cyt c_2) (3), originally constructed by replacing the hemebinding region of cyt c_2 between amino acid residues 10 and 79 with a gene that encodes kanamycin resistance and that was derived from the transposon Tn5 (15). M6G and M7G were infected with GTA obtained from a derivative of R121 carrying this *cycA* allele on a plasmid, and kanamycinresistant transductants were selected photosynthetically, a permissible growth condition for c_2^- mutants (3). The strains obtained, M6G-G4/S4 (*cycA qox-260*) and M7G-G4/S4 (*cycA cox-410*) (Table 1), were analyzed for their cyt c_2 content by optical spectroscopy (Fig. 2). Ascorbate-reduced minus ferricyanide-oxidized difference spectra obtained by using chromatophore supernatants clearly indicated that, like the original c_2^- mutant MT-G4/S4 (3), strains M6G-G4/S4 and M7G-G4/S4 were devoid of cyt c_2 (Fig. 2).

To determine the role of cyt c_2 in respiration we compared the growth of several mutants of *R. capsulatus* (Table 1) under various conditions with either MPYE-rich medium (Table 2) or RCV synthetic medium (data not shown). As expected, the photosynthetic growth rates of various strains were similar. Further, the chemoheterotrophic growth rates of mutants defective in various components of the main or alternate respiratory pathway were not drastically different from that of a wild-type strain. Perhaps more interestingly, respiratory growth also continued at an appreciable rate (170-min doubling time at 35°C on MPYE medium) even when cyt c_2 and quinol oxidase₂₆₀ were both absent (Table 2, M6G-G4/S4). Further, M6G-G4/S4 was sensitive to myxothiazol under these conditions and was Nadi positive, indicating that its growth was mediated via the main respiratory branch (Fig. 1). Therefore, a cyt c_2 -independent electron pathway between the ubiquinol:cytochrome c_2 oxidoreductase and the cytochrome oxidase₄₁₀ must be operational during chemoheterotrophic growth of *R. capsulatus*.

The role of cyt c_2 in the respiratory electron transport chain of *R. capsulatus* has been briefly investigated in the past (1). It was shown with spheroplast preparations of M6 that succinate oxidation can be partially inhibited by the addition of polyclonal antibodies against cyt c_2 . Since a $c_2^$ derivative of M6 can still grow chemoheterotrophically, it is likely that the succinate oxidation insensitive to anti-cyt c_2 antibodies corresponds to the cyt c_2 -independent pathway observed here.

How electrons are transferred during respiration from the cyt bc_1 complex to the cytochrome oxidase in the absence of cyt c_2 is not yet well known in *R. capsulatus* (Fig. 1, broken horizontal arrow). It is possible that besides cyt c_2 various other *c*-type cytochromes also act as electron carriers between these membrane-bound complexes. The newly discovered membrane-bound or soluble *c*-type cytochromes, distinct from cyt c_1 and cyt c_2 (13), or the cytochrome oxidase₄₁₀-associated cytochrome described earlier (5, 6)

TABLE 1. R. capsulatus strains used

Strain	Genotype ^a	Phenotype ^b	Origin or reference
MT1131	crtD121	Nadi ⁺ Myx ^r	B. Marrs
R121	crtD121	Nadi ⁺ Myx ^r	B. Marrs
MT-G4/S4	crtD121 Δ(cvcA::kan)l	Nadi ⁺ Myx ^r	3
M6	gox-260	Nadi ⁺ Myx ^s	11
M7	cox-410	Nadi [–] Myx ^r	11
M6G	crtD121 gox-260	Nadi ⁺ Myx ^s	20; This work
M7G	crtD121 cox-410	Nadi ⁻ Myx ^r	This work
M6G-G4/S4	crtD121 ∆(cycA::kan)1 qox-260	Nadi ⁺ Myx ^s	This work
M7G-G4/S4	$crtD121 \Delta(cycA::kan)1 cox-410$	Nadi ⁻ Myx ^r	This work
MT-CBC1	crtD121 Δ (petBC::spe)18	Nadi ⁺ Myx ^r	4
M7G-CBC1	$crtD121 cox-410 \Delta(petBC::spe)18$	Nadi ⁻ Myx ^r	This work
MT-GS18	crtD121 Δ(cycA::kan)1 Δ(petBC::spe)18	Nadi ⁺ Myx ^r	13

a cox-410 and qox-260 are used to designate the genes mutated in strains M7 (*aer-412-512r34*) and M6 (*aer-412r20-512*) that led to the absence of the cytochrome oxidase₄₁₀ and quinol oxidase₂₆₀ activities, respectively. All the other gene designations are as described previously (3, 4, 11).

