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Understanding how the expression of transcription factor (TF)
genes is modulated is essential for reconstructing gene regulatory
networks. There is increasing evidence that sequences other than
upstream noncoding can contribute to modulating gene expres-
sion, but how frequently they do so remains unclear. Here, we
investigated the regulation of TFs expressed in a tissue-enriched
manner in Arabidopsis roots. For 61 TFs, we created GFP reporter
constructs driven by each TF’s upstream noncoding sequence
(including the 5�UTR) fused to the GFP reporter gene alone or
together with the TF’s coding sequence. We compared the visually
detectable GFP patterns with endogenous mRNA expression pat-
terns, as defined by a genome-wide microarray root expression
map. An automated image analysis method for quantifying GFP
signals in different tissues was developed and used to validate our
visual comparison method. From these combined analyses, we
found that (i) the upstream noncoding sequence was sufficient to
recapitulate the mRNA expression pattern for 80% (35�44) of the
TFs, and (ii) 25% of the TFs undergo posttranscriptional regulation
via microRNA-mediated mRNA degradation (2�24) or via intercel-
lular protein movement (6�24). The results suggest that, for Ara-
bidopsis TFs, upstream noncoding sequences are major contribu-
tors to mRNA expression pattern establishment, but modulation of
transcription factor protein expression pattern after transcription
is relatively frequent. This study provides a systematic overview of
regulation of TF expression at a cellular level.

intercellular protein movement � intergenic � microRNA-mediated mRNA
degradation � transcriptional regulation

Transcriptional networks mediated by transcription factors (TFs)
control the developmental processes of multicellular organisms

by specifying when and where genes are expressed (1). Therefore,
understanding the regulation of TF expression is essential for
building networks. Currently, transcriptional regulation is thought
to occur primarily through the binding of transcription factors to
cis-regulatory modules within upstream noncoding sequences (or
‘‘promoters’’). However, cases have been reported in plants (2, 3)
and animals (4) where regulatory elements within the transcribed
region are necessary for correct mRNA pattern establishment.
Furthermore, various posttranscriptional regulatory mechanisms
have recently been described, including microRNA-mediated deg-
radation (5, 6), nonsense-mediated mRNA decay (7), and nuclear
export control (8). After the establishment of the correct mRNA
expression pattern, mechanisms that can alter the expression pat-
tern include control of translation efficiency (9), intercellular
protein trafficking (10, 11), and regulated nuclear localization (12,
13). Clearly there is the potential for altering expression patterns
mediated by cis-elements within transcribed regions or through
posttranscriptional regulation. How often these mechanisms are
involved in gene regulation remains unclear.

To address this question, we carried out a systematic and
nonbiased investigation of the contribution of upstream noncoding
sequences to the establishment of mRNA expression patterns and
the influence of coding sequences on the pattern of mRNA and
protein expression. We focused on tissue-enriched TFs because
these TFs are potential regulators of tissue specification and
differentiation. We selected about one-third (61) of all of the TFs

expressed in a tissue-enriched manner in any one of five tissues of
the Arabidopsis root. They were identified from microarray data on
sorted GFP-marked cell populations (14, 15). These mRNA ex-
pression patterns were compared with the expression patterns
conferred by the upstream noncoding region of each TF fused
either to GFP alone (transcriptional fusion) or fused to the TF
coding sequence (translational fusion). Visual comparison of the
radial mRNA expression patterns with GFP expression patterns
indicated the following: (i) In 80% of the cases, the upstream
noncoding region was sufficient to recapitulate the mRNA expres-
sion pattern, and (ii) adding the coding sequence to the reporter
construct affected the expression pattern in 25% of the cases. An
automated image analysis program was developed to analyze GFP
expression patterns and its results corroborated our visual microar-
ray�GFP comparison method.