^b Only phenotypes related to the presence of the Nadi reaction (Nadi⁺ or Nadi⁻) (11) and to the resistance or sensitivity of chemoheterotrophic growth to myxothiazol (Myx^{t} or Myx^{s}) are listed. With the exception of MT-CBC1 and MT-GS18, which cannot grow by photosynthesis, all the other strains are sensitive to myxothiazol (2.5 μ g/ml) under photoheterotrophic growth conditions.

FIG. 2. Ascorbate-reduced minus ferricyanide-oxidized difference spectra of chromatophore supernatants containing approximately 6.5 mg of total protein per ml obtained from MT1131 (wild type), MT-G4/S4 (c_2^{-}), M6G (Q ox₂₆₀⁻), M6G-G4/S4 (c_2^{-} Q ox₂₆₀⁻), M7G (C ox₄₁₀⁻), and M7G-G4/S4 (c_2^{-} C ox₄₁₀⁻) grown aerobically. The vertical bar indicates the absorbance scale.

may be the likely candidates for this role. Alternatively, the electron donor from the cyt bc_1 complex to the cytochrome oxidase₄₁₀ may be the cyt c_1 of the cyt bc_1 complex via a direct interaction between the complexes. Interestingly, ubiquinol oxidase supercomplexes, composed of at least a

 TABLE 2. Growth characteristics of various

 R. capsulatus strains tested

Relevant phenotype	Growth rate ^a (doubling time [min]) during:	
	Photosynthesis	Respiration
Wild type	126	122
c ₂ -	168	120
$\tilde{0} 0 x_{260}^{-}$	150	188
$\hat{C} o x_{410}^{-}$	162	208
$c_{2}^{-0} = 0 = 0 = 0$	156	170
$c_2 - C O X_{410}$	158	188
bc1 ⁻	NG	146
$c_2^{-1} bc_1^{-1}$	NG	148
	Relevant phenotype Wild type c_2^- Q ox_{260}^- C ox_{410}^- c_2^- Q ox_{260}^- c_2^- C ox_{410}^- bc_1^- c_2^- bc_1^-	$ \begin{array}{c} \mbox{Growth rate}^{a} (d \mbox{[min]}) dt \\ \hline \mbox{Photosynthesis} \end{array} \\ \hline \mbox{Wild type} & 126 \\ \hline \mbox{C}_{2^{-}} & 168 \\ \hline \mbox{Q } 0x_{260}^{-} & 150 \\ \hline \mbox{C } 0x_{410}^{-} & 162 \\ \hline \mbox{c}_{2^{-}} \mbox{Q } 0x_{260}^{-} & 156 \\ \hline \mbox{c}_{2^{-}} \mbox{C } 0x_{410}^{-} & 158 \\ \hline \mbox{bc}_{1^{-}} & NG \\ \hline \mbox{c}_{2^{-}} \mbox{bc}_{1}^{-} & NG \end{array} $

^a Growth rates were determined at 35°C on MPYE-rich medium as described in the text. NG, No growth. cyt bc_1 complex and a cytochrome oxidase, have recently been isolated from *Paracoccus denitrificans* (2) and from the thermophilic bacterium PS3 (16). Finally, it should be noted that cyt c_2 -independent electron transfer pathways operating between various membrane-bound energy-transducing complexes may also exist in bacterial species other than *R*. *capsulatus*, e.g., *P. denitrificans* (8) and *Rhodopseudomonas viridis* (7).

In conclusion, the isolation of a double mutant of R. capsulatus lacking both cyt c_2 and quinol oxidase₂₆₀ has revealed the existence of a cyt c_2 -independent electron pathway between the cyt bc_1 complex and the cytochrome oxidase₄₁₀ (Fig. 1, broken horizontal arrow). Future genetic and spectroscopic analyses will hopefully better define the characteristics of the components involved in this newly discovered respiratory pathway.

This work was supported by Public Health Service grant GM38237 from the National Institutes of Health.

LITERATURE CITED

- Baccarini-Melandri, A., O. T. G. Jones, and G. Hauska. 1978. Cytochrome c₂—an electron carrier shared by the respiratory and photosynthetic electron transport chain of *Rhodopseudo*monas capsulata. FEBS Lett. 86:151-154.
- Berry, E. A., and B. L. Trumpower. 1984. Isolation of ubiquinol oxidase from *Paracoccus denitrificans* and resolution into cytochrome bc₁ and cytochrome c-aa₃ complexes. J. Biol. Chem. 260:2458-2467.
- 3. Daldal, F., S. Cheng, J. Applebaum, E. Davidson, and R. C. Prince. 1986. Cytochrome c_2 is not essential for photosynthetic growth of *Rhodopseudomonas capsulata*. Proc. Natl. Acad. Sci. USA 83:2012-2016.
- 4. Daldal, F., E. Davidson, and S. Cheng. 1987. Isolation of the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c_1 , all components of the ubiquinol: cytochrome c_2 oxidoreductase complex of *Rhodopseudomonas capsulata*. J. Mol. Biol. 195:1-12.
- 5. Hudig, H., and G. Drews. 1983. Characterization of a new membrane-bound cytochrome c of *Rhodopseudomonas capsulata*. FEBS Lett. 152:251-255.
- 6. Hudig, H., and G. Drews. 1985. Kinetic studies on the formation of cytochrome oxidase of *Rhodopseudomonas capsulata* after a shift from phototrophic to chemotrophic growth. J. Bacteriol. 162:897-901.
- Kampf, C., M. Wynn, R. W. Shaw, and D. B. Knaff. 1987. The electron transfer chain of aerobically grown *Rhodopseudomo*nas viridis. Biochim. Biophys. Acta 894:228–238.
- Kuo, L., H. C. Davies, and L. Smith. 1985. Monoclonal antibodies to cytochrome c from *Paracoccus denitrificans*: effects on electron transport reactions. Biochim. Biophys. Acta 809:388– 395.
- 9. La Monica, R. F., and B. L. Marrs. 1976. The branched respiratory system of photosynthetically grown *Rhodopseudomonas capsulata*. Biochim. Biophys. Acta 423:431-439.
- Marrs, B. 1981. Mobilization of the genes for photosynthesis from *Rhodopseudomonas capsulata* by a promiscuous plasmid. J. Bacteriol. 146:1003-1012.
- 11. Marrs, B., and H. Gest. 1973. Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacterium *Rhodopseudomonas capsulata*. J. Bacteriol. 114: 1045-1051.
- Miller, J. H. 1972. Experiments in molecular genetics, p. 431–435. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 13. Prince, R. C., and F. Daldal. 1987. Physiological electron donors to the photochemical reaction center of *Rhodobacter capsulatus*. Biochim. Biophys. Acta 894:370–378.
- 14. Prince, R. C., E. Davidson, C. E. Haith, and F. Daldal. 1986. Photosynthetic electron transfer in the absence of cytochrome c_2 in *Rhodopseudomonas capsulata*: cytochrome c_2 is not

essential for electron flow from the cytochrome bc_1 complex to the photochemical reaction center. Biochemistry 25:5208–5214.

- 15. Scolnik, P. A., and R. Haselkorn. 1984. Activation of extra copies of genes coding for nitrogenase in *Rhodopseudomonas* capsulata. Nature (London) 307:289-292.
- 16. Sone, N., M. Sekimachi, and E. Kutoh. 1987. Identification and properties of a quinol oxidase super-complex composed of a bc_1 complex and a cytochrome oxidase in the thermophilic bacterium PS3. J. Biol. Chem. 262:15386-15891.
- Taylor, D. P., S. N. Cohen, W. G. Clark, and B. L. Marrs. 1983. Alignment of the genetic and restriction maps of the photosynthetic region of the *Rhodopseudomonas capsulata* chromosome by a conjugation-mediated marker rescue technique. J. Bacteriol. 154:580-590.
- 18. Weaver, P. F., J. D. Wall, and H. Gest. 1975. Characterization of *Rhodopseudomonas capsulata*. Arch. Microbiol. 105:207-

216.

- 19. Yen, H. C., N. T. Hu, and B. L. Marrs. 1979. Characterization of the gene transfer agent made by an overproducer mutant of *Rhodopseudomonas capsulata*. J. Mol. Biol. 131:157-168.
- Zannoni, D., and B. L. Marrs. 1981. Redox chain and energy transduction in chromatophores from *Rhodopseudomonas cap*sulata cells grown anaerobically in the dark on glucose and dimethyl sulfoxide. Biochim. Biophys. Acta 637:96–106.
- Zannoni, D., B. A. Melandri, and A. B. Melandri. 1976. Composition and function of the branched oxidase system in the wild type and respiration deficient mutants of *Rhodopseudomonas capsulata*. Biochim. Biophys. Acta 423:410-430.
- 22. Zannoni, D., B. A. Melandri, and A. B. Melandri. 1976. Further resolution of cytochromes of b type and the nature of the CO-sensitive oxidase present in the respiratory chain of *Rhodo*pseudomonas capsulata. Biochim. Biophys. Acta 449:386-400.