Results and Discussion
Transcriptional and Translational GFP Fusions for 61 Tissue-Enriched
Root Transcription Factors. TFs expressed in a tissue-enriched man-
ner were identified from the published root mRNA expression map
(14–16). The map was generated by using microarray profiling of
GFP marked and sorted Arabidopsis root tissues (here ‘‘tissue’’ is
used interchangeably with ‘‘cell-type’’). It covered the quiescent
center, stele, endodermis, epidermis (atrichoblast), and lateral root
cap. Of the 2,033 genes on the ATH1 array currently annotated as
TFs, 189 are enriched �2-fold in one of these five tissues. We
essentially randomly selected about one-third (61) of these TFs (see
Materials and Methods), generating transcriptional fusions to GFP
for 61 and translational fusions for 59. The constructs were made
with the versatile MultiSite Gateway cloning system (details in
Material and Methods). The transcriptional fusions were con-
structed by using endoplasmic reticulum-localized GFP (17) driven
by 3 kb of upstream noncoding sequence or the entire upstream
noncoding region, whichever was shorter. We included the 5�UTR
in our constructs because annotation of transcription start sites was
not always available. The translational fusions were made by
inserting the coding region of each TF in-frame upstream of
nontargeted GFP (17) with the same upstream sequences as those
used in the transcriptional fusions. At least 15 TF proteins from
various families have been shown to remain functional when fused
in this fashion to GFP at their C terminus (list of references
available in Table 2, which is published as supporting information
on the PNAS web site). These transcriptional and translational
constructs were transformed into plants, and the GFP expression
pattern generated in the root was imaged by using confocal laser-
scanning microscopy. The genes analyzed, the length of the up-
stream sequence used, and the number of lines analyzed for each
construct can be found in Table 3, which is published as supporting
information on the PNAS web site. Confocal images of roots for
each construct are available in the Arex database (www.arexdb.org)
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and in Fig. 4, which is published as supporting information on the
PNAS web site. Several tissue-specific GFP lines were produced,
specific to the endodermis, quiescent center, phloem, or xylem (Fig.
5, which is published as supporting information on the PNAS web
site), and these lines can be used to further refine the root
expression map as well as for a wide range of other studies.

Visual Comparison of the GFP and mRNA Expression Patterns and
Validation by Using Automated Image Analysis. The expression
patterns of these transcriptional and translational GFP fusions were
compared with the in vivo mRNA expression pattern of each gene
as derived from the root expression map. Root map expression
profiles have been shown to accurately reflect published mRNA
expression patterns from in situ hybridization for 25 of 26 genes and,
thus, provide a reliable estimation of mRNA expression patterns in
vivo (14). To enhance the resolution of the expression map, we
profiled three additional radial tissues in the root (xylem, phloem,

and cortex; see Materials and Methods). Combined with previously
described profiles from six other tissues (14, 16, 18), the resulting
root expression map covers nine nonoverlapping tissues and rep-
resents most of the cell populations found along the radial axis of
the root and in the root cap (Fig. 1A; all microarray data are
available at www.arexdb.org).

The GFP expression patterns were visually compared with the
mRNA expression patterns estimated from the microarray data by
using a ranking method: The absolute microarray intensity values
from the nine tissues of the expression map were ranked, and the
two patterns were scored as being the same if the GFP signal was
found only in tissues consecutively ranking at the top, otherwise
they were scored as different (see Fig. 1 B and C, and Fig. 6, which
is published as supporting information on the PNAS web site). In
the cases where the transcriptional GFP and microarray expression
patterns were scored as being the same, it was concluded that the
upstream noncoding sequence was sufficient to recapitulate the
mRNA expression pattern.

Fig. 1. Comparison of transcriptional fusion GFP expression patterns with mRNA expression patterns from the root expression map by a ranking method. (A)
The nine root tissues profiled by cell sorting-microarray method to generate the root expression map. (B and C) Rationale of expression correlation based on
the visual rank-based comparison. (B) GFP images of transcriptional fusions of two TFs and (C) their mRNA expression levels in the nine tissues. Expression levels
are ranked based on the mRNA level from the microarray data, and the tissues with GFP expression are marked with green squares. For ATHB-8, because GFP
is expressed in the three top-ranked tissues (B Upper, columella and quiescent center; B Lower, xylem), the transcriptional fusion and mRNA patterns are scored
as the ‘‘same’’ in C. For AT5G43040, GFP expression was found both in the first-ranked tissue (B Lower, atrichoblast) and in the seventh-ranked tissue (B Upper,
lateral root cap). Therefore the transcriptional fusion and mRNA patterns are scored as ‘‘different’’ in C.
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This visual rank-based comparison is sensitive to our ability to
detect GFP. To corroborate this method, we developed an auto-
mated image analysis program by which the GFP signals in the
different tissues are converted into numerical values. We trained
the algorithm to identify four tissues of the root elongation zone
(stele, endodermis, cortex, and atrichoblast) for which we have
direct microarray data (see Fig. 2A). We were able to analyze 60
images from 24 transcriptional fusion constructs for which relative
green fluorescence levels were quantified for the four cell types
(described in Materials and Methods). Pearson correlation coeffi-
cients between the relative expression levels, determined by the
automated image analysis method and the microarray data, were
calculated and plotted for each image and each gene (Fig. 2B).
Among the 24 genes analyzed, 5 had been found to have a different
pattern with the visual rank-based method (Fig. 2B). Three of these
(AT3G48100, AT1G08930, and AT2G34710-PHABULOSA) had
the lowest average correlation coefficients. The other two
(AT3G49760 and AT5G43040) had high positive correlation coef-
ficients, but, in both cases, the difference in expression patterns was
based on expression in tissues not identified by the automated
imaging algorithm (phloem vs. pericycle, and phloem vs. lateral root
cap, respectively). Thus there were no false ‘‘different’’ calls by the
visual nonparametric ranking method on this set of 24 genes.

The automated image analysis method confirmed that our visual
approach reliably identifies differences between GFP and microar-
ray expression patterns. Also, digital images of RNA in situ hybrid-
izations or GFP reporter constructs are emerging as alternative
data to assess tissue-specific expression at single-cell resolution and
have been used to reconstruct regulatory pathways in the devel-
opment of Drosophila and Arabidopsis (examples are in refs. 19 and
20). The technique developed here to analyze root images is
currently limited to analyzing expression in the elongation zone, but
could be extended to the rest of the root. This development will
constitute a valuable resource for transcription network reconstruc-

tion studies. As such it could also be used to study subtle changes
in expression patterns, which are not visually detectable.

Upstream Regulatory Regions Are Generally, but Not Always, Suffi-
cient to Reconstitute mRNA Expression Patterns. The results of the
visual rank-based comparison of the GFP and microarray expres-
sion patterns were used to assess the overall ability of upstream
noncoding sequences to recapitulate mRNA expression patterns
(results listed in Table 3). Among the 61 transcriptional fusions
generated, we were not able to detect GFP visually in any root tissue
for 13 of them (21%). It is possible that some of these transcrip-
tional fusions did not generate detectable GFP because the mRNA
is naturally expressed at a low level. Indeed, for these genes the
maximum microarray expression value in the nine profiled tissues
was significantly lower on average than for genes whose transcrip-
tional fusion recapitulated the mRNA expression pattern (average
419 vs. 1,434; Student’s t test, P � 0.00003). In any case, we excluded
these 13 fusions from further analysis because the ability of an
upstream regulatory sequence to recapitulate an mRNA expression
pattern cannot be assessed without detectable GFP. We also
excluded four other fusions with visible GFP expression in tissues
not covered by the microarray expression map. Of the remaining 44
transcriptional fusions, 35 (80%) were scored as having the same
mRNA and GFP transcriptional fusion expression patterns (Table
1). Therefore, our analysis suggests that the noncoding sequence
within 3 kb upstream of a TF is sufficient for driving the endogenous
mRNA expression pattern in 80% of the cases.

Nine of the 44 TFs (20%) exhibited different transcriptional GFP
and mRNA expression patterns based on the microarray data.
These differences seem to reflect real discrepancies between the
endogenous mRNA pattern and the GFP expression pattern.
Indeed, only one gene (AT3G48100) exhibited a dramatic differ-
ence between its transcriptional GFP (procambium and columella)
and mRNA expression domains from the root expression map
(enriched in atrichoblast). All of the other genes showed differences

Fig. 2. Comparison of transcriptional fusion expression patterns with mRNA expression patterns from the root expression map by an automated image analysis
method. (A) Example of quantification of GFP by using automated image analysis. Starting with the original image (a), total intensity values of the green channel
are quantified by using our labeling scheme (b) and allocated to each tissue type. The resulting quantification output of total expression divided by total area
(c) is used for comparison with data from the root expression map. (B) Correlation between automated image analysis data and root expression map data. Pearson
correlation values between microarray and numerical GFP expression values obtained from automated image analysis are plotted for multiple lines and genes
are sorted by their mean correlation value. Because r values are very close for many images, we grouped the correlation values into categories if they were within
0.05 of each other (�, 1 image; �, 2 images; ƒ, 3 images; �, 4 images; �, 6 images). The genes identified as ‘‘different’’ with the visual rank-based comparison
are labeled in red.
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among neighboring cell types (e.g., phloem vs. pericycle), and these
differences are unlikely to be because of contamination of neigh-
boring tissues in generating the microarray data because the
expression levels in the neighboring tissues are dramatically differ-
ent. Furthermore, independent confirmation of the mRNA expres-
sion pattern from in situ hybridization data has been published for
one of them (DAG1 - AT3G61850) (21). An incomplete upstream
noncoding sequence limited to 3 kb had been used for four of these
nine transcriptional fusions. However, we think it is unlikely that
this incomplete upstream noncoding sequence is the reason for the
failure to recapitulate the mRNA expression pattern because we
find a similar proportion of incomplete noncoding sequences
among the 35 transcriptional fusions that gave the same expression
pattern (17�35). Thus, a more likely explanation is that regulatory
elements downstream of the start site are necessary to modify the
expression pattern conferred by the upstream noncoding sequence.
Consistent with this hypothesis, for one of these nine genes the
mRNA expression pattern was restored in the translational fusion
(PHABULOSA), probably mediated by microRNA-mediated
mRNA degradation as described in the next section (Fig. 3A).

Overall, our results suggest that for �80% of Arabidopsis TFs,
regulatory regions sufficient for reconstituting mRNA expression
patterns reside within 3 kb of the upstream noncoding region.
Interestingly, �85% of known transcription factor binding sites in
humans are found within 3 kb upstream of the transcription start
site (22). However, for the remaining 20%, sequences not contained
within our transcriptional fusions such as the 3�UTR, introns, or the
coding region, are probably required for modifying the mRNA
pattern conferred by the upstream sequence. This modification
results in a modest expansion or reduction of the expression domain
in most cases. Indeed, a recent study in Drosophila suggests that
microRNA-mediated regulation is an important means of modu-
lating the boundaries of the expression domain (23). Such effects
might not have been easily recognized by using traditional RNA in
situ hybridization data. Thus, refining the microarray expression
map further is likely to reveal more genes regulated by sequences
other than the upstream noncoding sequences.

Transcription Factor Localization Can Be Affected by Sequences Within
the Coding Region. Gene expression patterns can be affected by
various posttranscriptional events, including RNA degradation and
intra- and intercellular protein trafficking. From the 48 TFs for
which the transcriptional fusion yielded detectable GFP, we ob-
tained translational fusion data for 47. Of these translational

fusions, 8 yielded no visible GFP, and 5 had expression that was
inconsistent between independently transformed lines. We found
notably different translational and transcriptional expression pat-
terns for 10 of the 34 remaining genes, reduced in breadth in 2 and
expanded in 8 cases (Table 3). To estimate how often coding
sequences affect expression patterns, we compared these pattern
changes to the endogenous expression pattern obtained from the
microarray data.

The translational pattern was reduced in breadth compared with
the transcriptional pattern for PHABULOSA and ATHB-8
(AT4G32880). PHABULOSA is a known target of microRNA
165�166 in shoots (Fig. 2A) (24, 25), and the closest paralog of
ATHB-8 was shown to be regulated by the same microRNA (26).
Translational GFP expression was suppressed in the quiescent
center for both genes and in the endodermis and cortex for
PHABULOSA (Fig. 3A), matching the mRNA expression pattern
from the microarray data. Therefore, addition of the coding se-
quence for this gene allows the mRNA expression pattern to be
recapitulated. For ATHB-8, the transcriptional and mRNA expres-
sion patterns had been scored as the same (Table 1). However, this
scoring is still consistent with mRNA degradation occurring be-
cause the mRNA expression in the tissue where it is putatively
suppressed (quiescent center) ranked lower than in other tissues
with visible GFP in the transcriptional fusion (see Fig. 1 B and C).
In summary, among the 24 TFs for which the transcriptional fusion
(the translational fusion for PHABULOSA) recapitulated the
mRNA expression pattern (bolded numbers in Table 1), 2 (8%) are
likely to be posttranscriptionally regulated by microRNA-mediated
mRNA degradation. It is noteworthy that in both cases the effects
take place in the quiescent center, a tissue involved in suppressing
differentiation of the surrounding initial cells (27). In an animal
study (22), stem cell differentiation was shown to be suppressed by
the down-regulation of genes inducing differentiation, this effect
partly taking place via microRNAs. Consistent with this finding,
expression profiling also showed enrichment of genes involved in
mRNA silencing in the quiescent center (16).

We found the translational pattern to be increased in breadth
compared with the transcriptional pattern for eight TFs. Movement
between cell layers has been described as functional for other plant
TFs (SHR, CPC, LFY, KNOTTED) based on differences in protein
and mRNA expression patterns and nuclear localization in the
tissues into which the protein has moved (10). Here, for six TFs,
expression was localized to the nucleus in the tissues in which the
pattern was expanded. The transcriptional fusion recapitulated the
mRNA expression pattern for four of these six TFs (AT4G00940,
AT4G27410, AT4G37940, and CPC-AT2G46410) (Table 1). Be-
cause the expansion in expression pattern must occur after the
establishment of the mRNA expression pattern in these cases, it is
likely that it occurred via cell-to-cell protein movement, as shown
for CPC in ref. 28. Therefore, among the 24 TFs for which the
reporter mRNA is expressed in the appropriate tissues (bolded
numbers in Table 1), 4 (17%) are likely to undergo posttranscrip-
tional modification via intercellular protein trafficking. For the
other 2 TFs (DAG1 and AT2G22850), because the transcriptional
and mRNA expression patterns were scored as different, the
protein might not be expressed in its native tissue. Nevertheless,
because the mRNA and translational expression patterns are also
different, the expansion of their pattern is unlikely to be because of
mRNA movement.

Whether TF protein movement between cells is an active (tar-
geted) or passive (nontargeted) process is still debated (29). Our
results are not consistent with a passive process based on three
observations. First, for passively moving proteins, smaller proteins
were shown to move more effectively than larger ones, presumably
dependent on the size exclusion limits of plasmodesmata (30).
Here, the size distribution of moving and nonmoving TFs over-
lapped. Second, it has been suggested from studies of LEAFY
movement that proteins move unless they are retained in a specific

Table 1. Summary comparison of transcriptional and
translational fusion expression patterns with mRNA
expression patterns from the root expression map

Translational vs.
transcriptional

mRNA pattern �

transcriptional
mRNA pattern �

transcriptional Total

Same 18 2 20
Expanded and nuclear

localized
4 2 6

Reduced 1 1 2
Unclear* 6 1 7
No GFP 5 2 7
No data† 1 1 2
Total 35 (80%) 9 (20%) 44

Among the 61 transcription factors (TFs) for which transcriptional GFP was
analyzed, only 44 are listed in the table as their GFP patterns could be visually
compared with the mRNA expression patterns based on the microarray data.
Bolded numbers represent those 24 genes for which the transcriptional fusion
likely recapitulates the endogenous mRNA expression pattern.
*More lines should be analyzed for definitive judgment (5�7) or the transla-
tional expression pattern is expanded but not nuclear-localized (2�7).

†Cloning of the translational fusion failed due to cDNA cloning issues.
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subcellular compartment (31). Partially supporting this idea, both
cytoplasmic and nuclear localization was found for translational
GFP movement within the stele (see CPC and DAG1 in Fig. 4).
However, among all moving (8) and nonmoving (26) TFs, a similar
proportion of moving TFs was found for those that were not nuclear
localized (2�9) and those that were (6�25). Our observation sug-
gests that cytoplasmic localization is necessary but not sufficient for
intercellular protein movement. Third, for the three genes for which
the expansion occurred within the vasculature (DAG1, AT2G22850,
and CPC), expansion occurred throughout the entire tissue (i.e.,
multiple cell layers). In contrast, in the cases where expansion
occurred to nonvascular tissues (including CPC in the epidermis),
it only occurred to the adjacent cell layer. This observation provides
further evidence that the ability of a TF to move can depend on the
cell type in which it is expressed (32). In summary, our results
suggest that movement of TFs is more likely an actively regulated
rather than a simple size-dependent passive process (33).

Besides regulation of intercellular movement, TF activity might
also be regulated via modulation of subcellular localization, as has
been previously reported in plants (34, 35) and animals (12, 13). For

10 of the 39 (25%) translational fusions that had detectable GFP,
the GFP-fusion protein was not found to be nuclear-localized in any
of the root tissues (Table 3). Because only two of these GFP-fusion
proteins had different transcriptional and mRNA expression pat-
terns, ectopic protein expression is unlikely to be the reason for this
lack of nuclear localization. Assuming that the annotation of these
ten genes as transcription factors is correct, it is thus possible that
this regulatory mechanism is relatively common for transcription
factors.

In summary, by comparing mRNA expression patterns with
transcriptional and translational reporter patterns, we have ob-
tained an estimate of the relative importance of transcriptional and
posttranscriptional mechanisms in regulating TF expression pat-
terns in the Arabidopsis root. We conclude that 5� upstream
noncoding sequences control the major patterns of transcription,
and that movement of TF proteins is relatively common. These data
will provide valuable information for future gene regulatory net-
work analyses.

Materials and Methods
Tissue-Enriched Transcription Factor Selection. A list of transcription
factors represented on the Affymetrix ATH1 array was compiled
from three TF databases (http:��rarge.gsc.riken.jp�rartf and two
databases in refs. 36 and 37). This list was then used to search the
microarray data for TFs with a two-fold enrichment in one tissue as
compared with all of the others. Two-fold enrichment was chosen
based on ‘‘spike-in’’ experiments (38). Also, 150 was set as the
minimum MAS5 level in the enriched tissue because 99% of the
genes with MAS5 expression levels below that value were called
absent by the Affymetrix software. All of the TFs found enriched
in the endodermis (14), stele (27), and atrichoblasts (15) were
cloned whenever this cloning was successful, and TFs of interest to
our laboratory were selected for the quiescent center (6) and the
lateral root cap (2). Since these 61 TFs had been selected, the total
Arabidopsis transcription factor list has been expanded to 2,033
genes. Among these 2,033 TFs, 189 TFs were found enriched by
using our query criteria. Therefore, this selection represents an
essentially random subset of about one-third of the TFs expressed
in a tissue-enriched manner in Arabidopsis roots.

Microarray Data. Microarray profiling of the phloem, xylem, and
cortex was performed by using lines containing promoter-GFP
constructs from the genes AT1G79430, AT5G12870, and
AT1G09750 respectively, with two biological replicates for the
phloem and three for the other two. The plants were grown on 1%
sucrose nutrient agar and profiled as described in ref. 15. Other
microarray profiling data are from Birnbaum et al. (14) (atricho-
blast, lateral root cap, stele, and endodermis), Nawy et al. (16)
(columella and quiescent center), and Levesque et al. (18) (peri-
cycle). All microarray data were globally normalized to 250 of the
average expression value with MAS5 software (Affymetrix).

Cloning, Plant Transformation, and Imaging. Transcriptional and
translational GFP reporter fusion constructs were generated by
using the MultiSite Gateway Three-Fragment Vector Construction
system (Invitrogen). Upstream noncoding sequences were isolated
by using nested PCR: for the first reaction, by using primers outside
the region of interest and Columbia ecotype genomic DNA as
template, and, for the second reaction, by using nested primers with
recombination sites and matching sequences to the region of
interest, and the first PCR product as template (sequences of nested
primers available in Table 3). These PCR products were then
cloned by recombination into the appropriate vector. Clones were
sequenced and those with no more than one indel mutation per
kilobase were selected. For translational fusion constructs, for each
gene a full-length cDNA without the stop codon was isolated by
reverse transcription–PCR (except for AT4G32710; genomic clone
including introns) and directionally cloned into pENTR�D-TOPO

Fig. 3. Examples of coding sequences affecting the localization of transcrip-
tion factors. (Left) Expression patterns of the transcriptional fusion constructs.
(Right) Translational fusion patterns. (A) Example of reduction in expression
breadth most likely because of microRNA-mediated mRNA degradation for
PHABULOSA. In the translational fusion line, GFP expression is lost in the
endodermis (arrows in Upper; * in Lower), the endodermis�cortex initials, and
the quiescent center (arrowheads in Upper). (B) Example of increase in the
expression breadth most likely because of intercellular protein movement for
DAG1. The GFP expression domain has expanded one cell layer from the stele
to the endodermis (arrows). (Scale bar: 40 �m.)
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by using the pENTR Directional TOPO Cloning kit (Invitrogen).
To directly perform the final recombination into a plant transfor-
mation vector, we cloned an attR4:ccdB:CmR:attR3 fragment from
pDEST R4-R3 into HindIII and XhoI sites of pGreenII 0229 (39)
and replaced the selection marker with spectinomycin resistance.
This modified vector was then recombined with the upstream
noncoding sequence clone and either endoplasmic-reticulum local-
ized GFP for the transcriptional fusions or the clone of a coding
region and GFP with no localization signals for the translational
fusions. The final constructs in Agrobacterium were transformed
into Columbia ecotype plants by using the floral dip method (40).
Transformed plants (T1) were selected with BASTA (Farnam,
Phoenix) on soil and 5- to 7-day-old T2 seedlings were grown and
imaged by using confocal laser scanning microscopy as described in
ref. 16. An average of six independently transformed lines (for
AT5G43030, AT5G15150, and AT2G46410, only two lines were
examined) were analyzed for each TF.

Automated Image Analysis. Images (111) from transcriptional fu-
sions showing expression in the elongation zone of the root were
selected and automatically analyzed to retrieve GFP signal values
in the stele, endodermis, cortex, and epidermis (see an example in
Fig. 7, which is published as supporting information on the PNAS
web site). These GFP signal values were then aligned to the
microarray data values, and both were normalized for contrast
enhancement by subtracting 150 (the microarray data absence call
value) and setting resulting negative values to zero. Eighty-four
images remained after removal of those with no detectable expres-
sion after this enhancement. The GFP signal and microarray data
values were then converted to a relative intensity level, and for each
image a Pearson correlation coefficient was calculated between the

microarray and the GFP signal values in the four tissues. The
resulting 84 correlation coefficients were plotted with respect to
their gene. Images with low correlation coefficients (�0.7) were
investigated, and 24 of these outliers were found to be from
incorrectly mapped tissue types derived from the image analysis and
were removed from the analysis.

The automated image analysis was performed as follows. After
each GFP image was separated into red (cell walls), green (GFP),
and a blank blue channel, and analyzed in three phases: (i) noise
removal on the green channel, application of a series of morpho-
logical filters and partial subtraction of the red channel to remove
refraction noise and cross-talk of the red stain (41) for cleaner
separation of tissue layers and contrast enhancement; (ii) labeling
of the tissue types, determination of the outer cell boundaries of the
root by using a contour-tracking algorithm (41) and labeling the
tissues by using a template reference image of a typical cross-
section; (iii) quantification and normalization of the expression
values in each tissue type. First, GFP intensity values for all pixels
in each tissue were summed. The sum was divided by the total area
of each tissue type, to provide relative expression values for the
tissues similar to the gene expression map data, and to normalize
variation in magnification. All image processing and analysis was
performed by using the software program MATLAB IMAGE PRO-
CESSING TOOLBOX.
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